最新考研数二大纲汇总
- 格式:doc
- 大小:54.50 KB
- 文档页数:9
考研数学二大纲考试科目高等数学、线性代数考试形式和试卷结构1、试卷满分及考试时间试卷满分为150分,考试时间为180分钟。
2、答题方式答题方式为闭卷、笔试。
3、试卷内容结构高等数学78% 线性代数22%4、试卷题型结构试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题)9小题,共94分考试内容之高等数学函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2. 了解函数的有界性、单调性、周期性和奇偶性.3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6. 掌握极限的性质及四则运算法则7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10. 了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.一元函数微分学考试要求1. 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3. 了解高阶导数的概念,会求简单函数的高阶导数.4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5. 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6. 掌握用洛必达法刚求未定式极限的方法.7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8. 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。
2022考研数学(二)考试大纲完美打印版考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约78%线性代数约22%四、试卷题型结构试卷题型结构为:单项选择题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:in某1lim1,lim1e某0某某某函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及-1-某参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hopital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间a,b内,设函数f(某)具有二阶导数.当f(某)0时,f(某)的图形是凹的;当f(某)0时,f(某)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.-2-3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:y(n)f(某),yf(某,y)和yf(y,y).4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容-3-向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的的正交规范化方法考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解考试要求1.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值及特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.-4-。
让知识带有温度。
考研数学大纲数二考试范围汇总2022考研数学大纲数二考试范围2022考研数学大纲数二考试范围考研数学让每一个要看数学的学生畏惧,尤其是对数学不好的学生,或许这其中就有挑选考数二的缘由,为什么呢?那是由于考数学二的学生,不需要复习概率,可以让自己轻松一点,心里偷偷的在笑,不过复习数二仅仅愉快这一点还不够,要是你知道2022年对数学二的要求后你会更愉快,下面我就来看看数二的考试范畴吧!我们先来看看数二不考的内容:三重积分,曲线曲面积分,无穷级数(包括傅里叶级数),向量代数与空间解析几何,多元函数微分学中方向导数和梯度、空间曲线的切线和法平面及曲面的切平面和法线,导数的经济应用,定积分的经济应用,无界区域上容易的反常二重积分,常微分方程中的伯努利方程、全微分方程、可用容易的变量代换求解的某些微分方程、欧拉方程、差分方程。
数学二考的内容有:导数应用中的曲率和曲率圆,导数的物理应用,定积分中有理函数的积分、三角函数的有理式积分、容易无理函数的积分,旋转体的侧面积与曲线弧长,平行截面积为已知的立体体积,定积分的物理应用(功,引力,压力,质心,形心等),可降阶的微分方程,高于二阶的某些常系数齐次线性方程,微分方程的物理应用。
这里没有提到的都是数学一二三共同考的,就不在赘述了,希翼可以协助到你。
知道了这数二需要考试的范畴,就请数二的小伴侣收起你的愉快,宁静的举行本阶段应当的复习规划,对于本阶段需要认真讨论历年考研真题,讨论的过程中需要完成两个大任务,第一:完美自己的学问框架,构建完成的学问体系,在暑期的复习中我们已经对数学每一部第1页/共3页千里之行,始于足下分的学问点和题型有所了解,并且把握了不同类题型的做题思路,还不能够系统的搭建学问体系,所以本阶段就需要完成这一任务,协助我们从收拾来掌握数学的学问点;其次,扩展考研题型,解决考研题型的解题思路,在做历年真题的时候,我们会碰到自己以前没有碰到过的题型,或者不知道一个学问点还可以跟这样的题联系在一起,所以在这个阶段就将它们一举拿下。
数二考研大纲高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系(2. 了解函数的有界性、单调性、周期性和奇偶性(3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念4. 掌握基本初等函数的性质及其图形,了解初等函数的概念(5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系(6. 掌握极限的性质及四则运算法则7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法(8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限(9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型( 10. 了解连续函数的性质和初等函数一的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质( 二、一元函数微分学考试要求1. 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系(2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式(了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分(3. 了解高阶导数的概念,会求简单函数的高阶导数(4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数(5. 理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理(6. 掌握用洛必达法刚求未定式极限的方法(7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用(8. 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。
2024年数学二考研考试大纲如下:一、高等数学1. 函数与极限2. 导数与微分3. 积分4. 常微分方程5. 多元函数微分学6. 多元函数积分学7. 级数8. 空间解析几何9. 向量代数与解析几何10. 多元函数的极值与最值11. 重积分12. 曲线积分与曲面积分13. 场论初步二、线性代数1. 行列式2. 矩阵3. 向量空间4. 线性变换5. 特征值与特征向量6. 二次型7. 正定二次型8. 线性方程组9. 矩阵的对角化10. 实对称矩阵的对角化11. 二次型的标准形与规范形12. 二次型的正定性判定13. 线性空间的基本概念14. 线性空间的同构与基变换15. 线性空间的维数与基16. 线性空间的子空间17. 线性空间的直和与交和18. 线性空间的同态与同构19. 线性空间的泛性质20. 线性空间的完备性与距离21. 线性空间的内积空间22. 内积空间的基与正交性23. 内积空间的正交分解与标准正交基24. 内积空间的谱定理25. 内积空间的算子与本征值问题26. 内积空间的特征值与特征向量问题27. 内积空间的正定性判定问题28. 内积空间的紧性与完备性问题29. 内积空间的Hilbert空间问题30. 内积空间的Banach空间问题31. 内积空间的弱拓扑问题32. 内积空间的弱*拓扑问题33. 内积空间的弱收敛问题34. 内积空间的弱*收敛问题35. 内积空间的弱*一致收敛问题36. 内积空间的弱*可积问题37. 内积空间的弱*可测问题38. 内积空间的弱*连续问题39. 内积空间的弱*有界问题40. 内积空间的弱*紧性问题41. 内积空间的弱*完备性问题42. 内积空间的弱*Hilbert空间问题43. 内积空间的弱*Banach空间问题。
2024年全国硕士研究生(数学二)招生考试大纲主要包括以下内容:
一、数学分析:
1. 数列的极限及其性质;
2. 函数的极限与连续性;
3. 导数与微分;
4. 高阶微分方程;
5. 定积分与定积分的应用;
6. 二重积分与三重积分;
7. 曲线的切线与法线;
8. 空间曲面的方程与投影;
9. 复数与复变函数。
二、线性代数:
1.向量与空间;
2.行列式;
3.矩阵;
4.线性方程组;
5.二次型与二次齐次式;
6.特征值与特征向量;
7.线性变换;
8.内积与正交补。
三、概率论与数理统计:
1.随机事件与概率;
2.随机变量及其分布;
3.多维随机变量及其分布函数;
4.数字特征;
5.大数定律与中心极限定理;
6.抽样分布;
7.参数估计;
8.假设检验。
请注意,这只是一个大致的框架,具体的内容可能会根据每年的考试大纲有所不同,建议您查阅最新的考研数学二考试指南以获取准确的考试信息。
2024数学二考研大纲
2024年考研数学二大纲包括以下内容:
1. 了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。
2. 理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式。
3. 理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。
4. 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。
5. 会求有理函数、三角函数有理式和简单无理函数的积分。
6. 理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式。
7. 了解反常积分的概念,会计算反常积分。
8. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力等)。
以上是2024年考研数学二大纲的部分内容,建议查看官方网站获取更全面准确的信息。
高数二考研大纲1. 简介本文档旨在为考生提供高等数学二科目的考研大纲内容。
高数二是考研数学科目中的重要组成部分,涵盖了微分方程、级数、傅里叶级数等内容。
通过掌握本科目的基本知识和解题方法,考生可以在考试中取得较好的成绩。
2. 考试内容概述高数二考研大纲主要包括以下内容:2.1 微分方程•一阶微分方程:可分离变量型、齐次型、线性型、伯努利型等•二阶线性微分方程:常系数齐次线性微分方程和非齐次线性微分方程•高阶线性微分方程:常系数齐次线性微分方程和非齐次线性微分方程2.2 级数•数项级数:正项级数、正项级数的判别法、幂级数、幂级数收敛半径、幂级数的求和函数•函数项级数:一般项级数、一致收敛性、函数项级数的一致收敛性和极限问题、级数和函数的和函数2.3 傅里叶级数•傅里叶级数的引入和定义•傅里叶级数的性质:周期函数的傅里叶级数展开、函数在闭区间上的傅里叶级数展开、傅里叶级数的收敛性3. 知识要点详细介绍3.1 微分方程微分方程是高数二考试中重要的一部分,以下是微分方程的一些知识要点:3.1.1 一阶微分方程一阶微分方程是最基本的微分方程形式,常见的类型有可分离变量型、齐次型、线性型和伯努利型等。
考生需要了解这些类型的特征和解题方法。
3.1.2 二阶线性微分方程二阶线性微分方程包括常系数齐次线性微分方程和非齐次线性微分方程。
考生需要熟悉二阶微分方程的求解步骤和应用技巧。
3.1.3 高阶线性微分方程高阶线性微分方程是一阶和二阶微分方程的扩展,其中包括常系数齐次线性微分方程和非齐次线性微分方程。
考生需要了解高阶线性微分方程的特点和求解方法。
3.2 级数级数是高数二考试的另一个重要考点,以下是级数的一些知识要点:3.2.1 数项级数数项级数包括正项级数和正项级数的判别法。
考生需要掌握常见的判别法,如比较判别法、比值判别法和根值判别法等。
同时,对于幂级数,考生需要了解幂级数收敛半径和求和函数的概念。
3.2.2 函数项级数函数项级数是另一类重要的级数形式,包括一般项级数和一致收敛性。