第二章习题解答
- 格式:doc
- 大小:1.65 MB
- 文档页数:7
习题解答(第二章)一、选择题1.25℃时,0.01mol/kg的糖水的渗透压为π1,而0.01 mol/kg的尿素水溶液的渗透压π2,则___ B _。
(A)π1<π2(B)π1 =π2(C)π1>π2(D)无法确定2.应用克-克方程回答问题:当物质由固相变为气相时,平衡压力随温度降低而__ C__。
(A)不变(B)升高(C)降低(D)视不同物质升高或降低3.通常称为表面活性剂的物质,是指当其加入少量后就能__ C的物质。
(A)增加溶液的表面张力(B)改变溶液的导电能力(C)显著降低溶液的表面张力(D)使溶液表面发生负吸附4.兰格缪尔(Langmuir)等温吸附理论中最重要的基本假设是_ D___。
(A)气体为理想气体(B)多分子层吸附(C)固体表面各吸附位置上的吸附能力是不同的(D)单分子层吸附5.溶胶的基本特征之一是___D__。
(A)热力学上和动力学上皆稳定的系统(B)热力学上和动力学上皆不稳定的系统(C)热力学上稳定而动力学上不稳定的系统(D)热力学上不稳定而动力学上稳定的系统6.下列各性质中,属于溶胶的动力学性质的是___A___。
(A)布朗运动(B)电泳(C)丁达尔现象(D)流动电势7.引起溶胶聚沉的诸因素中,最重要的是___D__。
(A)温度的变化(B)溶胶浓度的变化(C)非电解质的影响(D)电解质的影响8.用KBr加入浓的AgNO3溶液中,制备得AgBr溶胶,再向其中加入下列不同的电解质,能使它在一定时间内完全聚沉所需电解质最少的是__ C _。
(A)Na2SO4(B)NaNO3 (C)K3[Fe(CN)6] (D)KCl9.等体积0.10mol/dm3 KI和0.12mol/dm3的AgNO3溶液混合制成的AgI溶胶,下列电解质中,聚沉能力最强的是___D__。
(A )Na 2SO 4 (B )MgSO 4 (C )K 3[Fe(CN)6] (D )FeCl 3二、简答题1.理想气体存在吗?真实气体的pVT 行为在何种条件下可用pV=nRT 来描述?答:事实上,理想气体不存在。
《土力学》第二章习题集及详细解答第2章土的物理性质及分类一填空题1.粘性土中含水量不同,可分别处于、、、、四种不同的状态。
其界限含水量依次是、、。
2.对砂土密实度的判别一般采用以下三种方法、、。
3.土的天然密度、土粒相对密度、含水量由室内试验直接测定,其测定方法分别是、、。
4. 粘性土的不同状态的分界含水量液限、塑限、缩限分别用、、测定。
5. 土的触变性是指。
6.土的灵敏度越高,其结构性越强,受扰动后土的强度降低越。
7. 作为建筑地基的土,可分为岩石、碎石土砂土、、粘性土和人工填土。
8.碎石土是指粒径大于 mm的颗粒超过总重量50%的土。
9.土的饱和度为土中被水充满的孔隙与孔隙之比。
10. 液性指数是用来衡量粘性土的状态。
二、选择题1.作为填土工程的土料,压实效果与不均匀系数C u的关系:( )(A)C u大比C u小好(B) C u小比C u大好(C) C u与压实效果无关2.有三个同一种类土样,它们的含水率都相同,但是饱和度S r不同,饱和度S r越大的土,其压缩性有何变化?( )(A)压缩性越大(B) 压缩性越小(C) 压缩性不变3.有一非饱和土样,在荷载作用下,饱和度由80%增加至95%。
试问土样的重度γ和含水率怎样改变?( )(A)γ增加,减小(B) γ不变,不变(C)γ增加,增加4.土的液限是指土进入流动状态时的含水率,下述说法哪种是对的?( )(A)天然土的含水率最大不超过液限(B) 液限一定是天然土的饱和含水率(C)天然土的含水率可以超过液限,所以液限不一定是天然土的饱和含水率5. 已知砂土的天然孔隙比为e=0.303,最大孔隙比e max=0.762,最小孔隙比e min=0.114,则该砂土处于( )状态。
(A)密实(B)中密 (C)松散(D)稍密6.已知某种土的密度ρ=1.8g/cm3,土粒相对密度ds=2.70,土的含水量w=18.0%,则每立方土体中气相体积为( )(A)0.486m3 (B)0.77m3(C)0.16m3(D)0.284m37.在土的三相比例指标中,直接通过室内试验测定的是()。
第二章习题答案2.1.1 质点的运动学方程为j t i t r j i t r ˆ)14(ˆ)32()2(ˆ5ˆ)23()1(-+-=++=求质点的轨迹并用图表示解:(1)⎭⎬⎫=+=523y t x 平行于x 轴的直线:y=5(2)⎭⎬⎫-=-=1432t y t x 消去t 的轨迹方程:0534=-+y x2.1.2 质点的运动学方程为kj e i e r t t ˆ2ˆˆ22++=-。
(1)求质点的轨迹。
(2)求自t = -1 至t = 1质点的位移解:(1)由运动方程得质点轨迹的参数方程为 )3()2()1(222⎪⎩⎪⎨⎧===-z ey e x tt (1)x (2)消去t ,得轨迹方程 ⎩⎨⎧==21z xy(2)自t = -1 至t = 1质点的位移:je e i e e r r r k j e i e r k j e i e r t t ˆ)(ˆ)(ˆ2ˆˆˆ2ˆˆ,1,1222211221221-------+-=-=∆++=++==-= 2.1.3 质点的运动学方程为j t i t r ˆ)32(ˆ42++=。
(1)求质点的轨迹;(2)求自t=0至t=1质点的位移解:由质点的运动方程⎩⎨⎧+==)2(32)1(42t y t x (1) 质点的轨迹:消去t 得:2)3(-=y x(2) 位移:ji r r r j i r j r t t ˆ2ˆ4ˆ5ˆ4ˆ3101221+=-=∆+====2.2.1 雷达站于某瞬时测得飞机位置为R 1=4100m ,θ1=33.70,0.75s 后测得R 2=4240m ,θ2=29.30,R 1,R 2均在铅直平面内,求飞机瞬时速度的近似值和飞行方向(α角)。
解:取雷达站位置为原点,飞机在两个时刻的位置矢量分别为r 1和r 2,则| r 1|=R 1, | r 2|=R 2,如图所示由余弦定理,在0.75s 时间间隔内飞机的位移的大小为mR R R R r r r r r 4.349)3.297.33cos(42404100242404100)cos(2)cos(200222121222121212221≈-⨯⨯-+=--+=--+=∆θθθθ飞机的瞬时速度的大小:==∆∆≈smt r v 75.04.349465.8m/s飞机的瞬时速度方向:由正弦定理)3.297.33sin(4.349sin 4240)sin(sin 00212-=⇒-∆=γθθγr r100001207.341806.11193.0arcsin 18090,93.04.4sin 4.3494240sin ≈--=∴≈-=∴>∴>≈=γθαγγγr r另解:利用矢量在直角坐标系中的正交分解. 选平面直角坐标系,取雷达站的位置为坐标原点,x 轴沿水平方向,y 轴铅直向上,则在两个时刻飞机的位置矢量分别可表示为ji j i jR i R r ji j i jR i R r ˆ98.2074ˆ57.3697ˆ3.29sin 4240ˆ3.29cos 4240ˆsin ˆcos ˆ86.2274ˆ01.3411ˆ7.33sin 4100ˆ7.33cos 4100ˆsin ˆcos 00222220011111+=⨯+⨯=+=+=⨯+⨯=+=θθθθ 飞机飞行0.75s 后的位移矢量为j i r r r ˆ88.199ˆ56.28612-=-=∆飞机瞬时速度的大小的近似值:s m t rv /8.46575.038.34975.088.19956.28622=≅+=∆∆≈飞机瞬时速度的方向与x 轴的夹角:09.3482.038.34956.286ˆcos =∴==∆⋅∆=ααr i r2.2.2 一圆柱体沿抛物线轨道运动.抛物线的轨道方程为y=x 2/200(长度:mm).第一次观测到圆柱体在x=249mm 处,经过时间2ms 后圆柱体移到x=234mm 处.求圆柱体瞬时速度的近似解:第一次观测时,x=249mm, y=x 2/200=(249)2/200≈310mm ,j i r ˆ310ˆ2491+=2ms 后,x=234mm, y=x 2/200=(234)2/200≈273.78mm ,j i r ˆ78.273ˆ2342+=圆柱体的位移:mm r j i r r r 2.3922.3615ˆ22.36ˆ152212≈+=∆--=-=∆∴ms mm msmm t r v /6.1922.39==∆∆≈速度与x 轴的夹角:5.112383.02.3915ˆcos -≈∴-≈-=∆⋅∆=ααr i r2.2.3 一人在北京音乐厅内听音乐,离演奏着17m 。
2.1设有12枚同值硬币,其中一枚为假币。
只知道假币的重量与真币的重量不同,但不知究竟是重还是轻。
现用比较天平左右两边轻重的方法来测量(因无砝码)。
为了在天平上称出哪一枚是假币,试问至少必须称多少次?解:分三组,每组4个,任意取两组称。
会有两种情况,平衡,或不平衡。
(1) 平衡:明确假币在其余的4个里面。
从这4个里面任意取3个,并从其余8个好的里面也取3个称。
又有 两种情况:平衡或不平衡。
a )平衡:称一下那个剩下的就行了。
b )不平衡:我们至少知道那组假币是轻还是重。
从这三个有假币的组里任意选两个称一下,又有两种情况:平衡与不平衡,不过我们已经知道假币的轻重情况了,自然的,不平衡直接就知道谁是假币;平衡的话,剩下的呢个自然是假币,并且我们也知道他是轻还是重。
(2) 不平衡:假定已经确定该组里有假币时候:推论1:在知道该组是轻还是重的时候,只称一次,能找出假币的话,那么这组的个数不超过3。
我们知道,只要我们知道了该组(3个)有假币,并且知道轻重,只要称一次就可以找出来假币了。
从不平衡的两组中,比如轻的一组里分为3和1表示为“轻(3)”和“轻(1)”,同样重的一组也是分成3和1标示为“重(3)”和“重(1)”。
在从另外4个剩下的,也就是好的一组里取3个表示为“准(3)”。
交叉组合为:轻(3) + 重(1) ?=======? 轻(1) + 准(3)来称一下。
又会有3种情况:(1)左面轻:这说明假币一定在第一次称的时候的轻的一组,因为“重(1)”也出现在现在轻的一边,我们已经知道,假币是轻的。
那么假币在轻(3)里面,根据推论1,再称一次就可以了。
(2)右面轻:这里有两种可能:“重(1)”是假币,它是重的,或者“轻(1)”是假币,它是轻的。
这两种情况,任意 取这两个中的一个和一个真币称一下即可。
(3)平衡:假币在“重(3)”里面,而且是重的。
根据推论也只要称一次即可。
2.2 同时扔一对骰子,当得知“两骰子面朝上点数之和为2”或“面朝上点数之和为8”或“骰子面朝上之和是3和4”时,试问这三种情况分别获得多少信息量?解:设“两骰子面朝上点数之和为2”为事件A ,则在可能出现的36种可能中,只能个骰子都为1,这一种结果。
第二章习题解答2.12.3答:⑴执行单元EU负责执行指令。
EU在工作时不断地从指令队列取出指令代码,对其译码后产生完成指令所需要的控制信息。
数据在ALU中进行运算,运算结果的特征保留在标志寄存器FLAGS中。
总线接口单元BIU负责CPU与存储器、I/O接口之间的信息传送。
BIU取出的指令被送入指令队列供EU执行,BIU取出的数据被送入相关寄存器中以便做进一步的处理。
⑵执行单元EU不能直接访问存储器2.4答:(1)要利用信号线包括WR#、RD#、IO/M#、ALE以及AD0~AD7、A8~A19。
(2)同(1)。
(3)所有三态输出的地址信号、数据信号和控制信号均置为高阻态。
2.5答:在每个总线周期的T3的开始处若READY为低电平,则CPU在T3后插入一个等待周期TW。
在TW的开始时刻,CPU还要检查READY状态,若仍为低电平,则再插入一个TW 。
此过程一直进行到某个TW开始时,READY已经变为高电平,这时下一个时钟周期才转入T4。
可以看出,插入TW周期的个数取决于READY电平维持的时间。
2.62.72.8通用寄存器包含以下8个寄存器:AX、BX、CX和DX寄存器一般用于存放参与运算的数据或运算的结果。
除此之外:AX:主要存放算术逻辑运算中的操作数,以及存放I/O操作的数据。
BX:存放访问内存时的基地址。
CX:在循环和串操作指令中用作计数器。
DX:在寄存器间接寻址的I/O指令中存放I/O地址。
在做双字长乘除法运算时,DX 与AX合起来存放一个双字长数。
SP:存放栈顶偏移地址。
BP:存放访问内存时的基地址。
SP和BP也可以存放数据,但它们的默认段寄存器都是SS。
SI:常在变址寻址方式中作为源地址指针。
DI:常在变址寻址方式中作为目标地址指针。
专用寄存器包括4个段寄存器:CS:代码段寄存器,用于存放代码段的段基地址。
DS:数据段寄存器,用于存放数据段的段基地址。
SS:堆栈段寄存器,用于存放堆栈段的段基地址。
第二章 随机变量及其分布I 教学基本要求1、了解随机变量的概念以及它与事件的联系;2、理解随机变量的分布函数的概念与性质;理解离散型随机变量的分布列、连续型随机变量的密度函数及它们的性质;3、掌握几种常用的重要分布:两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布,且能熟练运用;4、会求简单随机变量函数的分布.II 习题解答A 组1、检查两个产品,用T 表示合格品,F 表示不合格品,则样本空间中的四个样本点为1(,)F F ω=、2(,)T F ω=、3(,)F T ω=、4(,)T T ω=以X 表示两个产品中的合格品数.(1) 写出X 与样本点之间的对应关系;(2) 若此产品的合格品率为p ,求(1)p X =? 解:(1)10ω→、21ω→、31ω→、42ω→;(2) 12(1)(1)2(1)p X C p p p p ==-=-.2、下列函数是否是某个随机变量的分布函数?(1) 021()2021x F x x x <-⎧⎪⎪=-≤<⎨⎪≥⎪⎩; (2) 21()1F x x =+ ()x -∞<<+∞. 解:(1) 显然()F x 是单调不减函数;0()1F x ≤≤,且()0F -∞=、()1F +∞=;(0)()F x F x +=,故()F x 是某个随机变量的分布函数.(2) 由于()01F +∞=≠,故()F x 不是某个随机变量的分布函数. 3、设X 的分布函数为(1)0()00x A e x F x x -⎧-≥=⎨<⎩求常数A 及(13)p X <≤?解:由()1F +∞=和lim (1)xx A e A -→+∞-=得1A =;(13)(3)(1)(3)(1)p X p X p X F F <≤=≤-≤=-3113(1)(1)e e e e ----=---=-.4、设随机变量X 的分布函数为200()0111x F x Ax x x ≤⎧⎪=<≤⎨⎪>⎩求常数A 及(0.50.8)p X <≤?解:由(10)(1)F F +=得1A =;(0.50.8)(0.8)(0.5)(0.8)(0.5)p X p X p X F F <≤=≤-≤=- 220.80.50.39=-=.5、设随机变量X 的分布列为()ap X k N==(1,2,,)k N = 求常数a ?解:由11ii p+∞==∑得11Nk a N ==∑ 1a ⇒=.6、一批产品共有100个,其中有10个次品,求任意取出的5个产品中次品数的分布列? 解:设X 表示5个产品中的次品数,则X 是离散型随机变量,其所有可能取值为0、1、…、5,且0510905100(0)C C p X C ==、1410905100(1)C C p X C ==、2310905100(2)C C p X C ==、3210905100(3)C C p X C ==、4110905100(4)C C p X C ==、5010905100(5)C C p X C ==于是X 的分布列为510905100()k k C C p X k C -== (0,1,,5k =. 7、设10件产品中有2件次品,进行连续无放回抽样,直至取到正品为止,以X 表示抽样次数,求(1) X 的分布列; (2) X 的分布函数?解:(1) 由题意知X 是离散型随机变量,其所有可能取值为1、2、3,且84(1)105p X ===、288(2)10945p X ==⨯=、2181(3)109845p X ==⨯⨯= 于是X 的分布列为(2) 由(1)可知的分布函数为014125()44234513x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩.8、设随机变量X 的分布函数为010.211()0.3120.52313x x F x x x x <-⎧⎪-≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩ 求X 的分布列?解:X 90.1,求在同一时刻(1) 恰有2个设备被使用的概率; (2) 至少有3个设备被使用的概率; (3) 至多有3个设备被使用的概率?解:设X 表示被同时使用的供水设备数,则~(5,0.1)X b (1) 恰有2个设备被使用的概率为2235(2)(0.1)(0.9)0.0729p X C ===;(2) 至少有3个设备被使用的概率为(3)(3)(4)(5)p X p X p X p X ≥==+=+=33244550555(0.1)(0.9)(0.1)(0.9)(0.1)(0.9)0.00856C C C =++=;(3) 至多有3个设备被使用的概率为(3)1(4)(5)p X p X p X ≤=-=-=44550551(0.1)(0.9)(0.1)(0.9)0.99954C C =--=.10、经验表明:预定餐厅座位而不来就餐的顾客比例为20%,如今餐厅有50个座位,但预定给了52位顾客,求到时顾客来到餐厅而没有座位的概率是多少?解:设X 表示预定的52位顾客中不来就餐的顾客数,则~(52,0.2)X b ,由于“顾客来到餐厅没有座位”等价于“52位顾客中至多有1位不来就餐”,于是所求概率为005211515252(1)(0)(1)(0.2)(0.8)(0.2)(0.8)p X p X p X C C ≤==+==+0.0001279=.11、设某城市在一周内发生交通事故的次数服从参数为0.3的泊松分布,求 (1) 在一周内恰好发生2次交通事故的概率; (2) 在一周内至少发生1次交通事故的概率?解:设X 表示该城市一周内发生交通事故的次数,则~(0.3)X P (1) 在一周内恰好发生2次交通事故的概率20.30.3(2)0.03332!p X e -===;(2) 在一周内至少发生1次交通事故的概率00.30.3(1)1(0)10.2590!p X P X e -≥=-==-=.12、设X 服从泊松分布,已知(1)(2)p X p X ===,求(4)p X =? 解:由(1)(2)p X p X ===得22ee λλλλ--=2λ⇒=422(4)0.09024!p X e -⇒===.13、一批产品的不合格品率为0.02,现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品,分别用以下方法求拒收的概率:(1) 用二项分布作精确计算;(2) 用泊松分布作的似计算?解:设X 表示抽取的40件产品中的不合格品数,则~(40,0.02)X b (1) 拒收的概率为(2)1(0)(1)p X p X p X ≥=-=-=0040113940401(0.02)(0.98)(0.02)(0.98)0.1905C C =--=;(2) 由于400.020.8λ=⨯=,于是拒收的概率为(2)1(0)(1)p X p X p X ≥=-=-= 0.80.810.80.1912e e --≈--=.14、设随机变量X 的密度函数为201()0x x f x ≤≤⎧=⎨⎩其它求X 的分布函数?解:由()()xF x f t dt -∞=⎰得当0x <时()()00xxF x f t dt dt -∞-∞===⎰⎰当01x ≤≤时2200()()02|xxxF x f t dt dt tdt t x -∞-∞==+==⎰⎰⎰当1x >时0121001()()020|1xxF x f t dt dt tdt dt t -∞-∞==++==⎰⎰⎰⎰于是所求分布函数为20()0111x F x x x x <⎧⎪=≤≤⎨⎪>⎩. 15、设随机变量X 的密度函数为212(1)12()0x f x x ⎧-≤≤⎪=⎨⎪⎩其它求X 的分布函数?解:由()()xF x f t dt -∞=⎰得当1x <时()()00xxF x f t dt dt -∞-∞===⎰⎰当12x ≤≤时1121111()()02(1)2()|2(2)x xx F x f t dt dt dt t x t t x-∞-∞==+-=+=+-⎰⎰⎰ 当2x >时122121211()()02(1)02()|1xx F x f t dt dt dt dt t t t-∞-∞==+-+=+=⎰⎰⎰⎰于是所求分布函数为011()2(2)1212x F x x x x x <⎧⎪⎪=+-≤≤⎨⎪>⎪⎩. 16、设随机变量X 的密度函数为cos ()220A x x f x ππ⎧-≤≤⎪=⎨⎪⎩其它求(1) 常数A ;(2) X 的分布函数;(3) (0)4p X π<≤?解:(1) 由()1f x dx +∞-∞=⎰得2222220cos 0sin |21dt A xdx dt A x A ππππππ-+∞--∞-++===⎰⎰⎰12A ⇒=; (2) 当2x π<-时()()00xxF x f t dt dt -∞-∞===⎰⎰当22x ππ-≤≤时221111()()0cos sin |sin 2222x xx F x f t dt dt tdt t x πππ---∞-∞-==+==+⎰⎰⎰当2x π>时22222211()()0cos 0sin |122xx F x f t dt dt tdt dt t ππππππ---∞-∞-==++==⎰⎰⎰⎰ 于是所求分布函数为0211()sin 222212x F x x x x ππππ⎧<-⎪⎪⎪=+-≤≤⎨⎪⎪>⎪⎩;(3) (0)()(0)()(0)444p X p X p X F F πππ<≤=≤-≤=-1111sin sin 024222π=+--=17、设随机变量X 的分布函数为1()ln 11x F x xx e x e<⎧⎪=≤≤⎨⎪>⎩求(1) (03)p X <≤、(2)p X <、(2 2.5)p X <<;(2) X 的密度函数?解:(1) (03)(3)(0)(3)(0)101p X p X p X F F <≤=≤-≤=-=-=(2)(2)(2)(2)ln 2p X p X p X F <=≤-===5(2 2.5)(2 2.5)(2.5)(2)ln 2.5ln 2ln 4p X p X F F <<=<≤=-=-=;(2) 由于在()F x 的可导点处,有()()f x F x '=,于是X 的密度函数为11()0x ef x x⎧≤≤⎪=⎨⎪⎩其它.18、设~(1,6)K U ,求方程210x Kx ++=有实根的概率? 解:由~(1,6)K U 得K 的密度函数为116()5k f k ⎧<<⎪=⎨⎪⎩其它又由于方程210x Kx ++=有实根等价于240K -≥,即||2K ≥,于是方程有实根的概率为22(||2)(2)(2)()()p K p K p K f k dk f k dk -+∞-∞≥=≤-+≥=+⎰⎰621455dk ==⎰. 19、调查表明某商店从早晨开始营业起直至第一个顾客到达的等待时间X (单位:分钟)服从参数为0.4的指数分布,求下述事件的概率(1) X 至多3分钟; (2) X 至少4分钟;(3) X 在3分钟至4分钟之间; (4) X 恰为3分钟?解:(1) X 至多3分钟的概率为0.43 1.2(3)(3)11p X F e e -⨯-≤==-=-;(2) X 至少4分钟的概率为0.44 1.6(4)1(4)1(4)1(1)p X p X F e e -⨯-≥=-<=-=--=;(3) X 在3分钟至4分钟之间的概率为(34)(4)(3)(4)(3)p X p X p X F F ≤≤=≤-<=-0.440.43 1.2 1.6(1)(1)e e e e -⨯-⨯--=---=-;(4) X 恰为3分钟的概率为(3)0p X ==.20、设~(0,1)X N ,求下列事件的概率( 2.35)p X ≤;( 1.24)p X ≤-;(|| 1.54)p X ≤?解:( 2.35)(2.35)0.9906p X ≤=Φ=;( 1.24)( 1.24)1(1.24)10.89250.1075p X ≤-=Φ-=-Φ=-=; (|| 1.54)( 1.54 1.54)(1.54)( 1.54)p X p X ≤=-≤≤=Φ-Φ- (1.54)[1(1.54)]2(1.54)120.938210.8764=Φ--Φ=Φ-=⨯-=.21、设~(3,4)X N ,(1) 求(25)p X <≤、(||2)p X >、(3)p X >;(2) 确定c ,使得()()p X c p X c >=≤;(3) 若d 满足()0.9p X d >≥,则d 至多为多少?解:(1) 23353(25)()222X p X p ---<≤=≤≤ (1)(0.5)(1)(0.5)10.84130.691510.5328=Φ-Φ-=Φ+Φ-=+-= 23323(||2)1(||2)1()222X p X p X p ---->=-≤=-≤≤1(0.5)( 2.5)1(0.5)(2.5)=-Φ-+Φ-=+Φ-Φ 10.69150.99380.6977=+-=333(3)1(3)1()22X p X p X p -->=-≤=-≤ 1(0)10.50.5=-Φ=-=;(2) 由()()p X c p X c >=≤得1()()p X c p X c -≤=≤ 3330.5()()()222X c c p X c p ---⇒=≤=≤=Φ 3032c c -⇒=⇒=; (3) 由()0.9p X d >≥得3330.9()1()1()1()222X d d p X d p X d p ---≤>=-≤=-≤=-Φ 33()0.11()0.122d d--⇒Φ≤⇒-Φ≤ 33()0.9 1.2820.43622d d d --⇒Φ≥⇒≥⇒≤.22、从甲地飞住乙地的航班,每天上午10:10起飞,飞行时间X 服从均值为4h ,标准差为20min 的正态分布.(1) 该航班在下午2:30以后到达乙地的概率; (2) 该航班在下午2:20以前到达乙地的概率;(3) 该航班在下午1:50至2:30之间到达乙地的概率? 解:(1) 该航班在下午2:30以后到达乙地的概率为240260240240(260)()1(1)202020X X p X p p ---≥=≥=-< 1(1)10.84130.1587=-Φ=-=;(2) 该航班在下午2:20以前到达乙地的概率为240250240(250)()(0.5)0.69152020X p X p --≤=≤=Φ=; (3) 该航班在下午1:50至2:30之间到达乙地的概率为220240240260240(220260)()202020X p X p ---≤≤=≤≤(1)(1)2(1)120.841310.6826=Φ-Φ-=Φ-=⨯-=.23、某地抽样调查结果表明,考生的外语成绩(百分制)近似地服从2(72,)N σ,已知96分以上的人数占总数的2.3%,试求考生的成绩在60分至84分之间的概率?解:设考生的外语成绩为X ,则2~(72,)X N σ 由96分以上的人数占总数的2.3%得0.023(96)p X => 729672240.977(96)()()X p X p σσσ--⇒=≤=≤=Φ242σ⇒=12σ⇒=于是,考生的成绩在60分至84分之间的概率为6072728472(6084)()121212X p X p ---≤≤=≤≤ (1)(1)2(1)120.841310.6826=Φ-Φ-=Φ-=⨯-=.24求cos Y X =的分布列?解:由X于是Y25求2Y X =的分布列?解:由26、设随机变量的密度函数为2311()2X xx f x ⎧-<<⎪=⎨⎪⎩其它求随机变量3Y X =+的密度函数?解:由题意知,当2y ≤时,有()()0Y F y p Y y =≤=当24y <<时,有()()(3)(3)(3)Y X F y p Y y p X y p X y F y =≤=+≤=≤-=-当4y ≥时,有()()1Y F y p Y y =≤=即Y 的分布函数02()(3)2414Y X y F y F y y y ≤⎧⎪=-<<⎨⎪≥⎩于是,Y 的密度函数()()Y Y f y F y '=(3)240XF y y '-<<⎧=⎨⎩其它23(3)2420y y ⎧-<<⎪=⎨⎪⎩其它.27、设随机变量~(0,1)X U ,求随机变量XY e =的密度函数? 解:由题意知,当1y ≤时,有()()0Y F y p Y y =≤=当1y e <<时,有()()()(ln )(ln )X Y X F y p Y y p e y p X y F y =≤=≤=≤=当y e ≥时,有()()1Y F y p Y y =≤=即Y 的分布函数1()(ln )11Y X y F y F y y e y e≤⎧⎪=<<⎨⎪≥⎩于是,Y 的密度函数()()Y Y f y F y '=(ln )10XF y y e'<<⎧=⎨⎩其它110y ey ⎧<<⎪=⎨⎪⎩其它.28、随机变量X 的密度函数为0()0xX e x f x x -⎧>=⎨≤⎩求随机变量2Y X =的密度函数?解:由于20Y X =≥,故当0y <时,有()()0Y F y p Y y =≤=; 当0y ≥时,有2()()()(Y F y p Y y p X y p X =≤=≤=≤0()1x X f x dx dx e -===-即Y 的分布函数10()0Y e y F y y ⎧-≥⎪=⎨<⎪⎩ 于是,Y 的密度函数0()()00Y Y y f y F y y >'==≤⎩.29、设随机变量~(0,1)X N ,试求随机变量||Y X =的密度函数? 解:由于||0Y X =≥,故当0y <时,有()()0Y F y p Y y =≤=; 当0y ≥时,有()()(||)()2()1Y F y p Y y p X y p y X y y =≤=≤=-≤≤=Φ-即Y 的分布函数2()1()00Y y y F y y Φ-≥⎧=⎨<⎩于是,Y 的密度函数()()Y Y f y F y '=2()y y y 'Φ>⎧=⎨≤⎩22000yy y ->=≤⎩.B 组1、A2、B3、D4、B5、B6、B7、C8、C9、C10、C11、设随机变量X 的分布函数为0111()21232x a x F x a x a bx <-⎧⎪-≤<⎪⎪=⎨-≤<⎪⎪+≥⎪⎩且1(2)2p X ==,求常数a 、b ? 解:由()1F +∞=及()()(0)p X a F a F a ==--得()121(2)(2)(20)()()32F a b p X F F a b a +∞=+=⎧⎪⎨==--=+--=⎪⎩1726a b a b +=⎧⎪⇒⎨+=⎪⎩1656a b ⎧=⎪⎪⇒⎨⎪=⎪⎩.12求常数a ?解:由11ii p+∞==∑得20.5121a a +-+=12a ⇒=±再由11202a a -≥⇒≤,可得12a =-. 13、口袋中有5个球,编号为1、2、3、4、5,从中任取3个,以X 表示取出的3个球中的最大号码.(1) 求X 的分布列; (2) 求X 的分布函数?解:(1) 由题意知X 是离散型随机变量,其所有可能取值为3、4、5,且22351(3)10C p X C ===、23353(4)10C p X C ===、24356(5)10C p X C ===于是X(2) 由(1)可知的分布函数为030.134()0.44515x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩.14、设随机变量X 的密度函数为||()x af x Ce-= (0)a >求(1) 常数C ;(2) X 的分布函数;(3) (||2)p X <?解:(1) 由()1f x dx +∞-∞=⎰得||()2221x x aaf x dx C e dx C e dx aC +∞+∞+∞---∞====⎰⎰⎰12C a⇒=; (2) 当0x <时 ||111()()222t t xa a a x x x F x f t dt e dt e dt e a a --∞-∞-∞====⎰⎰⎰当0x ≥时||||0011()()22t t a a xx F x f t dt e dt e dt a a---∞-∞==+⎰⎰⎰ 001111222t t x a a a x e dt e dt e a a ---∞=+=-⎰⎰于是102()1102xa x a e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩;(3) 22211(||2)(22)(2)(2)1122a a a p X p X F F e e e ---<=-<<=--=--=-. 15、设随机变量X 的密度函数为201()0xx f x ≤≤⎧=⎨⎩其它以Y 表示对X 的三次独立重复观察中事件1{}2X ≤出现的次数,求(2)P Y =?解:由题意知:事件1{}2X ≤在一次观察中出现的概率为1112222001()02|4p f x dx dt xdx x -∞-∞==+==⎰⎰⎰ 且~(3,)Y b p ,于是223139(2)()()4464P Y C ===.16、设顾客在某银行的窗口等待服务的时间X (单位:分钟)服从指数分布,其密度函数为510()5x e x f x x -⎧>⎪=⎨⎪≤⎩某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,求(1)p Y ≥?解:由题意知:顾客在窗口等待服务的时间超过10分钟的概率为5521010101()|5x x p f x dx e dx e e +∞+∞--+∞-===-=⎰⎰且~(5,)Y b p ,于是2025255(1)1(0)1()(1)1(1)0.5167P Y P Y C e e e ---≥=-==--=--=. 17、设随机变量2~(2,)X N σ且(24)0.3p X <<=,求(0)p X <?解:由2~(2,)X N σ得224242(24)()()(0)0.3p X p X σσσ---<<=<<=Φ-Φ=2()0.8σ⇒Φ=0222(0)()()1()10.80.2p X p X σσσ-⇒<=<=Φ-=-Φ=-=.18、设随机变量X 的分布函数为()F x ,试求随机变量()Y F X =的密度函数? 解:由于0()1F X ≤≤,故当0Y <时,有()()0Y F y p Y y =≤=; 当01y ≤≤时,有11()()(())(())(())Y F y p Y y p F X y p X F y F F y y --=≤=≤=≤==当1y >时,有()()1Y F y p Y y =≤= 即Y 的分布函数00()0111Y y F y yy y <⎧⎪=≤≤⎨⎪>⎩于是,Y 的密度函数()()Y Y f y F y '=101y <<⎧=⎨⎩其它即随机变量Y 服从区间(0,1)上的均匀分布.初夏早上六点,清亮透明的月儿还躲藏在云朵里,不忍离去,校园内行人稀少,我骑着单车,晃晃悠悠的耷拉着星松的睡眼。
第二章 习题解答2.5试求半径为a ,带电量为Q 的均匀带电球体的电场。
解:以带电球体的球心为球心,以r 为半径,作一高斯面,由高斯定理S D dS ∙⎰ =Q ,及D E ε= 得,错误!未找到引用源。
r ≤a 时, 由S D dS ∙⎰ =224433Qr a ππ⨯,得34Qr D a π= 304Qr E a πε= 错误!未找到引用源。
r>a 时,由S D dS ∙⎰ =Q ,得34Qr D r π= 304Qr E rπε= 2.5 两无限长的同轴圆柱体,半径分别为a 和b (a<b ),内外导体间为空气。
设同轴圆柱导体内、外导体上的电荷均匀分布,其电荷密度分别为1S ρ和2S ρ,求: 错误!未找到引用源。
空间各处的电场强度;错误!未找到引用源。
两导体间的电压;错误!未找到引用源。
要使ρ>b 区域内的电场强度等于零,则1S ρ和2S ρ应满足什么关系?解:错误!未找到引用源。
以圆柱的轴为轴做一个半径为r 的圆柱高斯面,由高斯定理S D dS ∙⎰ =q及D E ε= 得,当0<r<a 时,由S D dS ∙⎰ =q=0,得D =0,E =0当a ≤r ≤b 时,由S D dS ∙⎰ =q,得D r l π⨯2⨯= 1S ρa l π⨯2⨯D =1S r e r ρ ,10S r aE e rρε= 当b<r 时,由S D dS ∙⎰ =q,得D r l π⨯2⨯= 1S ρa l π⨯2⨯+2S ρb l π⨯2⨯D =12s s r a b e r ρρ+ ,E =120s s r a b e rρρε+ Equation.DSMT4 11ab 00ln b b s s a a a a a E dr dr r b ρρεε∅===⎰⎰ Equation.DSMT4 ρ>0的区域外电场强度为0,即:E =120s s r a b e rρρε+ =0,得1S ρ=2s b a ρ- 2.9 一个半径为a 的薄导体球壳,在其内表面覆盖了一层薄的绝缘膜,球内充满总电量为Q的电荷,球壳上又另充了电量为Q 的电荷,已知内部的电场为4()r r E a a= ,计算: = 2 \* GB2 ⑵球的外表面的电荷分布;布;= 4 \* GB2 ⑷球心的电位。
微机原理第二章习题与分析解答1.单项选择题(1)8086工作最大方式时应将引脚MN/MX接()A.负电源 B.正电源 C.地 D.浮空分析:8086规定工作在最小方式下MN/MX接+5V,工作在最大方式下MN/MX 接地。
答案:C(2)8086能寻址内存储器的最大地址范围为()A.64KB分析:8086有A0~A1920条地址总线,220=1MB。
答案:B|(3)在总线周期,8086CPU与外设需交换()A.地址信息 B.数据信息 C.控制信息、B、C分析在总线周期,CPU必须发出地址信息的控制信息以后,才能实现与外设进行交换数据。
答案:D(4)8086用哪种引脚信号来确定是访问内存还是访问外设()A.RD IO分析:引脚信号M/IO是Memory or Input Output的缩写,当M/IO=0时,用以访问外设;当M/IO=1,用以访问外设。
答案:C(5)在8086指令系统中,下列哪种寻址方式不能表示存储器操作数()A.基址变址寻址B.寄存器寻址C.直接寻址 D.寄存器间接寻址"分析:8086指令系统共有七种寻址方式,只有立即寻址方式和寄存器寻址方式不是表示存储器操作数的。
答案:B(6)当CPU时钟频率为5MHz,则其总线周期()A.0.8 s μs分析:时钟周期T=1/ƒ=200ns,而一个总路线周期通常由4个T状态组成,有4╳T=4╳200ns=μs.答案:A(7)8086工作在最大方式下,总路线控制器使用芯片()A.8282 B.8286分析:在最大方式下,系统中主要控制信号是由总路线控制器产生,而只有芯片8288才有这方面的功能。
答案:D…(8)取指令物理地址=()A.(DS)╳10H+偏移地址 B.(ES)╳10H+偏移地址C.(SS)╳10H+(SP) D.(CS)╳10H+(IP)分析:每当8086CPU取指令时,总是根据CS:IP的所指的存贮单元去取指答案:D(9)一个数据的有效地址是2140H、(DS)=1016H,则该数据所在内存单元的物理地址为()A.12300H分析:存贮器操作数的物理地址计算方法为:(DS)╳10H+有效地址,即1016H ╳10H+2140H=122A0H答案:B(10)在8086中用一个总路线周期访问内存,最多能读/写()字节。
第2章习题解答1.文法G[S]为:S->Ac|aBA->abB->bc写出L(G[S])的全部元素。
[答案]S=>Ac=>abc或S=>aB=>abc所以L(G[S])={abc}==============================================2. 文法G[N]为:N->D|NDD->0|1|2|3|4|5|6|7|8|9G[N]的语言是什么?[答案]G[N]的语言是V+。
V={0,1,2,3,4,5,6,7,8,9}N=>ND=>NDD.... =>NDDDD...D=>D......D===============================================3.已知文法G[S]:S→dAB A→aA|a B→ε|bB问:相应的正规式是什么?G[S]能否改写成为等价的正规文法?[答案]正规式是daa*b*;相应的正规文法为(由自动机化简来):G[S]:S→dA A→a|aB B→aB|a|b|bC C→bC|b也可为(观察得来):G[S]:S→dA A→a|aA|aB B→bB|ε===================================================================== ==========4.已知文法G[Z]:Z->aZb|ab写出L(G[Z])的全部元素。
[答案]Z=>aZb=>aaZbb=>aaa..Z...bbb=> aaa..ab...bbbL(G[Z])={a n b n|n>=1}===================================================================== =========5.给出语言{a n b n c m|n>=1,m>=0}的上下文无关文法。
第2章习题解答题2-1 用真值表证明下列恒等式。
(1) ()A B C AB AC ⊕=⊕(2) ()()()()()A B A C B C A B A C ''+++=++ (3) ()0A B A B A B '⊕==⊕⊕解:将输入变量所有的取值逐一代入公式两边计算,然后将计算结果列成真值表。
如果两边的真值表相同,则等式成立。
(1)证明()A B C AB AC ⊕=⊕表JT2-1(2) 证明 ()()()()()A B A C B C A B A C ''+++=++表JT2-2(3) 证明()0A B A B A B '⊕==⊕⊕表JT2-3题2-2 证明下列逻辑等式(证明方法不限)。
(1)()()BC D D B C AD B B D '''++++=+(2) A C A B BC A C D A BC ''''''''+++=+(3) ()ABCD A B C D AB BC CD A D '''''''''+=+++ (4) ()()()A C B D B D AB BC '''+++=+解:在实际应用中,除非逻辑式很简单、而且逻辑变量数很少的情况下,一般不宜用列真值表的方法。
对多变量、复杂的逻辑等式、通常采用公式推演或公式推演与画卡诺图相结合的方法去证明。
如果有条件使用Multisim 等EDA 软件进行证明,则更简单、便捷。
(1)()()()()BC D D B C AD B BC D B C AD B BC D AB D AC D BB BC B D'''''++++=++++''''=+++++=+(2)()A C A B BC A C D A C A B BC A BC BC A BC ''''''''''''''+++=++=+=+(3)()()()()()()()()()()()AB BC CD A D AB BC CD A D A B B C C D A D A B A C BC AC AD C D ABCD A B C D '''''''''''''+++=''''''''''=++++=++++''''=+ (4)()()()()()()A C B D B D A C B BD BD A C B AB BC ''''''+++=+++=+=+题2-3已知逻辑函数Y 1和Y 2的真值表如表JT2-4(a )、(b )所示,试写出Y 1和Y 2的逻辑函数式。
第二章
2-3 设系统传递函数为
3
42
)(2
++=
s s s G 初始条件0/)0(,1)0(=-=dt dc c 。
求单位阶跃输入r (t)=1(t)时,系统的输出响应c (t)。
【解】系统传递函数与微分方程是一一对应的,故通过传递函数先求出微分方程,然后通过拉氏变换的方法求解微分方程。
系统对应的微分方程为 4()3()2()c c t c t r t ++= 在给定的非零初始条件下,进行拉氏变换
22(43)()(0)(0)4(0)s s C s sc c c s
++---=
整理后
2221
()(43)(43)
s C s s s s s s +=
-++++
部分分式展开后,拉氏反变换
11122
3242/35/25/6()[()][][](43)(43)13
255326
t t s c t L C s L L s s s s s s s s e e -----+==-=-+++++++=
-+
2-4 在图2-48中,已知G (s) 和H (s)两方框对应的微分方程分别为
()2()5()4()3()6()
c t c t e t b t b t c t +=+=
图2-48 习题2-4系统结构框图
且初始条件为零,试求传递函数C (s)/R (s)。
【解】求出每个方框的传递函数,利用反馈等效的方法求C(s)/R(s)。
根据定义可得 5()2G s s =
+,6()43
H s s =+ 25
5
()5()25(43)10075(2)
56()1()()(2)(43)3041136
1(2)(43)
C s G s s s s R s G s H s s s s s s s +++====+++++++++
2-5 图2-49是由电阻、电容和运算法放大器组成的无源网络和有源网络,试列写以V in (t)
为输入量,V out (t)为输出量的传递函数。
(a) (b )
(c) (d)
图2-49 习题2-5电路图
【解】(a) 1211211
,1
R
Z R Z C s RC s C s
=
==
+ 2
2112
121211
()1
()1
1Z C s RC s G s R Z Z R C C s RC s C s +=
=
=
++++
+
(b ) 211
2221
1
R Z R Z R Cs R Cs ==
=+ 2
222
111211
()1
R Z R Cs R G s Z R R R Cs +=-==-+ (c) 32321123
232321
()
(1)1()1()1R R R R Cs Cs Z R Z R R Cs R R Cs R R Cs
+
+==+=
=++++ 32323
2211132(1)()11
()()1
R R Cs R R Cs R Z R Cs G s Z R R R R Cs ++++=-=-=-++
(d) 本题和(b)、(c)做法图通,因为反馈通路有接地的部分。
根据理想运放的假定,负端输入
为虚地和虚开。
设R 2和R 3中间节点的电压为V ,则有
R R
122
301/in out V V R R V V V V R R Cs ⎧=-⎪⎪⎨--⎪=+⎪⎩ 由此,得2123311()in out R V V R V V Cs R R R ⎧
=-⎪⎪
⎨
⎪++=⎪⎩ 在两式中消去V ,可得到V in 与V out 的关系式
23231
1
()out in V R R R R Cs V R =-++ 2-6设弹簧特性由下式描述
1.165.12y F =
其中,F 是弹簧力,y 是变性位移。
若弹簧在变性位移0.25附近做微小变化,试推导△F 的线性化方程。
2-8 已知系统结构图如图2- 51所示,试通过结构图等效变换求系统的传递函数C (s)/R (s)。
(c) (d)
(e)
(f)
)
(2s H )(3s G )
(1s H )
(s R )
(s C )
(1s G )
(2s G )
(3s G )
(s H )
(s (s C )
(1s G )
(2s G )
(2s G )
(s H )
(s R )
(s C )
(1s G )
(s G )
(s H )
(s R )
(s C )
(s B 10
(g)
图2-51 习题2-8 结构图
【解】
(a)
121234()()1()()G G C s R s G G G G +=++-, (b) 122212()
()1()
G G G C s R s G H H +=+-
©
()10(1)
()1C s GH R s H GH
-=+-, )
(s G )
(s H )
(s R )
(s C )
(s B 10
)
(2s G )
(s H )
(s R )
(s C )
(1s G )
(s G )
(s H )
(s R )
(s C )
(s B 10
)(3s G )
(1s H )
(s R )
(s C )(1s G )
(2s H )
(2s G
(d)
12
2()()1G G C s R s G H
-=+
(e)
1323133()
()1G G G G C s R s G G G H
+=++
2-10 画出图2-53中各系统结构图对应的信号流图,并用梅逊增益公式求各系统的传递函数C (s)/R (s)和C (s)/N (s)。
【解】(a) 信号流图如下
13231424
1323
()()1G G G G G G G G C s R s G G G G +++=++ )
(2s G 2()()
H s G s )
(s R )
(s C )
(1s G )
(2s G 2()()
H s G s )
(s R )
(C )
(1s G )
(2s G )
(s H )
(s R )
(s C )
(1s G 1
1
G 2
G 1
R C
1N
3
G 41
-1
)
(3s G )
(s H )
(s (s C )
(1s G )
(2s G
()
1()
C s N s = (c) 信号流图如下
`
求C(s)/R(s)
112225345112
,,L G G H L G G L G G p G G =-=-==,
12313145
11L L L L L G G ∆=---+∆=-
12451225451245
(1)()
()1G G G G C s R s G G H G G G G G G HG G -=++-- 求C(s)/N(s)
112225345
1322145245
,,,,1,1L G G H L G G L G G p G p G G G G G =-=-===∆=-∆=-
23451225451245
()(1)()
()1G G G G C s N s G G H G G G G G G HG G +-=++-- 2-11 试用梅逊增益公式求图2-54中各系统信号流图的的传递函数C (s)/R (s)。
【解】 (a) 四条回路,3,4不接触,两条前向通路,第二余项1+G 3
123453123421231352352
(1)()
()1G G G G G G C s R s G G G G H G G G H G G H G G H ++=+++++ 1
1
G 2
G 1
R C
1N
3
G 4
G H
-1
-5
G 4G 3
G 1G 2
G 1
H -)(s R )
s C 1
1
-5
G 2
H -1
(b) 三条回路,两条回路不接触,两条前向通路,两个余项匀不为1
12341232331223312312313
(1)1(1)
()()1G G G G f G G f G f C s R s G G f G f f G G f f G f f -+⨯-+=-+-+-
© ()(1)()1C s abcd f ch agd
R s ae ch aech
+-+=--+
)
s
)
s。