2019-2020年七年级数学下学期四科联赛试题 新人教版
- 格式:doc
- 大小:249.00 KB
- 文档页数:9
初中四科联赛试题及答案一、语文试题1. 请解释下列词语的意思:(1)栩栩如生(2)昙花一现2. 阅读以下古文,回答后面的问题:《出师表》节选先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。
诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。
(1)“先帝”指的是谁?(2)“此诚危急存亡之秋也”中的“秋”是什么意思?3. 请写出“草长莺飞二月天,拂堤杨柳醉春烟”的作者和出处。
二、数学试题1. 计算下列表达式的值:(1)\((3x - 2)^2\)(2)\(\frac{3}{4} \div \frac{2}{3}\)2. 解方程:(1)\(2x + 3 = 11\)(2)\(5x - 7 = 8\)3. 一个长方体的长、宽、高分别是10cm、8cm、6cm,求其体积。
三、英语试题1. 根据所给词的适当形式填空:(1)He often ________ (read) books in the library.(2)There ________ (be) many people in the park yesterday.2. 将下列句子翻译成英文:(1)他每天骑自行车上学。
(2)她喜欢在周末去购物。
3. 阅读下面的短文,回答问题:My name is Tom. I am a student. I like playing football. I often play football with my friends on weekends.(1)What is Tom's hobby?(2)When does Tom usually play football?四、科学试题1. 列举三种常见的可再生能源。
2. 解释光合作用的过程。
3. 描述水循环的三个主要阶段。
答案:一、语文试题1. (1)栩栩如生:形容画作或雕塑等艺术作品形象逼真,如同活的一样。
2019-2020年七年级数学试卷及答案注意事项:1.本试卷共3大题、27小题,满分100分,考试用时100分钟;2.答题前,考生务必将自己的姓名,考点名称,考场号、座位号、考试号填写清楚,并用2B铅笔认真正确填涂考试号下方的数字;3.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题必须答在答题卡上,答在试卷和草稿纸上一律无效.一、选择题(本大题8小题,每小题2分,共16分,在每小题给出的四个选项中,只有一项是符合题目要求的,将每题的选项代号填涂在答题卡相应位置)1.-2的倒数是A.-12B.12C.-2 D.22.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数.则下面4个足球中,质量最接近标准的是3.下面的四个图形都是由大小相同的正方形组成的,其中能围成正方体的是4.苏州地铁二号线于2013年12月28日投入运营,二号线是苏州轨道交通线网的南北向骨干线路,线路全长26.557公里,共设22座车站,也是迄今为止苏州市投资规模最大的城市建设工程,工程总投资156亿元,总工期4年半.156亿用科学计数法表示为A.1.56×108B.1.56×109C.1.56×1010D.1.56×10115.一条船沿北偏东50°方向航行到某地,然后沿原航线返回,返回时正确的航行方向是A.南偏西50°B.南偏东50°C.北偏西50°D.北偏东50°6.有m辆校车及n个学生,若每辆校车乘坐40名学生,则还有10名学生不能上车;若每辆校车乘坐43名学生,则只有1名学生不能上车.现有下列四个方程:①40m+10=43m-1;②1014043n n++=;③1014043n n--=;④40m+10=43m+1.其中正确的是A.①②B.②④C.②③D.③④7.如图,长方形内有两个相邻的正方形,面积分别是m2和9.那么阴影部分的面积为A.3(m-3) B.(m-3)2C.m(m-3) D.m2-98.如图,“●、■、▲”分别表示三种不同的物体,已知前两架天平保持平衡,要使第三架也平衡,那么“?”处应放“■”的个数为A .5B .4C .3D .2二、填空题(本大题共10小题,每小题2分,共20分,请把答案填在答题卡相应位置上)9.若∠a =23°36’,则∠α的补角为 ▲ 度.10.10点30分时,钟面上时针与分针所成的角等于 ▲ 度.11.若代数式x +y 的值是1,则代数式(x +y)2-x -y +1的值是 ▲ .12.己知关于x 的方程3x -2m =4的解是x =m ,则m 的值是 ▲ .13.如图,点C 、D 分别是线段AB 、BC 的中点,若CD =3,则AB = ▲ .14.如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等,则这六个数的和为 ▲ .15.下列说法中:(1)在同一平面内,经过已知一点有且只有一条直线与已知直线平行;(2)两个相等的角是对顶角;(3)一个锐角的补角一定比这个角的余角大90°; (4)直线外一点与直线上各点连接的所有线段中,垂线段最短;(5)三条直线两两相交,一定有三个交点:正确的说法是 ▲ .(填入你认为正确的说法的序号)16.如图,将三个相同的正方形的一个顶点重合放置,则∠1= ▲ 度.17.根据如图所示的计算程序,若x =1,则y = ▲ .18.把一条绳子对折后,从它对折后的中间剪断,就成了3段,把一条绳子对折后再对折,从第二次对折后的中间剪断,就成了5段,把一条绳子对折3次后,从它第3次对折后的中间剪断,就成了9段,如果从它第n 次对折后的中间剪断,那么这条绳子会被剪成 ▲ 段.三、解答题(本大题9小题,共64分,解答应写出必要的计算过程、步骤或文字说明)19.(本题满分12分,每小题4分)计算(1)35344⎛⎫⎛⎫+---- ⎪ ⎪⎝⎭⎝⎭ (2)()157362612⎛⎫+-⨯- ⎪⎝⎭(3)()()321222522---⨯--÷⨯20.(本题满分5分)解方程:12125x x -+=+21.(本题满分5分)已知代数式3a2+ (4ab-a2)-2(a2+2ab-b2).(1)试说明这个代数式的值与a的取值无关;(2)若b=-2,求这个代数式的值.22.(本题满分4分)如图,方格纸中每个小正方形的边长都是1,点A、B是方格纸中的两个格点(即小正方形的顶点).(1)请在方格纸中以AB为边作正方形ABCD;(提醒:请用黑色笔再加涂一下所作的线段)(2)正方形ABCD的面积为▲.23.(本题满分6分)把棱长为a cm的若干个小正方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不合底面).(1)该几何体中的体积为▲ cm3;(2)在右图中画出主视图;(提醒:请用黑色笔再加涂一下所作的线段)(3)求出涂上颜色部分的总面积.24.(本题满分6分)已知方程3m-6=2m的解也是关于x的方程2(x-3)-n=4的解.(1)求m、n的值;(2)已知线段AB=m,在直线AB上取一点P,恰好使AP:PB=n:1,点Q为PB的中点,求线段AQ的长.25.(本题满分8分)如图,将正方形纸片的两角分别折叠,使顶点A落在A'处,顶点D 落在D,处,BC、BE为折痕,点B、A'、D,在同一条直线上.(1)猜想折痕BC和BE的位置关系,并说明理由:(2)分别写出图中∠D'BE的一个余角与补角;(3)延长D'B、CA相交于点F,若∠EBD=32°,求∠ABF和么CBA的度数.26.(本题满分8分)如图所示,用三种大小不同的六个正方形和一个缺角的长方形拼成长方形ABCD.其中GH=GK=2cm,设BF=xcm.(1)用含x的代数式表示,CM=▲ cm,DM=▲ cm;(2)若DC=10cm,求x的值;(3)用x的代数式表示长方形ABCD的周长,并求当x=3时此长方形的周长的值.27.(本题满分10分)如图,动点A从原点出发向数轴负方向运动,同时动点B也从原点出发向数轴正方向运动,2秒后两点相距16个单位长度.己知动点A、B的速度比为1:3(速度单位:单位长度/秒).(1)求两个动点运动的速度,以及A、B两点从原点出发运动2秒后的位置所对应的数,并在数轴上标出;(2)若表示数0的点记为O,A、B两点分别从(1)中标出的位置同时向数轴负方向运动,再经过多长时间OB=2OA?(3)在(1)中A、B两点同时向数轴负方向运动时,另一动点C和点B同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?。
2019-2020 年七年级数学试卷(word 解析版)1.本试卷共 6 页,共十道大题,满分120 分。
考试时间120 分钟。
考2.在试卷和答题卡上认真填写学校名称、班级、姓名、考场号和座位号。
生3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
须4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
知5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
考点:解一元一次不等式..专题:计算题.分析:先移项,再合并同类项,把x 的系数化为 1 即可.解答:解:移项得,3x>4+2,合并同类项得,3x> 6,把 x 的系数化为 1 得, x>2.故选: A.点评:本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.2. 某种流感病毒的直径是0.00 000 008 米,用科学记数法表示 0.00 000 008为()A.8 106 B .8 105 C .8 108D.8 104考点:科学记数法—表示较小的数..分析:绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为a×10 ﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的 0 的个数所决定.解答:解: 0.000 000 08=8 ×10 ﹣8.故选: C.点评:本题考查用科学记数法表示较小的数.一般形式为a×10﹣n,其中 1≤|a| < 10,n 为由原数左边起第一个不为零的数字前面的0 的个数所决定.3. 若a>b,则下列结论中正确的是()A. 4 a< 4 b B .a+c>b+c C.a- 5<b-5 D .- 7a>- 7b考点:不等式的性质..分析:运用不等式的基本性质求解即可.解答:解:已知a> b,A、 4a> 4b,故 A 选项错误;B、 a+c> b+c,故 B 选项正确;C、 a﹣5> b﹣ 5,故 C 选项错误;D、﹣ 7a<﹣ 7b,故 D 选项错误.故选: B.点评:本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.4. 下列计算中,正确的是()3 )4x12236C . (2 a)36a3336A. ( x B . a a a D . a a a考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法..分析:根据合并同类项的法则,同底数幂的乘法以及幂的乘方的知识求解即可求得答案.解答:解: A、(x3)4=x12,故 A 选项正确;235B、 a ?a =a ,故 B 选项错误;C、( 2a)3=8a3,故 C选项错误;D、 a3+a3=2a3,故 D 选项错误.故选: A.点评:本题主要考查了合并同类项的法则,同底数幂的乘法以及幂的乘方的知识,解题的关键是熟记法则.5. 下列计算中,正确的是()22A. ( m+ 2) =m+ 4B. (3 +y)( 32-y)=9-yC. 2x(x - 1)= 2x2-1D. ( m-3)(m+1)=m2-3考点:平方差公式;单项式乘多项式;多项式乘多项式;完全平方公式..分析:根据平方差公式是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.相乘的结果应该是:右边是乘式中两项的平方差(相同项的平方减去相反项的平方)进行选择即可.22解答:解: A、(m+2) =m+4+4m,故 A 选项错误;B、( 3+y)( 3﹣ y) =9﹣ y2,故 B 选项正确;C、 2x( x﹣ 1) =2x2﹣ 2x,故 C 选项错误;2D、( m﹣ 3)( m+1) =m﹣ 2m﹣ 3,故 D选项错误;.点评:本题主要考查平方差公式:( 1)两个两项式相乘;( 2)有一项相同,另一项互为相反数,熟记公式结构是解题的关键.6.如图, AF是∠ BAC的平分线, EF∥ AC交 AB于点 E.若∠1=25°,则BAF 的度数为()A.15°B.50°C.25°D.12.5 °考点:平行线的性质;角平分线的定义..分析:根据两直线平行,同位角相等求出∠2,再根据角平分线的定义解答.解答:解:∵ EF∥AC,∠ 1=25°,∴∠ 2=∠1=25°,∵AF 是∠ BAC 的平分线,∴∠ BAF=∠2=25°.故选: C.点评:本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.7. 下列从左到右的变形正确进行因式分解的是()A.( x+5)( x- 5)= x2- 25B.x2+x+1=x( x+1)+1C.-22-2xy =-2 (+) D.3x+6+9 =3 (2 +9)x x x y xy xz x y z考点:因式分解的意义..专题:因式分解.分析:因式分解就是把多项式变形成几个整式积的形式,根据定义即可判断.解答:解: A、结果不是整式的积的形式,故 A 选项错误;B、结果不是整式的积的形式,是整式的乘法,故 B 选项错误;D、左右不相等,故 D 选项错误.故选: C.点评:本题考查了因式分解的意义,因式分解与整式的乘法互为逆运算,并且因式分解是等式的恒等变形,变形前后一定相等.8. 下列调查中,适合用普查方法的是()A.了解某班学生对“北京精神”的知晓率B.了解某种奶制品中蛋白质的含量C.了解北京台《北京新闻》栏目的收视率 D .了解一批科学计算器的使用寿命考点:全面调查与抽样调查..分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解: A、了解某班学生对“北京精神”的知晓率是精确度要求高的调查,适于全面调查,故 A 选项正确;B、了解某种奶制品中蛋白质的含量,适合抽样调查,故 B 选项错误;C、了解北京台《北京新闻》栏目的收视率采用普查方法所费人力、物力和时间较多,适合抽样调查,故C选项错误;D、了解一批科学计算器的使用寿命,如果普查,所有计算器都报废,这样就失去了实际意义,故 D 选项错误,故选: A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.我市某一周的最高气温统计如下表:最高气温(℃)25262728天数1123则这组数据的中位数与众数分别是( )A. 27, 28 B .27.5 ,28 C .28, 27D. 26.5 ,27考点:众数;中位数..专题:图表型.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:处于这组数据中间位置的那个数是27,由中位数的定义可知,这组数据的中位数是27.众数是一组数据中出现次数最多的数,在这一组数据中28 是出现次数最多的,故众数是 28.故选: A.点评本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.10.如图所示,点 E 在AC的延长线上,下列条件中能判断AB // CD()A.∠3=∠4B.D ACD180C.D DCED.12考点:平行线的判定..分析: A、利用内错角相等两直线平行即可得到AC与 BD平行,B、利用同旁内角互补两直线平行即可得到AC与BD平行,C、利用内错角相等两直线平行即可得到AC与BD平行,D、利用内错角相等两直线平行即可得到AB与CD平行,解答:解: A、∵∠ 3=∠4,∴ AC∥BD,故A 选项不合题意;B、∵∠ D+∠ACD=180°,∴ AC∥BD,故 B 选项不合题意;C、∵∠ D=∠DCE,∴ AC∥BD,故C选项不合题意;D、∵∠ 1=∠2,∴ AB∥CD,故D 选项符合题意.故选: D.点评 : 此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.11. 不等式组x2x 3,无解,则 m的取值范围是()x m 2.A .m<1B.m≥1C.m≤1D.m>1考点:解一元一次不等式组..分析:先把 m当作已知条件求出各不等式的解集,再根据不等式组无解求出m的取值范围即可.解答:解:,由①得, x>﹣ 1,由②得, x< m﹣2,∵原不等式组无解,∴m﹣2≤﹣ 1,解得 m≤1.故选: C.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12. 关于 x , y的二元一次方程组3x y a,的解满足 x y ,则 a 的取值范围是()x3y 5 4aA.a>3B.a1C.a D.a>55333考点:解二元一次方程组;解一元一次不等式..专题:计算题.分析:将 a 看做已知数求出方程组的解表示出x 与 y,代入已知不等式即可求出 a 的范围.解答:解:,①× 3﹣②得: 8x=7a﹣ 5,即 x=,①﹣②×3得: 8y=13a ﹣15,即 y=,根据题意得:<,去分母得: 7a﹣5< 13a﹣15,移项合并得:6a> 10,解得: a>.故选: D.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.二、填空题(本题共24 分,每小题 2 分)13. 把方程3x y 10 写成用含x 的代数式表示y 的形式,则y=.考点:解二元一次方程..专题:计算题.分析:将x 看做已知数求出y 即可.解答:解:方程3x+y ﹣ 1=0,解得: y=1﹣ 3x.故答案为:1﹣ 3x点评:此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y.14. 如果一个角等于54°,那么它的余角等于度 .考点:余角和补角..分析:本题考查角互余的概念:和为90 度的两个角互为余角.解答:解:根据余角的定义得,54°的余角度数是90°﹣ 54°=36°.故答案为: 36.点评:本题考查了余角和补角,属于基础题,较简单,主要记住互为余角的两个角的和为90度.15. 在方程 2x-3y1中,当x 3.时, y=2考点:解二元一次方程..专题:计算题.分析:将 x 的值代入方程计算即可求出y 的值.解答:解: 2x﹣ 3y=﹣ 1,将 x=﹣代入得:﹣ 3﹣ 3y=﹣1,解得: y=﹣,故答案为:﹣点评:此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.16. 分解因式3ab212ab 12a =.考点:提公因式法与公式法的综合运用..专题:因式分解.分析:先提取公因式 a,再根据完全平方公式进行二次分解.完全平方公式: a2﹣ 2ab+b2= (a﹣ b)2.解答:解:原式 =3a( b2﹣4b+4)=3a( b﹣ 2)2.故答案为: 3a(b﹣ 2)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.17.我市六月份连续五天的日最高气温(单位:℃ )分别为35,33,37,34,39,则我市这五天的日最高气温的平均值为℃.考点:算术平均数..分析:平均数是指在一组数据中所有数据之和再除以数据的个数.本题可把所有的气温加起来再除以 5 即可.解答:解:依题意得:平均气温=( 35+33+37+34+39)÷ 5=35.6 ℃.故答案为: 35.6 .点评:本题考查的是平均数的求法.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.18. 计算( 2)0 3 2的结果是.考点:负整数指数幂;零指数幂..专题:计算题.分析:根据负整数指数次幂等于正整数指数次幂的倒数,任何非零数的零次幂等于1进行计算即可得解.解答:解:(﹣ 2) 0+3﹣2=1+ =.故答案为: .点评:本题考查了零指数幂和负整数指数次幂等于正整数指数次幂的倒数,熟记性质是解题的关键.x 1, ax 3y 1, b 的值是.19. 已知是关于 x ,y 的方程组2x by的解,那么 ay24考点:二元一次方程组的解.专题:计算题.分析:将 x 与 y 的值代入方程组求出.a 与b 的值,即可确定出a+b 的值.解答:解:将 x=﹣ 1, y=2 代入方程组得:,解得: a=5, b=﹣ 3,则 a+b=5﹣ 3=2.故答案为: 2.点评:此题考查了二元一次方程组的解, 方程组的解即为能使方程组中两方程成立的未知数的值.20. 已知∠1 与∠2 互补,∠3 与∠2互补,∠ 1=72°,则∠ 3=度 .考点:余角和补角. .分析:根据和为 180 度的两个角互为补角.依此即可求解.解答:解:∵∠1 与∠2互补,则∠ 2=180°﹣ 72°=108°,∵∠2与∠3互补,则∠ 3=180°﹣ 108°=72°.故答案为: 72.点评:此题属于基础题,较简单,主要记住互为余角的两个角的和为 90°;两个角互为补角和为 180°.21.如图,直线 AB,CD相交于点 O, OE⊥AB, O为垂足,∠ EOD=26°,则∠ AOC=.考点:对顶角、邻补角;垂线..分析:根据OE⊥AB,∠ EOD=26°,可得∠ BOD=68°,再根据对顶角相等即可得出答案.解答:解:∵ OE⊥AB,∴∠ BOE=90°,∵∠ EOD=26°,∴∠ BOD=64°,∵∠ AOC=∠BOD,∴∠ AOC=64°.故答案为: 64°.点评:本题考查了对顶角的性质以及垂线的定义,是基础题比较简单.22. 若a b3, ab 2 ,则 a3b ab3的值是.考点:提公因式法与公式法的综合运用..分析:首先利用完全平方公式求出a2+b2=13,进而将原式分解因式求出即可.解答:解:∵ a﹣ b=﹣ 3,ab=2,∴( a﹣ b)2=9,22∴a+b ﹣ 2ab=9,22∴a+b =13,3322∴a b+ab =ab( a +b )=2×13=26.故答案为: 26.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练掌握完全平方公式是解题关键.23. 若多式x2( k 1)x 16 是完全平方公式,k=.考点:完全平方式..分析:里首末两是x2和 16 两个数的平方,那么中一加上或减去x2和 16的 2倍.解答:2解:∵多式x ( k 1)x+16 是完全平方公式,∴k 1=±8,解得 k=9 或 7,故答案: 9 或 7.点:本是完全平方公式的用;两数的平方和,再加上或减去它的 2 倍,就构成了一个完全平方式.漏解.注意的 2 倍的符号,避免24.右手的示意,在各个手指字母你按中箭所指方向(即A B CA,B ,C ,D .D C B A B C⋯的方式)从A 开始数的正整数1,2 ,3,4 ,⋯,当字母 C 第 2n 1 次出(n 正整数),恰好数到的数是_____________ (用含n 的代数式表示).考点:律型:数字的化..:律型.分析:由于字母从A→B→C→D→C→B→A→B→C→⋯的方式行,察得到每 6 个字母ABCDCB一循,并且每一次循里字母 C 出 2 次,循n 次,字母C第2n+1 次出(n 正整数),得到循n 次完要数到6n,而当字母 C 第2n+1 次出,再数 3 个数6n+3.解答:解:按照循,每一循里字母A→B→C→D→C→B→A→B→C→⋯的方式行,每 6 个字母 ABCDCB一 C出 2 次,当循 n 次,字母 C第 2n 次出( n 正整数),此数到最后一个数6n,当字母 C 第 2n+1 次出( n 正整数),再数 3 个数 6n+3.故答案为: 6n+3.点评:本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.三、计算(本题共 6 分,每小题 3 分)1. ( ab2)2( 4ab) ( 2ab2)2. (x2)(3 x 2) (x 4)( x 1)考点:整式的混合运算..专题:计算题.分析:( 1)先算乘方,再算乘除,即可得出结果;(2)根据多项式的乘法法则进行计算即可.解答:解:( 1)原式 =a2b4 ?(﹣ 4ab)÷(﹣ 2ab2)=﹣ 4a3b5÷(﹣ 2ab2)2 3=2a b ;(2)原式 =3x2﹣ 2x+6x ﹣ 4+x2﹣ x﹣4x+4 =4x2﹣ x.点评:本题考查了整式的混合运算,以及运算顺序,是基础知识要熟练掌握.四、因式分解(本题共9 分,每小题 3 分)1. 4x3y228 x2 y2xy2.a34ab23.( x2 1)24x( x2 1) 4x2.考点:提公因式法与公式法的综合运用..专题:因式分解.分析:(1)直接提取公因式﹣ 2xy,进而得出答案;(2)首先提取公因式 a,进而利用平方差公式分解因式即可;(3)首先将( x2+1)看做整体,进而利用完全平方公式分解因式即可.解答:解:( 1)﹣ 4x 3y2+28x2y﹣ 2xy= ﹣ 2xy ( 2x2y﹣ 14x+1 );(2) a3﹣4ab2=a( a2﹣4b2)=a( a+2b)( a﹣2b);(3)(x2+1)2﹣ 4x(x2+1) +4x2=( x2+1﹣2x )2=( x﹣1)4.点评:此题主要考查了公式法以及提取公因式法分解因式,熟练应用公式法分解因式是解题关键.五、先化简,再求值(本题 5 分)(2x y)2 5 y( y 4x) ( x 2y)(2y x) 6x 其中x 2 ,y 3 .4考点:整式的混合运算—化简求值..专题计算题.分析:原式中括号中第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,第三项利用平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,将x 与 y 的值代入计算即可求出值.解答:解:原式 =( 4x2+4xy+y 2﹣ 5y2 +20xy ﹣ x2+4y2)÷ 6x=( 3x2+24xy )÷ 6x= x+4y ,当 x=2, y=﹣时,原式 =1﹣ 3=﹣ 2.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.六、解答题(本题共16 分,每小题 4 分)1.解不等式x+4 -x≤x 4,并把它的解集在数轴上表示出来. 63考点:解一元一次不等式;在数轴上表示不等式的解集..分析:先去分母,再去括号,移项、合并同类项,把x 的系数化为1.并在数轴上表示出来即可.解答:解:去分母得,x+4﹣2x≤6( x﹣4),去括号得, x+4﹣2x≤6x﹣ 24,移项得, x﹣ 2x﹣6x≤﹣ 24﹣ 4,合并同类项得,﹣ 7x≤﹣ 28,把 x 的系数化为 1 得, x≥4.在数轴上表示为:.点评:本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.2.解方程组2x 3 y 3,3x 2 y7.考点:解二元一次方程组..专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:,①× 2﹣②×3得:﹣ 5x=﹣ 15,即 x=3,将 x=3 代入①得: y=1,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4(x1)7x8,3. 解不等式组x2并求它的所有整数解.x 5,3考点:解一元一次不等式组;一元一次不等式组的整数解..专题:计算题.分析:先求出两个不等式的解集,再求其公共解,然后找出整数即可.解答:解:,由①得, x≥4,由②得, x<,所以,不等式组的解集是4≤x<,所以,它的整数解为:4, 5, 6.点评:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).4.如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF交CD于点G,∠1=50 ,求∠2的度数 .考点:平行线的性质..分析:根据平行线的性质求出∠BEF,根据角平分线定义求出∠BEG,根据平行线的性质得出∠ BEG=∠2,即可求出答案.解答:解:∵ AB∥CD,∠ 1=50°,∴∠ BEF=180°﹣∠ 1=130°,∵EG平分∠ BEF,∴∠ BEG= ∠BEF=65°,∵AB∥CD,∴∠ 2=∠BEG=65°.点评:本题考查了平行线的性质,角平分线定义的应用,注意平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.七、在括号中填入适当的理由(本题共7 分,每空 1 分)已知:如图,∠ 1=∠ 2,∠ 3=∠ 4.求证: DF∥ BC.证明:∵∠ 3=∠ 4(已知),C ∴∥.()∴∠ 2=∠.(G2H )4F又∵∠ 1=∠2(已知),∴∠ 1=∠.13A D E B∴ DF∥BC.()考点:平行线的判定与性质..专题:推理填空题.分析:根据平行线的判定推出GH∥AB,根据平行线的性质得出∠2=∠B,求出∠ 1=∠B,根据平行线的判定推出即可.解答:证明:∵∠ 3=∠4,∴GH∥AB(内错角相等,两直线平行),∴∠ 2=∠B(两直线平行,同位角相等),∵∠ 1=∠2,∴∠ 1=∠B(等量代换),∴DF∥BC(同位角相等,两直线平行),故答案为: GH, AB,(内错角相等,两直线平行),B,(两直线平行,同位角相等),B,(同位角相等,两直线平行).点评:本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目比较好,难度适中.八、解答题(本题 5 分)为了解某区 2014 年八年级学生的体育测试情况,随机抽取了该区若干名八年级学生的测试成绩进行了统计分析,并根据抽取的成绩等级绘制了如下的统计图表(不完整):人数10080A ______6060C 15%40D 5%B 50%2010A B C D成绩等级图1图2请根据以上统计图表提供的信息,解答下列问题:(1)本次抽查的学生有 ___________名,成绩为 B 类的学生人数为 _________名, A 类成绩所在扇形的圆心角度数为 ________;(2)请补全条形统计图;( 3)根据抽样调查结果,请估计该区约5000 名八年级学生体育测试成绩为 D 类的学生人数.考点:条形统计图;用样本估计总体;扇形统计图..分析:( 1)根据 D 类的人数除以占的百分比求出调查的学生总数,继而确定出 B 类的人数与C类占的角度即可;(2)求出 B 与 C 类的人数,补全条形统计图即可;(3)由 D 占的百分比,乘以 5000 即可得到结果.解答:解:(1)根据题意得: 10÷5%=200(名);成绩为 B 类的学生人数为 200×50%=100(名);成绩 C 类占的角度为15%×360°=54°;则本次抽查的学生有200 名;成绩为 B 类的学生人数为100 名, C 类成绩所在扇形的圆心角度数为54°;故答案为: 200; 100;54°;(2)根据题意得: B 类人数为 100 人, C 类人数为 30 人,补全条形统计图,如图所示:( 3)根据题意得: 5000×5%=250(人),则该区约 5000 名八年级学生实验成绩为D类的学生约为250 人.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.九、列方程组解应用问题解答题(本题 5 分)如图,用火柴棍连续搭建三角形和正方形,公共边只用一根火柴棍.如果搭建三角形和正方形共用了77 根火柴棍,并且三角形形的个数比正方形的个数少 5 个,那么一共能连续搭建三角形、正方形各多少个?⋯⋯⋯⋯考点:二元一次方程组的应用..分析:设连续搭建三角形x 个,连续搭建正方形y 个,根据搭建三角形和正方形共用了77 根火柴棍,并且三角形的个数比正方形的个数少 5 个,列方程组求解.解答:解:设连续搭建三角形x 个,连续搭建正方形y 个.由题意得,,解得:.答:一共连续搭建三角形和正方形分别为12 个、 17 个.点评:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.十、解答题(本题7 分)如图,已知射线∥,∠=∠=120°,、F 在CB上,且满足∠=∠,CBOA C OAB E FOB FBO OE 平分∠ COF.(1)求∠ EOB的度数;(2)若向右平行移动 AB,其它条件不变,那么∠ OBC:∠ OFC的值是否发生变化?若变化,找出其中规律,若不变,求出这个比值;(3)在向右平行移动 AB的过程中,是否存在某种情况,使∠ OEC=∠ OBA?若存在,请直接写出∠ OBA度数,若不存在,说明理由.考点:平行线的性质;三角形内角和定理;角平分线的性质;平移的性质..专题:几何图形问题.分析:( 1)根据两直线平行,同旁内角互补求出∠AOC,再根据角平分线的定义求出∠EOB= ∠AOC,代入数据即可得解;( 2)根据两直线平行,内错角相等可得∠OBC=∠BOA,从而得到∠OBC=∠FOB,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠OFC=2∠OBC,从而得解;(3)设∠ AOB=x,根据两直线平行,内错角相等表示出∠ CBO=∠AOB=x,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠ OEC,然后利用三角形的内角和等于180°列式表示出∠ OBA,然后列出方程求解即可.解答:解:( 1)∵ CB∥O A,∴∠ AOC=180°﹣∠ C=180°﹣ 120°=60°,∵∠ FOB=∠AOB, OE平分∠ COF,∴∠ EOB= ∠AOC= ×60°=30°;( 2)∠ OBC:∠ OFC 的值不会发生变化,为1: 2,∵CB∥OA,∴∠ OBC=∠BOA,∵∠ FOB=∠AOB,∴∠ OBC=∠FOB,∴∠ OFC=∠OBC+∠FOB=2∠OBC,∴∠ OBC:∠ OFC=1: 2;(3)当平行移动 AB 至∠ OBA=45°时,∠OEC=∠OBA.设∠ AOB=x,∵CB∥AO,∴∠ CBO=∠AOB=x,∵∠ OEC=∠CBO+∠EOB=x+30°,∠OBA=180°﹣∠ A﹣∠ AOB=180°﹣ 120°﹣ x=60°﹣x,∴x+30°=60°﹣ x,∴x=15°,∴∠ OEC=∠OBA=60°﹣ 15°=45°.点评:本题考查了平行线的性质,平移的性质,角平分线的定义,三角形的内角和定理,图形较为复杂,熟记性质并准确识图是解题的关键.。
2019-20202019-2020年七年七年级下数学竞赛试题及答案1、本试题分选择题和填空题两大题,满分100分2、考试时间:、考试时间:6060分钟一、选择题:(每小题4分,共4040分分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母 代号填写在下表相应题号下的方格内 题 号 1 2 3 4 5 6 7 8 9 10 答 案1、在一个停车场内有24辆车,其中汽车有4个轮子,摩托车有3 个轮子,且停车场上只有汽车和摩托车,这些车共有86个轮子,那么摩托车应为:应为:A 、1414辆辆B 、1212辆辆C 、1616辆辆D 、10辆 2、文具店的老板均以60元的价格卖了两个计算器,其中一个赚了2020﹪,另﹪,另一个亏了2020﹪,则该老板:﹪,则该老板:﹪,则该老板:A 、赚了5元B B 、亏了、亏了25元C 、赚了25元D 、亏了5元3、如果关于x 的不等式的不等式 (a+1) x>a+1的解集为x<1,那么a 的取值范围是:的取值范围是:A 、a>0B 、a<0C 、a>-1D 、a<-1 4、255,344,533,622这四个数中最小的数是:这四个数中最小的数是:A、255 B、344 C、533 D、6225、已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是:的值是:A 、负数、负数B 、正数、正数C 、非负数、非负数D 、非正数、非正数6、如图△、如图△ABC ABC 中已知D 、E 、F 分别为BC BC、、AD AD、、CE 的中点,且S △ABC =2Mcm ,则S 阴影的值为:的值为:A 、2Mcm 61B 、2Mcm 51 C 、2Mcm 41 D 、2Mcm 317、自从扫描隧道显微镜发明以后,世界上便诞生了一门新兴学科,即“纳米技术”,已知1米=109纳米,若某个细菌直径为0.00000285米,则该细菌直径为:径为:A 、2.85×102纳米纳米B 、2.85纳米纳米C 、2.85×103纳米纳米D 、2.85×104纳米纳米 8、x 是任意实数,则2|x |+x 的值:的值:A 、大于零、大于零B 、不大于零、不大于零C 、小于零、小于零D 、不小于零、不小于零 9、设“●,▲,■”分别表示三种不同的物体,如下图所示,前两架天平保持平衡,如果要使第三架天平也平衡,如果要使第三架天平也平衡,那么那么“?”处应放“■” 的个数为:A 、5B 、4C 、3D 、2 10、老王家到单位的路程是3 500米,老王每天早上7∶30离家步行去上班,在8∶10(含8∶10)至8∶20(含8∶20)之间到达单位,如果设老王步行的速度为x 米/分,则老王步行的速度范围是:分,则老王步行的速度范围是: A 、70≤x ≤87.5B 、x ≤70或x ≥87.5C 、x ≤70D 、x ≥87.5二、填空题(每小题4分,共60分)分)1、某次数学竞赛共出了25道选择题,评分办法是:答对一道加4分,答错一道倒扣1分,不答记0分, 已知小王不答的题比答错的题多2道,他的总●●●●▲■▲■●■●■▲●▲●▲(1)(2)(3)分是74分,则他答对了________________ 道题。
初中四科联赛试题及答案一、语文1. 请解释“蓦然回首,那人却在灯火阑珊处”的含义。
答案:这句话出自宋代辛弃疾的《青玉案·元夕》,意思是忽然回头,发现那人就站在灯火稀疏的地方。
形容在不经意间,突然发现了寻找已久的人或物。
2. 请写出《出师表》中“先帝创业未半而中道崩殂”的下一句。
答案:今天下三分,益州疲弊,此诚危急存亡之秋也。
二、数学1. 已知一个三角形的两边长分别为3cm和4cm,且这两边的夹角为60度,求这个三角形的周长。
答案:根据余弦定理,第三边的长度为\(\sqrt{3^2 + 4^2 - 2\times 3 \times 4 \times \cos(60^\circ)} = \sqrt{13}\)cm。
因此,周长为3cm + 4cm + \(\sqrt{13}\)cm。
2. 一个数列的前三项为2,4,8,从第四项开始,每一项都是前三项的和。
求这个数列的第十项。
答案:数列的第四项为2+4+8=14,第五项为4+8+14=26,第六项为8+14+26=48,第七项为14+26+48=88,第八项为26+48+88=162,第九项为48+88+162=298,第十项为88+162+298=548。
三、英语1. Translate the following sentence into English: “他每天下午都去图书馆。
”答案:He goes to the library every afternoon.2. Fill in the blanks with the correct form of the verb: "I ______ (not see) him since last year."答案:haven't seen四、科学1. 请列举三种常见的不可再生能源。
答案:煤、石油、天然气。
2. 光合作用中,植物通过什么过程将光能转化为化学能?答案:植物通过叶绿体中的光合作用过程,将光能转化为化学能,储存在有机物中。
第二学期七年级四科联赛数学试卷考生须知:1. 全卷共4页, 有三大题, 23小题。
满分120分, 考试时间90分钟。
2. 本卷答案必须做在答题纸的对应位置上,做在试题卷上无效。
温馨提示: 请仔细审题, 细心答题, 相信你一定会有出色的表现.一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应格子内。
1.下图最左边的图案通过平移得到的图案是()2.一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次 转弯的角度可以是( ) A . 先右转60°,再左转120° B . 先左转120°,再右转120° C . 先左转60°,再左转120° D . 先右转60°,再右转60°3.为了了解萧山区2014年数学学业考试各分数段成绩分布情况,从中抽取 1500名考生的学业考试数学成绩进行统计分析.在这个问题中,样本容量是指( ) A .1500 B .被抽取的1500名考生C .被抽取的1500名考生的学业考试数学成绩D .义乌市2013年学业考试数学成绩 4.方程的根是( )A .﹣1 B .2 C . ﹣1或2D . 1或25.“小马虎”在下面的计算中只做对一道题,他做对的题目是( )A.22)(ab ab =B. 623)(a a =C.235x y xy +=D.1243a a a =⋅6.已知m+n=2,mn=﹣2,则(1﹣m )(1﹣n )的值为( ) A . ﹣3 B . ﹣1 C .1 D .5 7.若02(3)2(36)x x ----有意义,那么x 的取值范围是 ( ) A.3x > B.2x < C.32x x ≠≠或 D.32x x ≠≠且8.如图,有下列判定,其中正确的有 ( ) ①若∠1=∠3,则AD∥BC ②若AD∥BC,则∠1=∠2=∠3③若∠1=∠3,AD∥BC,则∠1=∠2④若∠C+∠3+∠4=180°,则AD∥BCA .1个B .2个C .3个D .4个9.如图,已知直线L 交直线a,b 于A,B 两点,且a ∥b,E 是a 上的点,F 是b 上的点,满足∠DAE=13∠BAE, ∠DBF=13∠ABF,则∠ADB 的度数是 ( ) A. 045 B. 050 C. 060 D.无法确定Aab LDBEF(第9题)10、用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有m 张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则m+n 的值可能是( )A.2003B.2004C.2005D.2006二、认真填一填(本题有6个小题,每小题4分,共24分) 11.已知23x y =⎧⎨=-⎩是方程mx+3y=1的一个解,则m 的值是 .12. 某种细胞的平均半径是0.0036m ,用科学记数法可表示为 m . 13.若分式=0,则x= ;若分式有意义,则x 应满足的条件是 .14.若x ,y 均为正整数,且2x •8•4y=256,则x+y 的值为 .15.有两个正方形A,B 现将B 放在A 的内部得到图甲,将A,B并列放置,后构造新的正方形得图乙,若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B 的面积之和为___________BABA16.如图a 是长方形纸带,∠DEF=17°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则 图c 中的∠CFE 的度数是 .三、全面答一答(本题有7个小题,共66分)解答应写出必要的文字说明、证明过程或推演步骤。
2019-2020年七年级下数学竞赛试题及参考答案题号一二 三总分 1-10 11-18 19 20 21 22得分7、如图,已知AE ∥DF,则∠A+∠B+∠C+∠D=_________。
8、如图,小亮从A 点出发,沿直线前进10米后向左转30︒,再沿直线前进10米,又向左转30︒,……,照这样走下去,他第一次回到出发地A 点时,一共走了 米。
9、方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解是________________ 。
10、如上图所示,∠A +∠B +∠C +∠D +∠E +∠F +∠G = _____________度。
二、选择题((共8小题,每小题5分,共40分):11、若点A(m,n)在第二象限,那么点B(-m,│n│)在( ) A 、 第一象限 B 、第二象限 C 、第三象限 D 、第四象限 12、已知关于x 的方程01)2(=-+x b a 无解,那么b a 的值是:A 、负数B 、正数C 、非负数D 、非正数13、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )A 、-23B 、-17C 、23D 、1714、设△ABC 的三边长分别为a ,b ,c , 其中a ,b 满足0)4(|6|2=+-+-+b a b a , 则第三边c 的长度取值范围是( )A 、3<c<5B 、2<c<4C 、4<c<6D 、5<c<615、 某种商品若按标价的八折出售,可获利20%,若按原价出售,可获利( ) A 、25% B 、40% C 、50% D 、66.7%16、如图,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B ,C ,若∠A =40°,则∠ABX +∠ACX =( ) A 、25° B 、30° C 、45° D 、50°第16题17、如图△ABC 中已知D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =2Mcm ,则S 阴影的值为:A 、2Mcm 61B 、2Mcm 51C 、2Mcm 41D 、2Mcm 3118、方程198919901989...433221=⨯++⨯+⨯+⨯xx x x 的解是( )A 、1989B 、1990C 、1991D 、1992三、解答题:(共5小题,共60分):19、(10分)已知方程组⎩⎨⎧=+=+4232y ax y x 的解,x 与y 之和为1,求a 的值20、(15分)如图:已知DEF ABC ∆∆与是一副三角板的拼图,在同一条线上D C E A ,,,. 求21∠∠与的度数P OFEA1 A30︒30︒30︒第8题第17题FEDCBA 第7题ABCDEFG21、(15分)如图所示,在△ABC中,∠B=∠C,∠A DE=∠AED,︒=∠60BAD,求∠EDC的度数;22.(20分)某校师生积极为汶川地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,帐篷有两种规格:可供3人居住的小帐篷,价格为每顶160元,可供10人居住的大帐篷,价格为每顶400元,学校共花去捐款96000元,正好可供2300人临时居住。
整册综合检测卷一、选择题(共10小题,每题3分,共30分)1.在平面直角坐标系中,点A (-2, 3)在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】试题分析:利用平面直角坐标系知第一象限为(+,+),第二象限为(-,+)第三象限为(-,-)第四象限为(+,-).可知点A (-2, 3)在第二象限;故选B.2.已知点A (m-1,m+4)在y 轴上,则点A 的坐标是( )A .(0,3)B .(0,5)C .(5,0)D .(3,0)【答案】B3.和数轴上的点一一对应的是( )A .整数B .有理数C .无理数D .实数【答案】D【解析】试题分析:数轴上的任意一点都可以表示一个实数,反之,任何一个实数都可以用数轴上的一个点来表示,因此,数轴上的点与实数是一一对应的;故选D .4.在3.14,2917,,0.23,0.2020020002…这五个数中,既是正实数也是无理数的个数是( ) A .1 B .2 C .3 D .4【答案】A【解析】试题分析:根据实数的分类可得,正实数有:3.14,2917,0.23,0.2020020002…;无理数有:,0.2020020002….所以既是正实数也是无理数的是0.2020020002….故选A5.如图,AB ∥CD ,如果∠B =20°,那么∠C 为( )A.40° B.20° C.60° D.70°【答案】B6.如图所示,∠1=70°,有下列结论:①若∠2=70°,则AB∥CD;②若∠5=70°,则AB∥CD;③若∠3=110°,则AB∥CD;④若∠4=110°,则AB∥CD.其中正确的有()A.1个 B.2个 C.3个 D.4个【答案】B7.某县有近6千名考生参加中考,为了解本次中考的数学成绩,从中抽取100名考生的数学成绩进行统计分析,以下说法正确的是()A.这100名考生是总体的一个样本 B.近6千名考生是总体C.每位考生的数学成绩是个体 D.100名学生是样本容量【答案】C8.方程组的解是()A. B. C. D.【答案】C.【解析】试题分析:,①﹣②得:3y=30,即y=10,将y=10代入①得:x+10=60,即x=50,则方程组的解为.故选C.9.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得()A.506()320x yx y+=⎧⎨+=⎩B.50610320x yx y+=⎧⎨+=⎩C.506320x yx y+=⎧⎨+=⎩D.50106320x yx y+=⎧⎨+=⎩【答案】B10.不等式组5030xx-⎧⎨->⎩≤整数解的个数是()A.1个 B.2个 C.3个 D.4个【答案】C.二、填空题(共10小题,每题3分,共30分)1.点P(-5,1),到x轴距离为__________.【答案】1【解析】试题分析:点P(-5,1),到x轴距离为1.2.如图,是象棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是。
四科联赛数学试卷一、填空题:(每小题3分,共30分) 1、若分式11--x x 的值为零,则X 的值为__________.2、已知一个样本:1、3、5、X 、2的平均数是3,则这个样本的方差是___________. 3、如果点A(2、3)关于y 轴的对称点正好落在反比例函数xky =的图象上,则这个反比例函数的解析式是_______________.4、ΔABC 中有两边长为2、3,则第三边长为_____________时,ΔABC 为直角三角形。
5、如图,梯形ABCD 中,AD ∥BC ,AB=CD, 若AD=4, BC=8, ∠B=60°, 则梯形ABCD 的面积为___________.6、如图,P 是正方形ABCD 内一点,将ΔABP 绕B 顺时针旋转90°到ΔCBP ′位置,若BP=a ,则PP ′=_____________.7、菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点 (点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是_______8. 当5个整数从小到大排列,则中位数是4,如果这5个数的唯一众数是6,则这5个整数可能的最大和是( )A 、21B 、22C 、23D 、249. 如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则S △DMN ∶S 四边形ANME 等于( )A 、1∶5B 、1∶4C 、2∶5D 、2∶7二、选择题:(每小题3分,共18分)11、在某城市,80%的家庭年收入不少于2.5万元,下面一定不少于2.5万元的是( ) A 、年收入的平均数 B 、年收入的众数C 、年收入的平均数和众数 D 、年收入的中位数 12、正比例函数y=2kx 与反比例函数y= 在同一坐标系中的图象不可能的是( )13、平行四边形的周长为25cm, 两对角边的距离分别为2cm 和3cm ,则这个平行四边形的面积为( ) cm 2A :15B :25C :30D :5014、15、如图,△OAP 、△ABQ 均为等腰直角三角形,点P 、Q 在函数)0(4>=x xy 的图像上,直角顶点A 、B 均在x 轴上,则点B 的坐标为( )16、如图,矩形ABCD 中,AB=8, BC=6, E 、F 是AC 上的三等分点,则ΔBEF 的面积为( ) A 、8 B 、12 C 、16 D 、24三、(17题6分,18题7分,19题7分,计20分 )18、(10分)(2006年广西柳州、北海市)任意剪一个三角形纸片,如图9中的△ABC ,设它的一个锐角为∠A ,首先利用对折的方法得到高AN ,然后按图中所示的方法分别将含有∠B 、∠C 的部分向里折,找出AB 、AC 的中点D 、E ,同时得到两条折痕DF 、EG ,分别沿折痕DF 、EG 剪下图中的三角形①、②,并按图中箭头所指的方向分别旋转180°. (1)你能拼成一个什么样的四边形?并说明你的理由; (2)请你利用这个图形,证明三角形的面积公式:S =21底×高.19、在一次捐款活动中,小华对八年级( 1)、( 2)班捐款进行了统计,获得的信息如下: 信息一:( 1)班共捐款300元,(2)班共捐款232元。
92 +19 992 +199 9992 +1999 99 99 +199 992018个2018个∆ABC ⎨(初中数学)区县级基础学科学习能力测试四科联赛决赛数学试题卷(附答案解析)学校:姓名:准考证号:时量:100 分钟总分:100 分一、选择题(本大题共 6 小题,每小题 3 分,共 18 分)1.设a , b , c 的平均数为 M ; a , b 的平均数为 N ; N , c 的平均数为 P ,若a > b > c ,则 M 与 P 的大图 8 图 9 图 109.如图 9,在△ABC 中,点 D 、E 、F 分别是线段 BC 、AD 、CE 的中点,且 S = 8cm 2,小关系是( ) A .M =P B .M >P C .M <P D .不确定 则 S ∆BEF = cm 2。
2.下列各式中为完全平方式的是( )10. 如图 10,△ABC 和△FPQ 均是等边三角形,点 D 、E 、F 分别是△ABC 三边的中点,点 P 在 A. x 2 + 2xy + 4 y 2 B. x 2 - 2xy - y 2 C . - 9x 2 + 6xy - y 2 D . x 2 + 4x + 16AB 边上,连接 EF 、QE .若 AB=8,PB=1,则 QE=.3. 若矩形的一条角平分线分一边为3和5 两部分,则矩形的周长为()11.计算 ; ; ; 的值,总结存在的规律,运用A. 22B. 26C. 22或26D. 28 . 得到的规律可得: = .5x 2 + 2 y 2 - z 24.若4x - 3y - 6z = 0, x + 2 y - 7z = 0, (xyz ≠ 0) ,则 2x 2- 3y 2 - 10z2 的值等于 ( ).22 2 212.若实数m , n , s , t 满足m + n = 5, s + t = 2, ms + nt = 5 - 2 ,则(m+ n )st + mn (s + t ) =.A. - 1 2B. - 19 2C. -15D. -13三、(本大题共 6 小题,共 64 分)13.(本小题 9 分)为了从甲、乙两人中选拔一人参加射击比赛,现对他们的射击成绩进行5. 在平面直角坐标系 xOy 中,将一块含有 45°角的直角三角板如图放置,直角顶点 C 的坐标为(1,0),顶点 A 的坐标为(0,2),顶点 B 恰好落在函数 y = k第一象限的图像上,现将直角三角板沿 x 轴正方向x 平移,当顶点 A 恰好落在该函数图像上时停止运动,则此时点 C 的对应点 C′的坐标为( )了测试,5 次打靶命中的环数如右:甲:8,7,10,7,8; 乙:9,5,10,9,7.(1) 求甲乙两人打靶命中的平均环数; (2) 若你是教练,你会选择谁参加射击比赛,理由是什么?A. ( 5 2 ,0)B. (2,0)C. ( 32,0) D. (3,0)6. 如果不等式组⎧9x - a ≥ 0的整数解仅为 1,2,3,那么适合这个不等式组的整数a , b 的有序 ⎩8x - b < 0数对(a , b ) 共有( ) A.17 个 B. 64 个 C. 72 个 D. 81个二、填空题(本大题共 6 小题,每小题 3 分,共 18 分) 1 1 114.(本小题 9 分)请认真观察图形,解答下列问题: (1) 根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);(2) 如果图中的a , b ,(a > b ) 满足a 2 + b 2 = 53, ab = 14 7. 已知 x = 1 + ,那么 - - = . x - 2 x 2- 4 x + 2 求:① 1 + 1 的值;② a - b 的值.8. 如图 8,在平行四边形 ABCD 中,∠ABC=60°,E 、F 分别在CD 和BC 的延长线上,AE ∥BD ,a b EF ⊥BC ,EF= cm ,则 AB 的长是 .99992 +199993 + 1 ( 3)2 - (-1)2 3 +1 15.(本小题 10 分)如图,在△ABC 中,AB=AC ,BD 、CE 分别为∠ABC、∠ACB 的平分线,求证:四边形 EBCD 为等腰梯形。
2019-2020年七年级数学下学期四科联赛试题 新人教版
考生须知:
1. 全卷共4页, 有三大题, 23小题. 满分120分, 考试时间90分钟.
2. 本卷答案必须做在答题纸的对应位置上,做在试题卷上无效.
3. 本次考试不能使用计算器.
一.仔细选一选(本题有10小题,每小题3分,共30分.下面每小题给出的四个选项
中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案.) 1. 下列分式中不管x 取何值,一定有意义的是 ( )
A :x x 2
B :112--x x
C :1
3
2++x x D :
1
1
+-x x 2. 下列调查,适合用全面调查的是 ( )
A :了解一批炮弹的杀伤半径
B :了解某电视台《我是大明星》栏目的收视率
C :对市场上某种酒质量情况的调查
D :调查一架隐形战机的各零部件的质量 3.下列约分正确的是( )
A 2a a a =
B a x a
b x b
+=+ C
1x y x y --=-+ D 22a b a b ++=a+b 4. 如图,点C 是线段AB 上的点,点D 是线段BC 的中点,AB=10,AC=6,则线段CD 的 长是( )
A.4
B.3
C.2
D.1
5. 如图,七年级(下)教材第4页给出了利用三角尺和直尺画平行线的一种方法,能说明AB ∥DE 的条件是-------------------------------------------------------------------( ) A .∠CAB =∠FDE
B .∠ACB =∠DFE
C .∠ABC =∠DEF
D .∠BCD =∠
EFG
第4
题
第5题
6. 2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科 学计数法可表示为( )
A.0.135×106
B.1.35×106
C.0.135×107
D.1.35×10
7
7.若方程组⎩
⎨
⎧=++=+a y x a y x 324
53 的解x 与y 的和为3,则a 的值是 ( )
C D
E
F
G
A
A :7
B :4
C :0
D :-4 8. 已知2111=-b a ,则
b
a ab
-的值是( ). A.21 B.-2
1
C.2
D.-2
9. 如图,小新从A 处出发沿北偏东60°方向行走至B 处,又沿北偏 西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方 向的调整应为 ( ) A :右转80° B :左转80° C: 右转100° D :左转100°
10. 小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图 (1);小红看见了,说:“我也来试一试。
”结果小红七拼八凑,拼成了如图(2)那样 的正方形,中间还留下了一个洞,恰好是边长为3mm 的小正方形,则每个小长方形的面积为( )
A 120mm 2
B 135
mm 2
C 108mm 2
D 96 mm 2
第9题
二.认真填一填(本题有6个小题,每
小题4分,共24分.注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.)
11.若一个二元一次方程组的一个解为2
1
x y =⎧⎨
=-⎩,则这个方程可以是:
(只要求写出一个) 12.已知方程组5354x y mx y +=⎧⎨
+=⎩与25
51
x y x ny -=⎧⎨+=⎩有相同的解,则m -n = .
13.若31
=+x x ,则=++1
2
4
2x x x _____ 14.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是 。
15.如图所示,OP ∥QR ∥ST ,若∠2=110°,∠3=120°,则∠1= .
16.有一个正方体,A,B,C 的对面分别是zyx ,三个字母,
如图所示,将这个正方体从现有位 置依此翻到第1,2,3,4,5,6格, 当正方体翻到第3格时正方体 向上一面的字母是________
第10题
轻微污染
第15
题
第16题
三.全面答一答(本题有7个小题,共66分.解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.) 17. 计算: (本小题满分6分)
(1)(-4)0+(-1)2014
-1)21(- (2)2
423332435⎪⎭
⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛-⋅ab b a ab
18. (本小题满分8分)
(1)如图,网格内每个小正方形的边长为1的,并将小船运动中缺少的部分补上。
(2)分解因式:()2
2
323mn y x m --
19. (本小题满分8分)
统计,绘制了如图6
请你根据图中提供的信息,解答下列问题: (1)计算被抽取的天数
(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角 (3)请估计该市这一年(365)天达到优和良的总天数。
20. (本小题满分10分)
如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.
(1)CD与EF平行吗?为什么?(4分)
(2)如果∠1=∠2,且∠3=60°,求∠ACB的度数.(6分)
21. (本小题满分10分)
小明到一家批发兼零售的文具店给九年级学生购买考试用2B铅笔,请根据下列情况解决问题:售货员:一次购买铅笔300支以上(不包括300支),可以按批发价付款;购买300支以下(包括300支),只能按零售价付款。
小明:若给九年级学生每人购买1支,只能按零售价付款,需要120元;若多购买60支,则可按批发价付款,同样需要120元。
(1) 这个学校九年级学生总数在什么范围内?(4分)
(2) 若按批发价购买6支与按零售价购买5支的所付款相同,那么这个学校九年级学生有多少人?(6分)
22. (本小题满分12分)
如图所示,已知AB∥CD,分别探究下面图形中∠APC,∠PAB,∠PCD的关系,请你分析4个图形,说明你所探究的结论的正确性.得出4个结论,并说明理由。
(12分)
23. (本小题满分12分)
2014年1月3日,国家发展改革委、住房城乡建设部出台“指导意见”,要求2015年底前,所有设市城市原则上全面实行居民阶梯水价制度。
为了鼓励市民节约用水,嵊州市从2014年1月1日起实行
..居民生活用水按阶梯式水价计费。
下表是居民“一户一表”生活用水阶梯式计费价格表的部分信息:
(注:到户价格=自来水价格
.....+.污水处理费
.....,如:超过30吨的部分的到户价格=3.60+0.60=4.20(元),每户产生的污水量等于该户自来水用水量.)
若小王家2014年3月份用水25吨,交水费64.50元;2014年4月份用水30吨,交水费81.00元。
(1)求a,b;
(2)随着夏天的到来,用水量将增加。
为了节省开支,小王家计划把2014年7月份
的水费控制在家庭收入的1.5%。
若小王的月收入为9600元,则小王家7月份用水多少吨?
2014学年第二学期七年级学习能力检测
数学参考答案
一、选择题(每小题3分,共30分)
二、填空题(每小题4分,共24分)
11. 略 12._____12___________
13. _________________
14. __ _4____ 15._______ 50__ 16.____ Z 三、解答题(6+8+8+10+10+12+12=66分) 49a b a b ⎛-=- ⎪ ⎪
⎝⎭⎝⎭
81
50-32-8-3-1-1=5
表示优的圆心角度数是360°=57.6°,
8,32,
天)达到优和良的总天数为:×365=292(天).。