核心知识
考点精题
-6-
对点训练1设函数f(x)定义在(0,+∞)上,f(1)=0,导函数 1 f'(x)= ������ ,g(x)=f(x)+f'(x). (1)求g(x)的单调区间和最小值;
(2)讨论 g(x)与 g
1 ������
的大小关系;
1 ������
(3)是否存在x0>0,使得|g(x)-g(x0)|< 对任意x>0成立?若存在,求 出x0的取ቤተ መጻሕፍቲ ባይዱ范围;若不存在,请说明理由.
难点突破 |f(x1)-f(x2)|≤e-1⇔|f(x1)-f(x2)|max≤e-1⇔|f(x)max-f(x)min|
������(������) ≤ 0, e������ -������ ≤ e-1, ������(1)-������(0) ≤ e-1, ≤e-1⇔ ⇔ -������ ⇔ ⇒g(t) ������ (������ ) ≤ 0 ������(-1)-������(0) ≤ e-1 e + ������ ≤ e-1, ������(������) ≤ 0, 的单调性 ⇒ 的 m 范围 . ������(-������) ≤ 0
得 h'(x)=-
������ (������ +2)2
e ������ (������ +1)2
,根据导数的正负讨论单调性求得最值,相比作差法
构造函数分类讨论的方法,达到了事半功倍的效果.
核心知识
考点精题
-4-
核心知识
考点精题
-5-
故当x≥-2时,F(x)≥0, 即f(x)≤kg(x)恒成立. ②若k=e2,则F'(x)=2e2(x+2)(ex-e-2). 从而当x>-2时,F'(x)>0, 即F(x)在(-2,+∞)单调递增. 而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立. ③若k>e2,则F(-2)=-2ke-2+2=-2e-2(k-e2)<0. 从而当x≥-2时,f(x)≤kg(x)不可能恒成立. 综上,k的取值范围是[1,e2]. 解题心得用导数解决满足函数不等式条件的参数范围问题,一般 都需要构造函数,然后对构造的函数求导,一般导函数中都含有参 数,通过对参数讨论确定导函数的正负,由导函数的正负确定构造 函数的单调性,再由单调性确定是否满足函数不等式,由此求出参 数范围.