考研数学二2021大纲
- 格式:pdf
- 大小:8.55 MB
- 文档页数:25
2021考研数学二考试大纲原文解析及变化解读高等数学大纲原文解析一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.线性代数大纲原文解析一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念 向量的线性组合和线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解考试要求1.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形等概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.线性代数分值比例下降到约20%,但知识点整体没有变化,但在相似与实对称矩阵中由“2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.”改为“2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.”看见对知识点的要求发生了细微变化,因为整体知识点没有变化,所以考生不需要恐慌,按部就班复习即可。
2021年考研数学(二)线性代数考试大纲原文范围及内容2021年考研数学(二)线性代数考试大纲由教育部考试中心组织编写,高等教育出版社出版的,规定线性代数考试相应科目的考试范围、考试要求、考试形式、试卷结构等政策,2021年考研数学(二)线性代数考试大纲原文如下:一、行列式考试内容行列式的概念和基本性质,行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质;2.会应用行列式的性质和行列式按行(列)展开定理计算行列式;二、矩阵考试内容矩阵的概念、矩阵的线件运算、矩阵的乘法、方阵的幂、方阵乘积的行列式、矩阵的转置、逆矩阵的概念和性质、矩阵可逆的充分必要条件、伴随矩阵、矩阵的初等变换、初等矩阵、矩阵的秩、矩阵的等价及其运算。
考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质;2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质;3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵;4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法;5.了解分块矩阵及其运算;三、向量考试内容向量的概念、向量的线性组合和线性表示、向量组的线性相关与线性无关、向量组的极大线性无关组、等价向量组、向量组的秩、向量组的秩与矩阵的秩之间的关系、向量的内积、线性无关向量组的正交规范化方法考试要求1.理解维向量、向量的线性组合与线性表示的概念;2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法;3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩;4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系;5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt )方法;四、线性方程组考试内容线性方程组的克拉默(Crartler )法则、齐次线性方程组有非零解的充分必要条件、非齐次线性方程组有解的充分必要条件、线性方程组解的性质和解的结构、齐次线性方程组的基础解系和通解、非齐次线性方程组的通解。
2021考研数学大纲变动一览表
第一部分考试形式和试卷结构
1.试卷内容结构调整
2.试卷题型结构调整
第二部分
考试内容和考试要求
1.数学(一)考试要求变动情况(1)高等数学
(2)线性代数
(3)概率论与数理统计
2.数学(二)考试要求变动情况(1)高等数学
常微分方程5.理解二阶线性微分
方程解的性质及解的
结构定理
5.理解线性微分方程解的
性质及解的结构
微分方程理解的性质及解的结
构不再局限于“二阶线性微分方
程”而是扩展到“线性微分方程”
(2)线性代数
3.数学(三)考试要求变动情况(1)高等数学
(2)线性代数
(3)概率论与数理统计。
2021考研数学二真题及答案解析考研数学二对于很多考生来说是一个重要的挑战,它涵盖了众多的知识点和题型,需要考生具备扎实的数学基础和较强的解题能力。
接下来,我们就一起详细地分析一下 2021 年考研数学二的真题及答案。
先来看选择题部分。
第一题考查了函数的基本性质,要求判断函数的奇偶性。
这需要考生熟练掌握奇偶函数的定义和判断方法。
第二题则涉及到极限的计算,对于这类题目,考生需要掌握常见的极限运算规则和方法。
比如其中有一题,给出了一个复杂的函数表达式,让求其在某一点的极限值。
这就需要我们运用等价无穷小替换、洛必达法则等方法来进行求解。
在解题过程中,要注意对函数进行合理的变形和化简,避免盲目计算导致出错。
再看填空题部分。
填空题通常考查一些较为基础但容易被忽略的知识点。
比如其中有一题是关于定积分的计算,这就要求考生对定积分的基本公式和运算方法有清晰的掌握。
另外,还有一题考查了曲线的切线方程,需要先求出函数的导数,然后代入切点的坐标来确定切线的斜率,进而得出切线方程。
这部分题目虽然难度相对不大,但需要考生在计算过程中保持细心和准确。
接下来是解答题部分。
这部分题目综合性较强,对考生的知识运用能力和解题思路要求较高。
比如有一道关于多元函数求极值的问题。
首先要对函数求偏导数,然后令偏导数等于零,解出可能的极值点。
接着,通过判断二阶偏导数的正负来确定是极大值还是极小值。
这道题不仅考查了考生对多元函数求极值方法的掌握,还考验了其计算能力和逻辑推理能力。
还有一道关于常微分方程的题目。
需要先判断方程的类型,然后运用相应的解法来求解。
在解题过程中,要注意初始条件的运用,确保答案的完整性和准确性。
总的来说,2021 年考研数学二的真题难度适中,既考查了基础知识的掌握,又注重了对综合能力的检验。
对于准备考研数学二的同学来说,通过对这套真题的分析和研究,可以明确考试的重点和方向。
在复习过程中,要注重基础知识的巩固,多做练习题,提高解题的熟练度和准确性。
2021考研数学二大纲解析:数二考试范围分析
数二不考的内容:三重积分,曲线曲面积分,无穷级数(包括傅里叶级数),向量代数与空间解析几何,多元函数微分学中方向导数和梯度、空间曲线的切线和法平面及曲面的切平面和法线,导数的经济应用,定积分的经济应用,无界区域上简单的反常二重积分,常微分方程中的、全微分方程、欧拉方程、差分方程。
数二考的内容:导数应用中的曲率和曲率圆,导数的物理应用,定积分中有理函数的积分、三角函数的有理式积分、简单无理函数的积分,旋转体的侧面积与曲线弧长,平行截面积为已知的立体体积,定积分的物理应用(功,引力,压力,质心,形心等),可降阶的微分方程,高于二阶的某些常系数齐次线性方程,微分方程的物理应用。
这里没有提到的都是数学一二三共同考的,就不在赘述了,希望可以帮助到考生。
第 1 页共1 页。
2021考研396数学大纲摘要:1.考研396数学大纲简介2.数学一概述3.数学二概述4.数学三概述5.考试重点与难点6.备考策略正文:一、考研396数学大纲简介2021年考研396数学大纲涵盖了数学一、数学二和数学三三个部分。
相较于往年,今年数学大纲的变化不大,主要是对部分知识点的要求进行了微调。
396数学大纲主要针对经济类、管理类等专业,考察考生的数学基础和运算能力。
二、数学一概述数学一主要考察高等数学、线性代数和概率论与数理统计三个部分。
其中,高等数学部分包括函数、极限、导数、积分等内容;线性代数部分包括矩阵、行列式、线性方程组等内容;概率论与数理统计部分包括概率、随机变量、概率分布、假设检验等内容。
三、数学二概述数学二主要考察高等数学、线性代数和解析几何三个部分。
高等数学部分与数学一相同,线性代数部分与数学一类似,但要求较低。
解析几何部分主要考察向量、曲线、曲面等内容。
四、数学三概述数学三主要考察微积分、概率论与数理统计、数值分析三个部分。
微积分部分包括函数、极限、导数、积分等内容;概率论与数理统计部分与数学一、数学二类似;数值分析部分主要考察数值方法、迭代法、插值法等内容。
五、考试重点与难点396数学大纲要求考生掌握基础知识,并能运用所学知识解决实际问题。
考试重点包括函数、极限、导数、积分、线性方程组、概率、随机变量等内容。
考试难点主要体现在对知识点的综合运用、计算能力和分析能力的考查。
六、备考策略1.扎实掌握基础知识:考生应熟练掌握大纲要求的知识点,形成体系化的知识框架。
2.强化练习:通过大量练习,熟练掌握各类题型,提高解题速度和正确率。
3.分析总结:对做过的题目进行总结和分析,找出自己的不足,及时调整学习方法。
4.模拟测试:进行模拟考试,熟悉考试流程,提高应试能力。
5.合理安排时间:制定合理的备考计划,确保每个阶段的学习任务按时完成。
总之,要想在396数学考试中取得好成绩,考生需要扎实掌握基础知识,加强练习,不断提高自己的解题能力和应试水平。
考研数学二大纲
考研数学二大纲是研究生入学考试的数学科目中的一部分。
本科毕业生可以通过参加考研数学二来提高自己的数学素质以便能够顺利进入研究生院深造。
考研数学二的大纲内容主要包括数学分析、高等代数、概率论与数理统计三个主要方向。
数学分析是考研数学二大纲中的重中之重。
数学分析是
研究数变化规律的一门学科,主要包括实数和数列的收敛性、连续性和一致连续性、函数的极限、连续性和可导性等内容。
在考研数学二的大纲中,数学分析占据了较大的比重,准备考研的同学需要全面掌握数学分析的相关知识。
高等代数也是考研数学二大纲中非常重要的一部分。
高
等代数是研究线性代数和群论的一门学科,主要包括向量空间、线性方程组、矩阵、特征值和特征向量等内容。
在考研数学二的大纲中,高等代数的内容占有一定的比重,考生需要熟悉高等代数的基本概念和定理,并能够运用这些知识解决实际问题。
概率论与数理统计是考研数学二大纲中的另一个重要部分。
概率论与数理统计是研究随机现象和统计规律的一门学科,主要包括概率论、随机变量、随机过程以及抽样与估计等内容。
在考研数学二的大纲中,概率论与数理统计的内容占有一定的比重,考生需要熟悉概率论与数理统计的基本概念和定理,并能够应用这些知识解决实际问题。
总的来说,考研数学二大纲内容较为广泛,涵盖了数学
分析、高等代数和概率论与数理统计三个主要方向。
考生在备考过程中需要全面复习相关知识,并进行题目的练习和归纳总
结,以提高自己的数学素养和解决问题的能力。
通过认真学习和准备,考生有望在考研数学二中取得优异的成绩,为自己的研究生生涯铺平道路。