图l-11所示,当突然施加一应力σo于 拉伸试样时,试样立即沿0A线产生瞬时 应变Oa。如果低于材料的微量塑性变形 抗力,则应变Oa只是材料总弹性应变OH 中的一部分。应变aH只是在σo长期保 持下逐渐产生的,aH对应的时间过程为 图1-11中的ab曲线。
恒定应力σo
卸载时,如果速度也比较大,则当应力下降为零时, 只有应变eH部分立即消逝掉,而应变eO是在卸载后逐渐去 除的,这部分应变对应的时间过程为图中的cd曲线。
三.动态粘弹性(滞后、内耗)
在正弦或其它周期性变化的外力作用下,聚合物粘弹性的表现. 高聚物作为结构材料在实际应用时,往往受到交变力的作 用。如轮胎、传送皮带、橡齿轮。
研究动态力学行为的实际意义?
用作结构材料的聚合物许多是在交变的力场中使用 , 因 此必须掌握作用力频率对材料使用性能的影响。 如外力的作用频率从 0→100~1000 周,对橡胶的力学性 能相当于温度降低 20~40℃,那么在-50℃还保持高弹性 的橡胶,到-20℃就变的脆而硬了。 塑料的玻璃化温度在动态条件下,比静态来的高,就 是说在动态条件下工作的塑料零件要比静态时更耐热 , 因此不能依据静态下的实验数据来估计聚合物制品在动 态条件下的性能。
对于未交联橡胶
Cross-linking polymer Linear polymer
0e
0
t
玻璃态 高弹态
粘流态
不同温度下的应力松弛曲线 t
t
不同聚合物的应力松弛曲线
高分子链的构象重排和分子链滑移是导致材料蠕变和应力松 弛的根本原因。 如果T很高(>>Tg),链运动摩擦阻力很小,应力很快松弛掉了, 所以观察不到,反之,内摩擦阻力很大,链段运动能力差,应力 松弛慢,也观察不到.只有在Tg温度附近的几十度的范围内应 力松弛现象比较明显.(链由蜷曲变为伸展,以消耗外力)