第七章 材料的弹性与内耗
- 格式:ppt
- 大小:339.00 KB
- 文档页数:34
材料的性能与表征课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;课程名称:材料的性能与表征所属专业:材料化学课程性质:专业基础课学分:2(二)课程简介、目标与任务:材料的物理性能是材料的重要性能之一。
外接因素(温度、电场、磁场等)作用于材料,引起材料内部原子、分子、电子的微观运动状态的改变,在宏观上表现为一定的感应物理量,即呈现某一物理性能。
具体地讲,最常见的材料物理性能有材料的电性能、介电性能、光学性能、热学性能、磁学性能以及弹性性能,每一种物理性能对应一定的物理基础。
而材料的物理性能强烈依赖于物质不同层次的结构组成,同时也受环境因素的强烈影响。
每一种材料物理性能都具有一定的分子和测试方法,而物理性能分析也是材料研究的重要手段。
通过本课程的学习,对材料的电性能、介电性能、光学性能、热学性能、磁学性能以及弹性性能的物理本质和表征参量、影响因素、分析测试方法有较全面地认识,并了解物理性能分析在材料研究中的应用。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接:先修课程:力学,热学,电磁学,普通物理(光学与原子物理),材料科学基础(四)教材与主要参考书。
教材:刘勇,陈国钦编著. 材料物理性能. 北京:北京航空航天大学出版社, 2015.09主要参考书:吴雪梅主编;诸葛兰剑等编著. 材料物理性能与检测. 北京:科学出版社, 2012.01.关振铎,龚江宏,唐子龙著. 无机材料物理性能第2版. 北京:清华大学出版社, 2011.06.高智勇,隋解和,孟祥龙编著. 材料物理性能及其分析测试方法. 哈尔滨:哈尔滨工业大学出版社, 2015.11.二、课程内容与安排第1章绪论(一)教学方法与学时分配课堂授课,1学时(二)内容及基本要求主要内容:简要介绍本课程的主要内容,学习本课程的意义和目的,以本课程的学习方法。
【了解】:本课程的主要内容,本课程的学习方法。
【一般了解】:学习本课程的意义和目的第2章材料的电性能2.1 电导率和载流子2.2 电子类载流子导电2.3 离子类载流子导电2.4 半导体2.5 超导体2.6 导电性的测量2.7 电阻分析的应用2.8 延伸阅读(一)教学方法与学时分配课堂授课,5学时(二)内容及基本要求主要内容:主要讲述电子类载流子导电、离子类载流子导电、半导体、超导体的导电机制及影响因素,导电性的测量方法及电阻分析的应用。
第7 章聚合物的粘弹性形变对时间不存在依赖性εσE =虎克定律理想弹性体外力除去后完全不回复dt d εηγησ==.牛顿定律理想粘性体弹性与粘性弹性粘性储能性可逆性σ与ε的关系与t 关系瞬时性依时性储存耗散回复永久形变εσE =dt d εηγησ==.虎克固体牛顿流体粘弹性力学性质兼具有不可恢复的永久形变和可恢复的弹性形变小分子液体–粘性小分子固体–弹性在时间内,任何物体都是弹性体在时间内,任何物体都是粘性体在的时间范围内,任何物体都是粘弹体超短超长一定高分子材料具有显著的粘弹性粘弹性分类静态粘弹性动态粘弹性蠕变、应力松弛滞后、内耗7.1 粘弹性现象7.1.1 蠕变(creep)在一定的温度下,软质PVC丝钩一定的砝码,会慢慢伸长蠕变:指在一定的温度和较小的恒定外力作用下,材料的形变随时间的增加而逐渐增大的现象蠕变反映了材料的尺寸稳定性及长期负荷能力从分子运动和变化的角度分析线性PVC的形变—时间曲线,除去外力后,回缩曲线?11E σε=1ε1t 2t t键长和键角发生变化引起,形变量很小,瞬间响应σ:应力E 1:普弹形变模量1.普弹形变链段运动使分子链逐渐伸展发生构象变化引起τ:松弛时间,与链段运动的粘度η2和高弹模量E 2有关,τ=η2/ E 2)1(/22τσεt eE --=2ε1t t2t 2.高弹形变3ε2t 1t t外力作用造成分子间的相对滑移(线型高聚物)t33ησε=η3——本体粘度3.粘性流动t eE E t t 3/21321)1()(ησσσεεεετ+-+=++=-线型高聚物的蠕变曲线总应变交联聚合物的蠕变曲线1.由于分子链间化学键的键合,分子链不能相对滑移,在外力作用下不产生粘性流动,蠕变趋于一定值2. 无粘性流动部分,能完全回复T<T g 时,主要是(),T>T g 时,主要是()A ε1B ε2C ε3三种形变的相对比例依具体条件不同而不同下列情况那种形变所占比例大?A B聚合物蠕变的危害性蠕变降低了聚合物的尺寸稳定性抗蠕变性能低不能用作工程塑料如:PTFE不能直接用作有固定尺寸的材料硬PVC抗蚀性好,可作化工管道,但易蠕变影响蠕变的因素1.温度2.外力3.分子结构蠕变与T,外力的关系温度外力蠕变T过低外力过小T过高外力过大T g附近适当外力很小很慢,不明显很快,不明显明显(链段能够缓慢运动)23℃时几种高聚物蠕变性能10002000(%)小时2.01.51.00.512345t链的柔顺性主链含芳杂环的刚性高聚物,抗蠕变性能较好12345聚苯醚PCABS(耐热)POM尼龙如何防止蠕变?◆交联橡胶通过硫化来防止由蠕变产生不可逆的形变◆结晶微晶体可起到类似交联的作用◆提高分子间作用力7.1.2 应力松弛(stress relaxation)在一定温度、恒定应变的条件下,试样内的应力随时间的延长而逐渐减小的现象应力松弛的本质加力链段运动使分子链间相对位置的变化分子重排,以分子运动来耗散能量,从而维持一定形变所需要的力逐渐减小交联聚合物和线形聚合物的应力松弛t交联线性高聚物的应力松弛曲线t不同温度下的应力松弛曲线应力松驰与温度的关系温度过高应力松驰很快温度过低内摩擦力很大,应力松驰极慢T g 附近应力松驰最为明显123应力松弛的应用对密封制件,应力松弛行为决定其使用寿命高分子制件加工中,应力松弛行为决定残余应力的大小不变的量变化的量蠕变应力松弛蠕变与应力松弛比较温度力形变根本原因高分子链的构象重排和分子链滑移应力温度形变动态粘弹性在交变应力或交变应变作用下材料的力学行为σωtπ2πεωtδεωtδ正交变化的应力:t sin )t (0ωσσ=无相位差,无能量损耗理想弹性体tsin )t (0ωεε=有相位差,功全部损耗成热理想粘性液体)2-t sin( )t (0πωεε=相位差δ,损耗部分能量)-t sin( )t (0δωεε=聚合物(粘弹性)高聚物在交变应力作用下的应变变化落后于应力变化的现象tt o ωσσsin )(=)sin()(δωεε-=t t o 0<δ<π/2滞后现象原因链段运动时受到内摩擦阻力, 外力变化时,链段运动跟不上外力的变化内摩擦阻力越大,δ 也就越大,滞后现象越严重外力对体系做的功每次形变所作的功= 恢复形变时所作的功无滞后时没有功的消耗每一次循环变化会有功的消耗,称为内耗有滞后时产生形变提供链段运动时克服内摩擦阻力所需要的能量滞后现象的危害σεσ0ε1拉伸硫化橡胶拉伸—回缩应力应变曲线拉伸曲线下面积为外力对橡胶所作的功回缩曲线下面积为橡胶对外力所作的功滞后环面积越大,损耗越大ε0回缩ε2面积之差损耗的功δεπσsin o o W =∆δ :力学损耗角,常用tanδ来表示内耗大小)]dt-t cos(t)[sin ()t (d )t (W Δ020200δωωεωσεσωπωπ⎰⎰==σεσ0回缩拉伸内耗角δεπσsin o o W =∆δ=0,△W=0,所有能量都以弹性能量的形式存储起来滞后的相角δ决定内耗δ=900,△W→max , 所有能量都耗散掉了滞后和内耗对材料使用的利弊?用作轮胎的橡胶制品要求内耗小(内耗大,回弹性差)隔音材料和吸音材料要求在音频范围内有较大的力学损耗防震材料要求在常温附近有较大的力学损耗温度内耗很高很低T g 附近1. 温度影响滞后和内耗的因素高小小小小大大2.外力变化的频率高聚物的内耗与频率的关系频率 内耗很高很低适中小小小小大大橡胶品种内耗顺丁丁苯丁腈3.内耗与分子结构的关系对于作轮胎的橡胶,则选用哪种?内耗大的橡胶,吸收冲击能量较大,回弹性较差较小较大较大7.1.3 粘弹性参数静态粘弹性蠕变应力松弛模量柔量应力,应变与时间的关系模量、柔量与时间的关系蠕变柔量)()(σεt t D =应力松弛模量)()(εσt t E =tsin (t)0ωεε=t cos sin t sin cos (t)00ωδσωδσσ+=)t sin( (t)0δωσσ+=δεσcos '00=E δεσsin "00=E E ′—储能模量,反映材料形变时的回弹能力(弹性)E ″—耗能模量,反映材料形变时内耗的程度(粘性)1.力学损耗角,tg δ动态粘弹性2.动态模量用复数模量的绝对值表示(绝对模量)2''2'*||E E E E +==通常E ″<<E ′,常直接用E ′作为材料的动态模量。
第七章 材料弹性变形与内耗固体材料在受外力作用时,首先会产生弹性变形,外力去除后,变形消失而恢复原状,因此,弹性变形有可逆性的特点。
材料的弹性变形是人们选择和使用材料的依据之一,近代航空、航天、无线电及精密仪器仪表工业对材料的弹性有更高要求,不仅要有高的弹性模量,而且还要恒定。
另一方面,材料的弹性模量是组织不敏感参量,准确测定材料的弹性模量,对于研究材料原子的相互作用和相变等都具有工程和理论意义。
实际上,绝大多数固体材料很难表现出理想的弹性行为,或是材料在交变应力作用下,在弹性范围内还存在非弹性行为,并因此产生内耗。
内耗代表材料对振动的阻尼能力,作为重要的物理性能,工程上有些零件要求材料要有高的内耗以消振,如机床床身、涡轮叶片等,而有些零件则要求材料有低的内耗,以降低阻尼,如弹簧、游丝、乐器等。
另一方面,内耗是结构敏感性能,故可用于研究材料的内部结构、溶质原子的浓度以及位错与溶质原子的交互作用等材料的微观结构问题,是一种很有效的物理性能分析方法。
第一节 材料弹性变形一.弹性模量及弹性变形本质在弹性范围内,物体受力的作用要产生应变,其应力和应变之间的关系符合胡克定律σ=E ε, τ=G γ,p=K θ (7-1)式中,σ、τ和p 分别为正应力、切应力和体积压缩应力;ε、γ和θ 分别为线应变、切应变和体积应变;比例系数E 、G 和K 分别为正弹性模量(杨氏模量)、切变模量和体积模量。
它们均表示材料弹性变形的难易程度,即引起单位变形所需要的应力大小。
在各向同性的材料中,它们之间的关系是G =)1(2μ+E (7-2) K = )21(3μ-E (7-3) 式中,μ为泊松比,即当材料受到拉伸或压缩时,横向应变与纵向应变之比。
可以证明,如果材料在形变时体积不变,则泊松比为0.5。
大多数材料在拉伸时有体积变化(膨胀),泊松比为0.2~0.5。
对于多数金属的μ值约在0.25~0.35之间,G/E 的实验值大约是3/8。
材料弹性及内耗测试技术引言:一、弹性模量测试技术弹性模量是材料在受力时能够恢复原状的能力,是材料的重要力学性质之一、常见的弹性模量测试方法有静态拉伸试验、压缩试验、剪切试验等。
1.1静态拉伸试验:静态拉伸试验是将材料样本拉伸到一定的长度,通过测量应力和应变之间的关系来计算弹性模量。
测试时需要使用应变计和力传感器,将样本固定在拉伸机上,根据斯托克斯定律计算应变。
1.2压缩试验:压缩试验是将材料样本压缩到一定程度,通过测量应力和应变之间的关系来计算弹性模量。
测试时需要使用应变计和力传感器,将样本固定在压缩机上,根据斯托克斯定律计算应变。
1.3剪切试验:剪切试验是将材料样本剪切到一定程度,通过测量应力和应变之间的关系来计算剪切模量。
测试时需要使用应变计和力传感器,将样本固定在剪切机上,根据斯托克斯定律计算应变。
内耗是材料在振动中损失的能量,是材料内部分子、原子间运动摩擦造成的。
常见的内耗测试方法有振动试验、动态力学分析(DMA)等。
2.1振动试验:振动试验是通过在不同频率下施加加速度来引起材料内部的振动,通过测量振幅和频率之间的关系来计算内耗。
测试时需要使用振动试验机,将样本固定在试验台上,通过改变振幅和频率来观察材料的内耗行为。
2.2动态力学分析(DMA):DMA是一种通过施加不同振动频率和振幅的载荷来测量材料的动态力学性能的方法。
通过测量材料在不同频率下的应力和应变之间的关系,可以计算出材料的内耗。
三、材料弹性及内耗测试在材料研究和应用中的意义3.1材料研究:弹性模量和内耗是材料性能的重要指标,通过测试这些指标可以评估材料的力学性能、疲劳寿命和耐用性等。
对材料研究者来说,了解材料的弹性行为和内耗特性对于优化材料配方、改进加工工艺以及研究材料的疲劳和损伤行为具有重要意义。
3.2应用领域:材料的弹性模量和内耗对于材料在工程应用中的稳定性和耐用性至关重要。
在材料行业中,弹性模量和内耗测试常常用于材料质量控制,以确保材料在使用过程中不会发生损坏或失效。
第一篇材料的力学性能第一章材料的弹性变形一、名词解释1、弹性变形:外力去除后,变形消失而恢复原状的变形。
P42弹性模量:表示材料对弹性变形的抗力,即材料在弹性变形范兩内,产生单位弹性应变的需应力。
P103、比例极限:是保证材料的弹性变形按正比例关系变化的最大应力。
P154、弹性极限:是材料只发生弹性变形所能承受的最大应力。
P155、弹性比功:是材料在弹性变形过程中吸收变形功的能力。
P156、包格申效应:是指金属材料经预先加载产生少量塑性变形(残余应变小于4%), 而后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。
P207、内耗:在加载变形过程中,被材料吸收的功称为内耗。
P21二、填空题1、金属材料的力学性能是指在载荷作用下其抵抗(变形)和(断裂)的能力。
P22、低碳钢拉伸试验的过程可以分为(弹性变形)、(塑性变形)和(断裂)三个阶段。
P2三、选择题1、表示金属材料刚度的性能指标是(B )。
P10A比例极限B弹性模量C弹性比功2、弹簧作为广泛应用的减振或储能元件,应具有较高的(C )<> P16A塑性B弹性模量C弹性比功D硬度3、下列材料中(C )最适宜制作弹簧。
A 08 钢B 45 钢C 60Si:Mn C T12 钢4、下列因素中,对金属材料弹性模量影响最小的因素是(D )。
A化学成分B键合方式C晶体结构D晶粒大小四、问答题影响金属材料弹性模量的因素有哪些?为什么说它是组织不敬感参数?答:影响金属材料弹性模量的因素有:键合方式和原子结构、晶体结构、化学成分、温度及加载方式和速度。
弹性模量是组织不敬感参数,材料的晶粒大小和热处理对弹性模量的影响很小。
因为它是原子间结合力的反映和度量。
P11第二章材料的塑性变形一、名词解释1、塑性变形:材料在外力的作用于下,产生的不能恢复的永久变形。
P242、塑性:材料在外力作用下,能产生永久变形而不断裂的能力。
P523、屈服强度:表征材料抵抗起始塑性变形或产生微量塑性变形的能力。