湘教版七年级上册数学竞赛试题
- 格式:pdf
- 大小:194.42 KB
- 文档页数:3
2015—2016学年度第二学期 湘教版七年级数学竞赛试卷 考试时间:90分钟 总分:100分 一、选择题(单项,每题4分,好好把握) 1、已知a ,b 满足方程组⎩⎨⎧=-=+43125b a b a ,则b a +的值为( ) A .﹣4 B .4 C .﹣2 D .2 2、若单项式b a y x +22与431y x b a --是同类项,则a ,b 的值分别为( ) A .1,3==b a B .1,3=-=b a C .1,3-==b a D .1,3-=-=b a 3、观察下列各数:,1516,79,34,1 按你发现的规律计算这列数的第6个数为( )A .3125B .3536C .74D .6362 4、已知0322=--x x ,则x x 422-的值为( ) A .﹣6 B .6 C .﹣2或6 D .﹣2或30 5、已知⎩⎨⎧=-=21y x 是二元一次方程组⎩⎨⎧=-=+123y nx m y x 的解,则n m -的值是( ) A .1 B .2 C .3 D .4 6、观察下列各式及其展开式: (a+b )2=a 2+2ab+b 2 (a+b )3=a 3+3a 2b+3ab 2+b 3 (a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4 (a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5 … 请你猜想(a+b )10的展开式第三项的系数是( ) A .36 B .45 C .55 D .66 7、某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x 公顷旱地改为林地,则可列方程( ) A .54﹣x=20%×108 B .54﹣x=20%(108+x ) C .54+x=20%×162 D .108﹣x=20%(54+x ) 8、如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB=35°,则∠AOD 等于( )A .35°B .70°C .110°D .145°二、填空题(每题4分,好好把握)9、分解因式:=-2416a a .10、计算:20162015)125.0(8-⨯= .11、若023=++-y x ,则y x +的值为 .12、若32=b a ,则bb a += .13、定义一种新运算:x y x y x 2+=*,如2212212=⨯+=*,则)1()24(-**= .14、设d c b a ,,,为实数,现规定一种新的运算bc ad d c b a -=, 则满足等式112312=+x x的x 的值为 。
第3章 《一元一次方程》 检测题一、选择题(每小题3分,共30分) 1.下列方程中,是一元一次方程的是( ) A.B.C.D.2.若方程2152x kx x -+=-的解为,则的值为( )A.B.C.D.3.某市举行的青年歌手大奖赛今年共有人参加,比赛的人数比去年增加 20%还多3人,设去年参赛的有人,则为( ) A.3120%a ++ B.(120%)3a ++C.3120%a -+ D.(120%)3a +-4.若方程532=+x ,则106+x 等于( ) A.15 B.16 C.17 D.345.数学竞赛共有10道题,每答对一道题得分,不答或答错一道题倒扣分,要得到分,必须答对的题数是( )A.6B.7C.9D.86.甲、乙两人练习赛跑,甲每秒跑,乙每秒跑,甲让乙先跑,设后甲可追上乙,则下列四个方程中不正确的是( )A. B. C.D.7.三个正整数的比是,它们的和是,那么这三个数中最大的数是( )A.56B.48C.36D.12 8.某商人在一次买卖中均以120元卖出两件衣服,一件赚,一件赔,在这次交易中,该商人( )A.赚16元B.赔16元C.不赚不赔D.无法确定9. 已知()2135m --有最大值,则方程5432m x -=+的解是( )A. B. C.D.10.一队师生共328人,乘车外出旅行,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车?在这个问题中,如果还要租x 辆客车,可列方程为( )A.4432864x -=B.4464328x +=C.3284464x +=D.3286444x += 二、填空题(每小题3分,共24分) 11. 如果31a +=,那么= .12. 如果关于的方程340x +=与方程3418x k +=是同解方程,则= .13.已知方程23252x x -+=-的解也是方程32x b -=的解,则=_________. 14.已知方程233mx x -=+的解满足10x -=,则m ________. 15.若与互为相反数,则的值为 .16.某商品按进价增加出售,因积压需降价处理,如果仍想获得的利润,则出售价需打 折.17.甲水池有水31吨,乙水池有水11吨,甲水池的水每小时流入乙水池2吨, x 小时后, 乙水池有水________吨,甲水池有水_______吨,________小时后,甲水池的水与乙水池的水一样多.18.日历中同一行中相邻三个数的和为63,则这三个数分别为 . (用逗号隔开) 三、解答题(共46分) 19.(12分)解下列方程:(1)10(1)5x -=; (2)7151322324x x x -++-=-; (3)2(2)3(41)9(1)y y y +--=-; (4)0.89 1.33511.20.20.3x x x --+-=. 20.(6分) 为何值时,关于的方程4231x m x -=-的解是23x x m =-的解的2倍?21.(6分)将一批工业最新动态信息输入管理储存网络,甲单独做需要6小时,乙单独做需要4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需要多长时间才能完成工作?22. (6分)有一火车要以每分钟600米的速度过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥多5秒时间,又知第二座铁桥的长度比第一座铁桥长度的2倍短50米,试求两座铁桥的长分别为多少.23.(5分)江南生态食品加工厂收购了一批质量为的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量倍还多,求粗加工的该种山货质量.24.(5分)植树节期间,两所学校共植树棵,其中海石中学植树的数量比励东中学的倍少棵,求两校各植树多少棵.25.(6分)某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1 440元,•求这一天有几名工人加工甲种零件.第3章《一元一次方程》检测题参考答案1.B 解析:中,未知数的次数是2,所以不是一元一次方程;中,有两个未知数,所以不是一元一次方程;D.是分式方程.故选B.2.C 解析:将代入中,得,解得故选C.3.C 解析:因为去年参赛的有人,今年比去年增加还多人,所以,整理可得.故选C.4.B 解析:解方程,可得将代入,可得.故选B.5.D 解析:设答对道题,则不答或答错的题目有道,所以可根据题意列方程:,即,解得,所以要得到分,必须答对道题.故选D.6.B 解析:后甲可追上乙,是指时,甲跑的路程等于乙跑的路程,所以可列方程:,所以A正确;将移项,合并同类项可得,所以C正确;将移项,可得,所以D正确.故选B.7.B 解析:设这三个正整数为,根据题意可得所以这三个数中最大的数是故选B.8.B 解析:设此商人赚钱的那件衣服的进价为元,则得设此商人赔钱的那件衣服进价为,则,所以他一件衣服赚了,一件衣服赔了,所以卖这两件衣服,总共赔了.故选B.9.A 解析:由有最大值,可得,则则,解得故选A.10.B 解析:乘坐客车的人数为,因为每辆客车可乘坐44人,所以乘坐客车的人数又可以表示为44,所以可列方程.通过整理可知选B.11.解析:因为可解得12.解析:由可得,又因为与是同解方程,所以也是的解代入可求得13.解析:由,得所以可得14.解析:由,得当时,由,得,解得;当时,由,得,解得.综上可知,解析:由题意可列方程,解得所以16.9 解析:设进价为,出售价需打折,根据题意可列方程将方程两边的约掉,可得.所以出售价需打折.17.18.解析:设中间一个数为,则与它相邻的两个数为,根据题意可得19.解:(1),去括号,得移项,得,系数化为1,得(2)7151322324x x x-++-=-,去分母,得,去括号,得,移项,得,合并同类项,得系数化为1,得(3),去括号,得,移项,得,合并同类项,得, 系数化为1,得 (4),去分母,得, 去括号,得, 移项,得,合并同类项,得, 系数化为1,得20.解:关于的方程的解为,关于的方程的解为.因为关于的方程4231x m x -=-的解是23x x m =-的解的2倍, 所以,所以21.解:设甲、乙一起做还需要小时才能完成工作. 根据题意,得,解这个方程,得=..答:甲、乙一起做还需要2小时12分才能完成工作.22.解:设第一座铁桥的长为米,那么第二座铁桥的长为米,•过完第一座铁桥所需要的时间为600x 分,过完第二座铁桥所需要的时间为250600x -分.依题意,可列出方程600x +560=250,600x -解方程得所以答:第一座铁桥长100米,第二座铁桥长150米. 23.解:设粗加工的该种山货质量为, 根据题意,得,解得.答:粗加工的该种山货质量为.24.解:设励东中学植树棵. 依题意,得解得.答:励东中学植树棵,海石中学植树棵.25.解:设这一天有名工人加工甲种零件, 则这一天加工甲种零件个,乙种零件个. 根据题意,得,解得.答:这一天有6名工人加工甲种零件.双休日放松但别太放纵——养成合理的作息习惯我国实行双休日后,无疑给学生们创造了更广泛的、可自已支配的空间,每年52个双休日就是104天时间,这是一个不小的数目。
初中数学试卷灿若寒星整理制作2011年下期桂冠学校七年级数学竞赛试题考试时间:120分钟满分:100分一,选择题(每小题3分,共30分)1、下列说法中,正确的是()A、没有最大的正数,但有最大的负数B、有绝对值最小的数,没有绝对值最大的数C、有理数包括正有理数和负有理数D、相反数是本身的数是正数2、正四面体的顶点数和棱数分别是()A、3,4B、3,6C、4,4D、4,63、设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a,b,c三个数的和为()A、-1B、0C、1D、不存在4、对于任何有理数a,下列各式中一定为负数的是()A、-(-3+a)B、-aC、-|a+1|D、-|a|-15、小嘉全班在操场上围坐成一圈.若以班长为第1人,依顺时针方向算人数,小嘉是第17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人.求小嘉班上共有多少人()A、36B、37C、38D、396、碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为纳米的碳纳米管,1纳米=米,则纳米用科学记数法表示为()A、×10-9米B、5×10-8米C、5×10-9米D、5×10-10米7、已知(a+3)2+|b-2|=0,则a b的值是()A、-6B、6C、-9D、98、用代数式表示“比m 的平方的3倍大1的数“是( ) A 、m 2+1 B 、3m 2+1 C 、3(m+1)2 D 、(3m+1)2 9、在下列的语句中,正确的有( )(1)- 23a 2b 3与 12a 3b 2是同类项;(2) (-12)2x 2yz 与-zx 2y 是同类项; (3)-1与 15是同类项; (4)字母相同的项是同类项. A 、1个 B 、2个 C 、3个 D 、4个10、一杯可乐售价元,商家为了促销,顾客每买一杯可乐获一张奖券,每三张奖券可兑换一杯可乐,则每张奖券相当于( ) A 、元 B 、元 C 、元 D 、元 二、填空题(每小题3分,30分)11、一箱某种零件上标注的直径尺寸是20mm{0.05mm-0.04mm+,若某个零件的直径为 mm ,则该零件标准.(填“符合”或“不符合”). 12、当整数m =_________ 时,代数式136-m 的值是整数. 13、数轴上到原点的距离小于3的整数的个数为x ,不大于3的正整数的个数为y ,等于3的整数的个数为z ,则x+y+z=14、定义a ※b=a 2-b ,则(1※2)※3= .15、旅游商店出售两件纪念品,每件120元,其中一件赚20%,而另一件亏20%,那么这家商店出售这样两件纪念品是 ,那么 (填赚了或亏了多少元)16、设c b a ,,为有理数,则由abcabcc c b b aa+++构成的各种数值是 17、在括号内填上适当的项:a-b+c-d=a+c-( ). 18、若2x m-1y 2与-2x 2y n 是同类项,则(-m )n =19、王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程.又以4米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/秒的速度跑了 米. 20、观察下面一列数:将这列数排成下列形式:按照上述规律排 下去,那么第10行从左边数第9个数是 .三、解答题(40分)21、计算:(-2)3+[-42-(1-32)×2].(5分)22、阅读理解:(6分)计算(x+y)(x-2y)-my(nx-y)(m、n均为常数)的值,在把x、y的值代入计算时,粗心的小明和小亮都把y的值看错了,但结果都等于25.细心的小敏把正确的x、y的值代入计算,结果恰好也是25.为了探个究竟,她又把y的值随机地换成了2006,你说怪不怪,结果竟然还是25.(1)根据以上情况,试探究其中的奥妙;(2)你能确定m、n的值吗24、阅读下列材料,解答问题.(6分)饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏、秋、冬季各60天.原来,学生饮水一般都是购纯净水(其它碳酸饮料或果汁价格更高),纯净水零售价为元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,夏季平均每天要买2瓶纯净水,学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机,经调查,购买一台耗电为度/小时的冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季,平均每天购买4桶,23、七巧板游戏是我国古代入民创造的益智游戏,它如图所示:用七巧板可以拼出许多图形,如图所示的狐狸和小桥,你知道它们各部分各由七巧板中的哪一块图形构成的吗在图中标出来(7分)26、(10分)售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”顾客甲:“我店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”乙顾客:“我家买了相同箱数的特价的鸡蛋,结果18天后,剩下的20个鸡蛋全坏了.”请你根据上面的对话,解答下面的问题:(1)顾客乙买的两箱鸡蛋合算吗(2)顾客甲店里买了几箱这种特价鸡蛋,假设这批特价鸡蛋的保质期还有18天,那么甲店里平均每天要消费多少个鸡蛋才不会浪费2011年下期七年级数学竞赛试题一,选择题(30分)1、B2、D3、A4、D5、A6、D7、D8、B9、B 10、C二、填空题(30分)11、符合 12、_0,1__13、 10 14、 -2 15、亏10元16、 4、-4、0 17、(b+d ).18、 919、 1800 米. 20、 90 .三、解答题21、计算:(-2)3+[-42-(1-32)×2].(5 分)解:(-2)3+[-42-(1-32)×2],=-8+[-16-(-8)×2],=-8+(-16+16),=-8.22、阅读理解:(6 分)计算(x+y)(x-2y)-my(nx-y)(m、n均为常数)的值,在把x、y的值代入计算时,粗心的小明和小亮都把y的值看错了,但结果都等于25.细心的小敏把正确的x、y的值代入计算,结果恰好也是25.为了探个究竟,她又把y 的值随机地换成了2006,你说怪不怪,结果竟然还是25.(1)根据以上情况,试探究其中的奥妙;(2)你能确定m、n的值吗解:(1)∵(x+y)(x-2y)-my(nx-y)=x2-(1+mn)xy+(m-2)y2,且原式和y值无关,∴可以判断出m-2=0,-(1+mn)=0.此时原式=x2的值与y值无关.(2)由于原式的值与y值无关,所以m-2=0,m=2,-(1+mn)=0,n=- 1/2.23、七巧板游戏是我国古代入民创造的益智游戏,它如图所示:用七巧板可以拼出许多图形,如图所示的狐狸和小桥,你知道它们各部分各由七巧板中的哪一块图形构成的吗在图中标出来(7分)24、阅读下列材料,解答问题.(6分)饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏、秋、冬季各60天.原来,学生饮水一般都是购纯净水(其它碳酸饮料或果汁价格更高),纯净水零售价为元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,夏季平均每天要买2瓶纯净水,学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机,经调查,购买一台耗电为度/小时的冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季,平均每天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,饮水机每天开10小时,当地民用电价为元/度.问题:(1)在未购买饮水机之前,全年平均每个学生要花费 450 元钱来购买纯净水饮用;(2)请计算:在购买饮水机解决学生饮水问题后,每班当年共要花费 4830 元(3)这项便利学生的措施实施后,东坡中学一年要为全体学生共节约 424080 元.25、解方程:|3x|=1.(6分)解:①当3x≥0时,原方程可化为一元一次方程3x=1,它的解是: x=1/3;②当3x<0时,原方程可化为一元一次方程-3x=1,它的解是: x=-1/3.所以原方程的解是: x1=1/3, x2=-1/3.仿照例题解方程:|2x+1|=5解:①当2x+1≥0时,原方程可化为2x+1=5,解得x=2;②当2x+1<0时,原方程可化为-(2x+1)=5,解得x=-3.所以原方程的解是:x1=2;x2=-3.26、售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”顾客甲:“我店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”乙顾客:“我家买了相同箱数的特价的鸡蛋,结果18天后,剩下的20个鸡蛋全坏了.”请你根据上面的对话,解答下面的问题:(1)顾客乙买的两箱鸡蛋合算吗(2)顾客甲店里买了6几箱这种特价鸡蛋,假设这批特价鸡蛋的保质期还有18天,那么甲店里平均每天要消费多少10个鸡蛋才不会浪费.解:(1)顾客乙买两箱鸡蛋节省的钱2×(14-12)=4(元)顾客乙丢掉的20个坏鸡蛋浪费的钱12× 2030=8(元)因为4元<8元,所以顾客乙买的两箱鸡蛋不合算.(2)设顾客甲买了x箱鸡蛋.由题意得:12x=2×14x-96.解这个方程得:x=6,6×30÷18=10(个)答:甲店里平均每天要消费10个鸡蛋才不会浪费.。
最新湘教版七年级数学上学期竞赛试题考试时间:120分钟满分:100分一,选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案1、下列说法中,正确的是()A、没有最大的正数,但有最大的负数B、有绝对值最小的数,没有绝对值最大的数C、有理数包括正有理数和负有理数D、相反数是本身的数是正数2、正四面体的顶点数和棱数分别是()A、3,4B、3,6C、4,4D、4,63、设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a,b,c三个数的和为()A、-1B、0C、1D、不存在4、对于任何有理数a,下列各式中一定为负数的是()A、-(-3+a)B、-aC、-|a+1|D、-|a|-15、小嘉全班在操场上围坐成一圈.若以班长为第1人,依顺时针方向算人数,小嘉是第17人;若以班长为第1人,依逆时针方向算人数,小嘉是第21人.求小嘉班上共有多少人()A、36B、37C、38D、396、碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A、0.5×10-9米B、5×10-8米C、5×10-9米D、5×10-10米7、已知(a+3)2+|b-2|=0,则a b的值是()A、-6B、6C、-9D、98、用代数式表示“比m的平方的3倍大1的数“是()A、m2+1B、3m2+1C、3(m+1)2D、(3m+1)29、在下列的语句中,正确的有( )(1)- 23a 2b 3与 12a 3b 2是同类项;(2) (-12)2x 2yz 与-zx 2y 是同类项; (3)-1与 15是同类项; (4)字母相同的项是同类项. A 、1个 B 、2个 C 、3个 D 、4个10、一杯可乐售价1.8元,商家为了促销,顾客每买一杯可乐获一张奖券,每三张奖券可兑换一杯可乐,则每张奖券相当于( )A 、0.6元B 、0.5元C 、0.45元D 、0.3元 二、填空题(每小题3分,30分) 11、一箱某种零件上标注的直径尺寸是20mm{0.05mm-0.04mm+,若某个零件的直径为19.97 mm ,则该零件 标准.(填“符合”或“不符合”). 12、当整数m =_________ 时,代数式136-m 的值是整数. 13、数轴上到原点的距离小于3的整数的个数为x ,不大于3的正整数的个数为y ,等于3的整数的个数为z ,则x+y+z=14、定义a ※b=a 2-b ,则(1※2)※3= .15、旅游商店出售两件纪念品,每件120元,其中一件赚20%,而另一件亏20%,那么这家商店出售这样两件纪念品是 ,那么 (填赚了或亏了多少元)16、设c b a ,,为有理数,则由abcabcc c b b aa+++构成的各种数值是 17、在括号内填上适当的项:a-b+c-d=a+c-( ). 18、若2x m-1y 2与-2x 2y n 是同类项,则(-m )n =19、王强参加了一场3000米的赛跑,他以6米/秒的速度跑了一段路程.又以4米/秒的速度跑完了其余的路程,一共花了10分钟,王强以6米/秒的速度跑了 米. 20、观察下面一列数:将这列数排成下列形式:按照上述规律排 下去,那么第10行从左边数第9个数是 .三、解答题(40分)21、计算:(-2)3+[-42-(1-32)×2]. (5分)22、阅读理解:(6分)计算(x+y )(x-2y )-my (nx-y )(m 、n 均为常数)的值,在把x 、y 的值代入计算时,粗心的小明和小亮都把y 的值看错了,但结果都等于25.细心的小敏把正确的x 、y 的值代入计算,结果恰好也是25.为了探个究竟,她又把y 的值随机地换成了2006,你说怪不怪,结果竟然还是25.(1)根据以上情况,试探究其中的奥妙; (2)你能确定m 、n 的值吗?24、阅读下列材料,解答问题.(6分)饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏、秋、冬季各60天.原来,学生饮水一般都是购纯净水(其它碳酸饮料或果汁价格更高),纯净水零售价为1.5元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,夏季平均每天要买2瓶纯净水,学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机,经调查,购买一台耗电为0.5度/小时的冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季,平均每1.5天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,饮水机每天开10小时,当地民用电价为0.50元/度. 问题:(1)在未购买饮水机之前,全年平均每个学生要花费 元钱来购买纯净水饮用; (2)在购买饮水机解决学生饮水问题后,每班当年共要花费 元; (3)这项便利学生的措施实施后,东坡中学一年要为全体学生共节约 元.25、解方程:|3x|=1.解:①当3x ≥0时,原方程可化为一元一次方程3x=1,它的解是: x=31;②当3x <0时,原方程可化为一元一次方程-3x=1,它的解是: x=-31.所以原方程的解是: x1=31, x2=-31.仿照例题解方程:|2x+1|=5 (6分)23、七巧板游戏是我国古代入民创造的益智游戏,它如图所示:用七巧板可以拼出许多图形,如图所示的狐狸和小桥,你知道它们各部分各由七巧板中的哪一块图形构成的吗?在图中标出来(7分)26、(10分)售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”顾客甲:“我店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”乙顾客:“我家买了相同箱数的特价的鸡蛋,结果18天后,剩下的20个鸡蛋全坏了.”请你根据上面的对话,解答下面的问题:(1)顾客乙买的两箱鸡蛋合算吗?(2)顾客甲店里买了几箱这种特价鸡蛋,假设这批特价鸡蛋的保质期还有18天,那么甲店里平均每天要消费多少个鸡蛋才不会浪费?数学竞赛试题一,选择题(30分)1、B2、D3、A4、D5、A6、D7、D8、B9、B 10、C二、填空题(30分)11、符合 12、_0,1__13、 10 14、 -2 15、亏10元16、 4、-4、0 17、(b+d ).18、 919、 1800 米. 20、 90 .三、解答题21、计算:(-2)3+[-42-(1-32)×2].(5 分)解:(-2)3+[-42-(1-32)×2],=-8+[-16-(-8)×2],=-8+(-16+16),=-8.22、阅读理解:(6 分)计算(x+y)(x-2y)-my(nx-y)(m、n均为常数)的值,在把x、y的值代入计算时,粗心的小明和小亮都把y的值看错了,但结果都等于25.细心的小敏把正确的x、y的值代入计算,结果恰好也是25.为了探个究竟,她又把y 的值随机地换成了2006,你说怪不怪,结果竟然还是25.(1)根据以上情况,试探究其中的奥妙;(2)你能确定m、n的值吗?解:(1)∵(x+y)(x-2y)-my(nx-y)=x2-(1+mn)xy+(m-2)y2,且原式和y值无关,∴可以判断出m-2=0,-(1+mn)=0.此时原式=x2的值与y值无关.(2)由于原式的值与y值无关,所以m-2=0,m=2,-(1+mn)=0,n=- 1/2.23、七巧板游戏是我国古代入民创造的益智游戏,它如图所示:用七巧板可以拼出许多图形,如图所示的狐狸和小桥,你知道它们各部分各由七巧板中的哪一块图形构成的吗?在图中标出来(7分)24、阅读下列材料,解答问题.(6分)饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏、秋、冬季各60天.原来,学生饮水一般都是购纯净水(其它碳酸饮料或果汁价格更高),纯净水零售价为1.5元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,夏季平均每天要买2瓶纯净水,学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机,经调查,购买一台耗电为0.5度/小时的冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季,平均每1.5天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,饮水机每天开10小时,当地民用电价为0.50元/度.问题:(1)在未购买饮水机之前,全年平均每个学生要花费 450 元钱来购买纯净水饮用;(2)请计算:在购买饮水机解决学生饮水问题后,每班当年共要花费 4830 元?(3)这项便利学生的措施实施后,东坡中学一年要为全体学生共节约 424080 元.25、解方程:|3x|=1.(6分)解:①当3x≥0时,原方程可化为一元一次方程3x=1,它的解是: x=1/3;②当3x<0时,原方程可化为一元一次方程-3x=1,它的解是: x=-1/3.所以原方程的解是: x1=1/3, x2=-1/3.仿照例题解方程:|2x+1|=5解:①当2x+1≥0时,原方程可化为2x+1=5,解得x=2;②当2x+1<0时,原方程可化为-(2x+1)=5,解得x=-3.所以原方程的解是:x1=2;x2=-3.26、售货员:“快来买啦,特价鸡蛋,原价每箱14元,现价每箱12元,每箱有鸡蛋30个.”顾客甲:“我店里买了一些这种特价鸡蛋,花的钱比按原价买同样多鸡蛋花的钱的2倍少96元.”乙顾客:“我家买了相同箱数的特价的鸡蛋,结果18天后,剩下的20个鸡蛋全坏了.”请你根据上面的对话,解答下面的问题:(1)顾客乙买的两箱鸡蛋合算吗?(2)顾客甲店里买了6几箱这种特价鸡蛋,假设这批特价鸡蛋的保质期还有18天,那么甲店里平均每天要消费多少10个鸡蛋才不会浪费.解:(1)顾客乙买两箱鸡蛋节省的钱2×(14-12)=4(元)顾客乙丢掉的20个坏鸡蛋浪费的钱12× 2030=8(元)因为4元<8元,所以顾客乙买的两箱鸡蛋不合算.(2)设顾客甲买了x箱鸡蛋.由题意得:12x=2×14x-96.解这个方程得:x=6,6×30÷18=10(个)答:甲店里平均每天要消费10个鸡蛋才不会浪费.。
七年级上册数学竞赛试题【试题一】题目:求证:对于任意正整数 \( n \),\( 1^2 + 2^2 + 3^2 +\ldots + n^2 = \frac{n(n+1)(2n+1)}{6} \)。
解答:我们可以使用数学归纳法来证明这个等式。
首先验证 \( n=1 \) 时等式成立:\[ 1^2 = \frac{1(1+1)(2\cdot1+1)}{6} = 1 \]假设当 \( n=k \) 时等式成立,即:\[ 1^2 + 2^2 + 3^2 + \ldots + k^2 = \frac{k(k+1)(2k+1)}{6} \]现在我们需要证明当 \( n=k+1 \) 时等式也成立:\[ 1^2 + 2^2 + 3^2 + \ldots + k^2 + (k+1)^2 =\frac{k(k+1)(2k+1)}{6} + (k+1)^2 \]\[ = \frac{k(k+1)(2k+1) + 6(k+1)^2}{6} \]\[ = \frac{(k+1)(2k^2 + k + 6k + 6)}{6} \]\[ = \frac{(k+1)(2k^2 + 7k + 6)}{6} \]\[ = \frac{(k+1)(2(k+1)(k+3) + 1)}{6} \]\[ = \frac{(k+1)(k+2)(2(k+1)+1)}{6} \]这样我们就证明了对于任意正整数 \( n \),等式成立。
【试题二】题目:一个数列的前几项是 1, 2, 3, 4, ...,求第 \( n \) 项的表达式。
解答:观察数列的前几项,我们可以发现这是一个等差数列,首项 \( a_1 = 1 \),公差 \( d = 1 \)。
等差数列的通项公式为:\[ a_n = a_1 + (n-1)d \]将已知的首项和公差代入公式,得到:\[ a_n = 1 + (n-1) \times 1 = n \]【试题三】题目:如果一个三角形的三边长分别为 \( a \),\( b \),\( c \),且满足 \( a^2 + b^2 = c^2 \),证明这个三角形是直角三角形。
湘教版七年级数学基础知识过关竞赛试题姓名:一、选择题(共12小题,每小题3分,满分36分)2.在﹣,π,0,0.333…,3.14,﹣10中,有理数有()个.3.有理数a、b、c在数轴上的位置如图所示,则下列各式成立的是()6.一个正整数n与其倒数,相反数﹣n,大小关系正确的是()D≤<<n<﹣n1=113.如果向东走10米记作+10米,则向西走20米,记作_________.14.最小的正整数是_________,最大的负整数是_________.15.﹣3的相反数、绝对值、倒数分别是_________.16.若|x﹣5|=0,则x=________.17.若|x﹣2|+(y+5)2=0,则y x=_________.18.若|a|+|b|=4,且a=﹣3,则b=_________.19.我国某年石油产量约为170 000 000吨,用科学记数法表示为_________吨.20.绝对值小于4的整数有________ _.21.点A在数轴上表示2,从点A沿数轴向左平移3个单位到点B,则点B所表示的数是_________.22.把(﹣8)﹣(﹣3)+(+7)﹣(+2)写成省略括号的代数和形式为_________.23.若|x﹣3|+(y+5)2=0,那么x﹣y=_________.24.5 100 000米,用科学记数法表示为_________.25.(1﹣2)(3﹣4)(5﹣6)…(99﹣100)=_________.三.计算题(26-28题每题3分,27-32题每题6分)26.计算()×(﹣12)=________.27.计算:﹣32﹣22=______.28.计算:(﹣4)÷(﹣5)×(﹣)=_________.29.30﹣(﹣12)﹣(﹣25)﹣18+(﹣10).30.[﹣+(﹣)﹣+]×(﹣+).31.﹣0.5﹣(﹣3)+2.75﹣(+7).32.﹣22÷(﹣3)2×(﹣2)3÷[﹣(﹣2)2]33.﹣24﹣(3﹣7)2﹣(﹣1)2×(﹣2)34.已知a与b互为相反数,c与d互为倒数,m的绝对值为6,求:﹣cd+|m|的值.参考答案:1-12 CDCDBA DCADCC13.-20m 14.1,-1 15.,,16.5 17.25 18.1,-119.1.7*10820.3,2,1,0,-1,-2,-321.-1 22.-8+3+7-223.8,24.5.1*10625.126.5 27.13 28. -4/2529.解:原式=30+12+25﹣18﹣10=67﹣28=39.30.解:原式=(﹣)×0=0.31.解:原式=﹣+3+2﹣7=﹣8+6=﹣2.32.-8/9 33.-3034. 解:依题意得a+b=0,cd=1,|m|=6,m=±6;∴①当m=6时,原式=﹣1+6=5;②当m=﹣6时,原式=﹣1+6=5.故﹣cd+|m|的值为5.。
(第17题图)(第18题图)隆回县城西中学七年级(上)数学竞赛试题时间:120分钟 总分:120分一、仔细想一想,尽力填准哦!(每题3分,共30分)1、已知1=a ,2=b ,3=c ,且a >b >c ,则c b a +-= ;2、观察下列算式:4 × 1 × 2+1=324 × 2 × 3+l=524 × 3 × 4+l=724 × 4 × 5+1=92用代数式表示上述题的规律是 . 3、七年级一班连班主任一起共48人到公园去划船. 每只小船坐3人,租金20元,每只大船坐5人,租金30元. 他们租船要付的最少租金是 元. 4、2005减去它的21,再减去剩余数的31,再减去剩余数的41,…,依此类推,一直 到减去剩余数的20051,那么最后剩余的数是 .5、根据下列5个图形及相应点的个数的变化规律,则在第100个图形中有 个点.6、 一位同学在斜坡上练习骑自行车,上坡速度为m km/h ,下坡速度为n km/h ,则上下坡的平均速度为 km/h 。
7、 某商品的标价为1100元,打八折出售,仍可获利10%,则此商品进货价 为 元。
8、 若|x -3|+|y +2|=0,则x +y +3=9、若|a|a =1,则a 0,若|a|a=-1,则a 0。
(填“>”“=”“<”。
10、()()_______________1541957.0154329417.0=-⨯+⨯+-⨯+⨯ 二、认真思考,想好了,选准噢!(每题只有一个正确答案,每题3分,共30分)是 年。
A .2003B .2004C .2005D .无法比较12、当x =3时,代数式px 3+qx +3的值是2005,则当x =-3时, 代数式px 3+qx +3的值为( )A :2002B :1999C :-2001D :-199913、一个数加上5,减去2然后除以4得7,这个数是( ) A .35 B .31 C .25 D .2814、四个图形,下面均由六个相同小正方形组成,折叠后不能围成正方体的是( ).15、下列各式中,与a -b -c 的值不相等的是( ) A :a +(-b)+(-c) B :a -(+b)-(-c) C :a -(+b)-(+c) D :a -(+b)+(-c)16、有如下四个叙述:①当01x <<时,2111x x x <-++;②当01x <<时,2111x x x>-++;③当10x -<<时,2111x x x <-++;④当10x -<<时,2111x x x>-++。
初中数学试卷金戈铁骑整理制作黄亭市镇中学2013年下期七年级数学竞赛试卷(时量90分钟 总分100分)一、耐心填一填(每小题3分,共24分)1. 四个不相等的整数a 、b 、c 、d ,它们的乘积abcd=9,那么a+b+c+d=2. 已知︱a ︱=3,︱b ︱=2,且︱a-b ︱=b-a,则a+b = .3. 如果关于x 的方程0322=-+m x x ,的解是1-=x ,则=m。
4. 某品牌商品,按标价九折出售,仍可获得20%的利润.若该商品标价为28元,则商品的进价为5、若∠AOB=8175',∠AOC=3527',则∠BOC= 。
6、若0a b c a -+-=,则220052009()()a a b bc-+-= ;7、要在墙上固定一根木条,至少要有两个钉子,根据的原理是 ; 8、已知代数式|x+2y|的值是3,则代数式2x+4y+1的值是 ; 二、精心选一选(每题3分,共24分)9、下列说法中错误的是 ( )A.0的相反数是0B.负数的绝对值是正数C.任何有理数都有倒数D.互为相反数的两个数到原点的距离相等10.自上海世博会开幕以来,中国馆以其独特的造型吸引了世人的目光.据预测,在会展期间,参观中国馆的人次数估计可达到14 900 000,此数用科学记数法表示是 ( ) A .61049.1⨯ B .810149.0⨯ C .7109.14⨯ D .71049.1⨯ 11. 下列等式变形错误的是 ( ) A.若13a+3=b -1,则a+9=3b -3 B.若2x-6=4y-2,则x-3=2y-1 C.若x 2-5=y 2+1,则x 2-y 2=6 D.若1132x y --=,则2x=3y 12.、a+b=0,a ≠b,则化简a b (a+1)+b a (b+1)得 ( ) A 、2a B 、2b C 、+2 D 、-213、a 、b 两数在数轴上位置如图1所示,将b a b a --、、、用“<”连接,其中正确的是( ) A .a <a -<b <b - B .b -<a <a -<b C .a -<b <b -<a D .b -<a <b <a -14、已知点A 、B 、P 在一条直线上,则下列等式中,能判断点P 是线段AB 的中点的个 数有 ( )①AP=BP ; ②BP=21AB ; ③AB=2AP ; ④AP+PB=AB 。
2016年上学期伏口中心学校七年级 数学竞赛试题(满分120分,时间120分钟)一、选择题(每小题4分,共40分)1、在等式y=kx+b 中,当x=1时,y=2:当x=2时,y=5,则k 、b 的值是 ( )A 、 ⎩⎪⎨⎪⎧k =-3b =-1B 、⎩⎪⎨⎪⎧k =-1b =3C 、⎩⎪⎨⎪⎧k =3b =-1D 、⎩⎪⎨⎪⎧k =-1b =-32、已知多项式2x 2+bx+c 分解因式为2(x-3)(x+1),则b ,c 的值为 ( ) A 、b=3,c=-1 B 、b=-6,c=2 C 、b=-6,c=-4 D 、b=-4,c=-63、若2am b 2m+3n与a2n-3b8的和仍是一个单项式,则m 与n 的值分别是 ( )A 、1,2;B 、2,1;C 、1,1;D 、1,3。
4、下面的多项式中,能因式分解的是 ( ) A 、m 2+2m+4 B 、m 2-4m-4 C 、m 2+n 2D 、m 2-2m+15、已知a+b=2,ab= -3,则a-b 等于 ( ) A 、20; B 、+3; C 、4; D 、+4。
6、如图,AB//CD ,若∠2=1250,那么∠1的度数是 ( ) A 、250; B 、350; C 、550; D 、12507、如图,AB//CD ,下列结论中正确的是 ( ) A 、∠1+∠2+∠3=1800 B 、∠1+∠2+∠3=3600 C 、∠1+∠3=2∠2; D 、∠1+∠3=∠2。
8、如图,直线AB ,CD 交于点O ,射线OM 平分∠AOC ,若∠BOD=76°,则∠BOM 等于( ) A 、38° B 、104° C 、142° D 、144°9、如图,下列条件中,不能判断直线l 1∥l 2的是 ( ) A 、∠1=∠3 B 、∠2=∠3 C 、∠4=∠5 D 、∠2+∠4=180° 10、一组数据由5个整数组成,已知中位数是4,唯一众数是5,则这组数据最大和的可能是 ( ) A 、 19 B 、 20 C 、22 D 、23 二、填空题(每小题4分,共40分)11、若代数式2x 2+3x+7的值为8,则代数式4x 2+6x -9的值是 。