积的项数与原多项式的项数相同. 2.单项式分别与多项式的每一项相
乘时,要注意积的符号的确定:
同号相乘得正,异号相乘得负
3.不要出现漏乘现象,运算要有顺序.
16
32
2
1 a2b3 a2b2 3
9
单项式乘以多项式法则:
例:计算 5ab( 2a b 0.2)
解:原式 5ab 2a 5ab( b) 5ab 0.2 10a2b 5ab2 ab
注: (1)多项式每一项包括前面的符号; (2)单项式必须与多项式中每一项相 乘,结果的项数与原多项式项数一致.
10
计算
1. 4( a b 1)
2. 3x( 2x y2)
3.3x( 2x 5y 6z) 4 2a2 (2 a & 是非 ☞
下面的计算对不对?如果不对,怎样改正?
(1)( - 3x)(2x - 3y)=6x2 - 9xy ( × )
注意:各项符号的确定! -6x2+9xy
解:原式=ab2+(ab2)2-(ab2)3
当ab2=-6时,原式=-186
(2)已 知x mn 3, ymn 2, 求 代 数 式
( 1 xm yn ) ( 1 xn ym )的 值
3
2
解:∵xm+n=3,ym+n=2,∴xm ·xn ·ym ·yn=6
∴原式=-1
15
自我 & 反思
1.单项式乘多项式的结果是多项式,
1、计算:
(1) 3a(5a 2b) 15a2-6ab (2) ( x 3 y) (6 x) 18xy-6x2
2、当x=5时,计算
x(x 1) 2x(x 1) 3x(2x 5)的值
(提示:先化解,然后代入求值)