最新数学二考研大纲汇总
- 格式:doc
- 大小:125.50 KB
- 文档页数:12
考研数学二考试大纲部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑2018年硕士研究生入学统一考试数学考试大纲数学二考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教案约78%线性代数约22%四、试卷题型结构试卷题型结构为:单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题<包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立b5E2RGbCAP数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:p1EanqFDPw,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念<含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质<有界性、最大值和最小值定理、介值定理),并会应用这些性质.DXDiTa9E3d二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达<L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径RTCrpUDGiT考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.5PCzVD7HxA2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.jLBHrnAILg3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔<Rolle)定理、拉格朗日<Lagrange)中值定理和泰勒<Taylor)定理,了解并会用柯西( Cauchy )中值定理.xHAQX74J0X6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.LDAYtRyKfE8.会用导数判断函数图形的凹凸性<注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.Zzz6ZB2Ltk9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz>公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常<广义)积分定积分的应用dvzfvkwMI1考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量<平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.rqyn14ZNXI四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算EmxvxOtOco考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.SixE2yXPq54.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.6ewMyirQFL 5.了解二重积分的概念与基本性质,掌握二重积分的计算方法<直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用kavU42VRUs考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和.4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行<列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行<列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算y6v3ALoS89考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.M2ub6vSTnP2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.0YujCfmUCw4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.eUts8ZQVRd5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的的正交规范化方法sQsAEJkW5T考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行<列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特<Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默<Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解GMsIasNXkA考试要求1.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值及特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵TIrRGchYzg考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性7EqZcWLZNX考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.lzq7IGf02E3.理解正定二次型、正定矩阵的概念,并掌握其判别法.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
考研数学二考试大纲考研数学二考试大纲考研数学二是中国研究生入学考试中的一门必考科目。
本文将介绍考研数学二的考试大纲,帮助考生更好地了解考试内容,合理制定学习计划。
考试大纲主要包括以下几个方面:一、题型考研数学二的题型主要分为选择题和填空题两类。
选择题占据了考试的大部分,需要选择一个正确答案。
填空题则要求考生填写一个准确的答案,可以是一个数、一个公式、一个函数等等。
二、知识点考研数学二的知识点分为四个部分:高等数学、线性代数、概率统计和常微分方程。
高等数学部分包括数列、极限、微分、积分、多元函数等内容。
线性代数部分包括向量空间、线性方程组、特征值与特征向量等内容。
概率统计部分包括概率、随机变量、概率分布、参数估计、假设检验等内容。
常微分方程部分包括一阶常微分方程、高阶常微分方程、线性方程组解的性质等内容。
三、考试要求考研数学二的考试要求主要包括以下几点:掌握基本概念、定理和公式;理解并掌握基本解题方法;具备独立思考和解决问题的能力;能够灵活运用所学知识进行解答;能够分析和解决复杂实际问题。
四、考试特点考研数学二的考试特点主要体现在以下几个方面:难度适中,注重计算能力和思维能力的结合;注重对基本概念、定理和公式的理解和运用;注重培养考生的分析和解决问题的能力。
总而言之,考研数学二的考试大纲涵盖了高等数学、线性代数、概率统计和常微分方程四个部分的知识点,要求考生掌握基本概念、定理和公式,理解解题方法,具备独立思考和解决问题的能力,灵活运用所学知识进行解答,分析和解决复杂实际问题。
为了顺利备考并取得好成绩,考生需要制定合理的学习计划,合理分配时间,重点复习考试大纲中涉及的知识点,经常进行习题训练和模拟考试,加强对题型的熟悉程度和考试策略的掌握。
希望以上内容对考生的备考有所帮助,祝愿大家取得优异的成绩!。
考研数二考试大纲
答:考研数学二考试大纲主要包括以下几个部分:
1. 函数、极限、连续:这部分主要考察函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立,数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则。
2. 一元函数微分学:这部分主要考察导数的概念及几何意义,导数的四则运算,函数的单调性、极值与最值,导数与微分在研究函数中的应用,导数的经济意义。
3. 一元函数积分学:这部分主要考察定积分的概念与基本性质,定积分的计算方法与应用,定积分的应用。
4. 多元函数微分学:这部分主要考察多元函数的极限与连续性,多元函数的偏导数与全微分,多元函数的极值与最值。
5. 多元函数积分学:这部分主要考察二重积分的概念与计算方法,二重积分的应用。
6. 常微分方程:这部分主要考察常微分方程的基本概念与一阶常微分方程的求解方法,二阶线性常微分方程的解法与应用。
以上是考研数学二考试大纲的主要内容,考试范围和要求可能会根据具体情况有所调整。
考研数学二考试范围及大纲考研数学二的考试范围及大纲考研数学是定义根据工学、经济学、管理学各学科、专业对硕士研究生入学所应具备的数学知识和才能的不同要求,硕士研究生入学统考数学试卷分为3种,其中针对工学门类的为数学一、数学二,针对经济学和管理学门类的为数学三。
考研数学二的考试范围数学二考试科目:高等数学、线性代数。
1.高等数学:同济六版高等数学中除了第七章微分方程考带星号的伯努力方程外,其余带星号的都不考;所有”近似“的问题都不考;第四章不定积分不考积分表的使用;不考第八章空间解析几何与向量代数;第九章第五节不考方程组的情形;到第十章二重积分、重积分的应用为止,后面那么不考。
2.线性代数:数学二用的教材是同济五版线性代数,1-5章:行列式、矩阵及其运算,矩阵的初等变换及其方程组、向量组的线性相关性、相似矩阵及二次型。
考研数学二大纲考研数学二,是对于学员的根本计算,推理,演算才能的测试;考研数学二大纲中,历年真题对于考试所涉及的重点难点均有所显示,学员可以通过考题进一步强化重点知识点及题型,并且历年考题当中一些带规律性的方法技巧参考价值很大;通过真题的演练,可以查漏补缺,逐步适应考研题目的常考点,题型,技巧,难度等;考研数学二在复习过程中只需要抓住根底和题型这两个根本点,在充分掌握大纲所要求的知识点的根底上,多做练习,并进展适当的归纳总结,即可在考研数学中冲刺高分。
拓展阅读:考研数学二答题时间分配技巧在考研数学二中,填空题包含6道小题,每题4分,共24分。
填空题考察的知识点也是比拟根底的知识,但是主要考察考生的根本运算才能。
最常用的技巧是“代入法”,考生可以把一些特殊的数字带入的题目中去运算。
填空题只是要最后的结果,不用写出运算步骤,因此我们只要得出结果就行,不管用什么样的方法。
因此,在做填空题时,方法和过程不重要,重要的是运算结果,要用最简单、最有效的方法算出结果。
考生在日常做题时要经常运用这些技巧,将填空题计算常用的方法技巧烂熟于心,运用起来才更加得心应手。
[考试科目]高等数学、线性代数高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数简单应用问题的函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小和无穷大的概念及其关系无穷小的性质及无穷小的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限 :函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。
2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4. 掌握基本初等函数的性质及其图形,了解初等函数的基本概念。
5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容。
导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线基本初等函数的导数导数和微分的四则运算复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数的极值函数单调性的判别函数图形的凹凸性、拐点及渐近线函数图形的描绘函数最大值和最小值考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的n阶导数.4. 会求分段函数的一阶、二阶导数.5.会求隐函数和由参数方程所确定的函数以及反函数的导数.6.理解并会用罗尔定理、拉格朗日中值定理.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直渐近线,会描绘函数的图形.9.掌握用洛必达法则求未定式极限的方法.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分广义积分定积分的应用考试要求1.理解原函数概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式及简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解广义积分的概念,会计算广义积分.6.了解定积分的近似计算法.7.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功).四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数、隐函数求导法二阶偏导数多元函数的极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义。
高等数学函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1. 理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2. 了解函数的有界性、单调性、周期性和奇偶性.3. 理解复合函数及分段函数的概念了解反函数及隐函数的概念4. 掌握基本初等函数的性质及其图形,了解初等函数的概念.5. 理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6. 掌握极限的性质及四则运算法则7. 掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8. 理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.一元函数微分考试要求1. 理解导数和微分的概念,理解导数和微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3. 了解高阶导数的概念,会求简单函数的高阶导数.4. 会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5. 理解并会用罗尔定理(Rolle)、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy )中值定理.6. 掌握用洛必达法则求未定式极限的方法.7. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8. 会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。
让知识带有温度。
考研数学大纲数二考试范围汇总2022考研数学大纲数二考试范围2022考研数学大纲数二考试范围考研数学让每一个要看数学的学生畏惧,尤其是对数学不好的学生,或许这其中就有挑选考数二的缘由,为什么呢?那是由于考数学二的学生,不需要复习概率,可以让自己轻松一点,心里偷偷的在笑,不过复习数二仅仅愉快这一点还不够,要是你知道2022年对数学二的要求后你会更愉快,下面我就来看看数二的考试范畴吧!我们先来看看数二不考的内容:三重积分,曲线曲面积分,无穷级数(包括傅里叶级数),向量代数与空间解析几何,多元函数微分学中方向导数和梯度、空间曲线的切线和法平面及曲面的切平面和法线,导数的经济应用,定积分的经济应用,无界区域上容易的反常二重积分,常微分方程中的伯努利方程、全微分方程、可用容易的变量代换求解的某些微分方程、欧拉方程、差分方程。
数学二考的内容有:导数应用中的曲率和曲率圆,导数的物理应用,定积分中有理函数的积分、三角函数的有理式积分、容易无理函数的积分,旋转体的侧面积与曲线弧长,平行截面积为已知的立体体积,定积分的物理应用(功,引力,压力,质心,形心等),可降阶的微分方程,高于二阶的某些常系数齐次线性方程,微分方程的物理应用。
这里没有提到的都是数学一二三共同考的,就不在赘述了,希翼可以协助到你。
知道了这数二需要考试的范畴,就请数二的小伴侣收起你的愉快,宁静的举行本阶段应当的复习规划,对于本阶段需要认真讨论历年考研真题,讨论的过程中需要完成两个大任务,第一:完美自己的学问框架,构建完成的学问体系,在暑期的复习中我们已经对数学每一部第1页/共3页千里之行,始于足下分的学问点和题型有所了解,并且把握了不同类题型的做题思路,还不能够系统的搭建学问体系,所以本阶段就需要完成这一任务,协助我们从收拾来掌握数学的学问点;其次,扩展考研题型,解决考研题型的解题思路,在做历年真题的时候,我们会碰到自己以前没有碰到过的题型,或者不知道一个学问点还可以跟这样的题联系在一起,所以在这个阶段就将它们一举拿下。
考研数学二考试大纲考研数学二考试大纲前言:数学二是考研数学科目中的一门重要课程,主要涉及微积分、概率论和数理统计等内容。
掌握数学二的考试大纲对于备考考研数学二至关重要,本文将对考研数学二的考试大纲进行全面介绍。
一、微积分部分微积分作为数学的基础学科,是考研数学二的重要组成部分。
在微积分部分的考试大纲中,主要包括以下内容:1. 导数与微分:涉及导数的定义与性质、常见函数的导数计算、高阶导数、隐函数与参数方程的求导、微分的定义与性质等。
2. 微分中值定理:包括拉格朗日中值定理、柯西中值定理、罗尔中值定理等,以及利用中值定理证明函数性质和计算极限等相关知识点。
3. 不定积分与定积分:主要包括不定积分的基本性质、换元积分法、分部积分法、定积分的定义和性质、牛顿—莱布尼茨公式等内容。
4. 微分方程:重点涉及一阶线性微分方程、可分离变量微分方程、齐次微分方程、二阶线性齐次微分方程及其特解、常系数线性齐次微分方程等。
5. 多元函数微积分:主要包括偏导数与全微分的计算、多元函数的极值、条件极值及其求解、二重积分与三重积分的计算等。
二、概率论与数理统计部分概率论与数理统计是数学二考试中的另一重要组成部分。
在该部分的考试大纲中,主要包括以下内容:1. 随机变量与概率分布:包括随机变量的概念、离散型随机变量与连续性随机变量的基本性质及其概率分布,如二项分布、泊松分布、正态分布、均匀分布等。
2. 随机变量的数字特征:主要涉及随机变量的数学期望、方差、标准差、协方差、相关系数等数字特征的计算和性质。
3. 大数定律与中心极限定理:着重介绍大数定律和中心极限定理的定义、性质和应用,以及林德伯格—莱维定理等相关知识。
4. 参数估计:包括点估计、矩估计、最大似然估计等估计方法的原理、性质和计算,以及样本大小对估计精度的影响等内容。
5. 假设检验:主要涉及假设检验的基本原理、检验统计量的构造、拒绝域的确定、检验的错误类型和功效、参数的区间估计等相关知识。
2024年数学二考研考试大纲如下:一、高等数学1. 函数与极限2. 导数与微分3. 积分4. 常微分方程5. 多元函数微分学6. 多元函数积分学7. 级数8. 空间解析几何9. 向量代数与解析几何10. 多元函数的极值与最值11. 重积分12. 曲线积分与曲面积分13. 场论初步二、线性代数1. 行列式2. 矩阵3. 向量空间4. 线性变换5. 特征值与特征向量6. 二次型7. 正定二次型8. 线性方程组9. 矩阵的对角化10. 实对称矩阵的对角化11. 二次型的标准形与规范形12. 二次型的正定性判定13. 线性空间的基本概念14. 线性空间的同构与基变换15. 线性空间的维数与基16. 线性空间的子空间17. 线性空间的直和与交和18. 线性空间的同态与同构19. 线性空间的泛性质20. 线性空间的完备性与距离21. 线性空间的内积空间22. 内积空间的基与正交性23. 内积空间的正交分解与标准正交基24. 内积空间的谱定理25. 内积空间的算子与本征值问题26. 内积空间的特征值与特征向量问题27. 内积空间的正定性判定问题28. 内积空间的紧性与完备性问题29. 内积空间的Hilbert空间问题30. 内积空间的Banach空间问题31. 内积空间的弱拓扑问题32. 内积空间的弱*拓扑问题33. 内积空间的弱收敛问题34. 内积空间的弱*收敛问题35. 内积空间的弱*一致收敛问题36. 内积空间的弱*可积问题37. 内积空间的弱*可测问题38. 内积空间的弱*连续问题39. 内积空间的弱*有界问题40. 内积空间的弱*紧性问题41. 内积空间的弱*完备性问题42. 内积空间的弱*Hilbert空间问题43. 内积空间的弱*Banach空间问题。
2024数学二考研大纲
2024年考研数学二大纲包括以下内容:
1. 了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。
2. 理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式。
3. 理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。
4. 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。
5. 会求有理函数、三角函数有理式和简单无理函数的积分。
6. 理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式。
7. 了解反常积分的概念,会计算反常积分。
8. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力等)。
以上是2024年考研数学二大纲的部分内容,建议查看官方网站获取更全面准确的信息。
考研数学二考试大纲2022考研数学(二)考试大纲考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时光试卷满分为150分,考试时光为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约78%线性代数约22%四、试卷题型结构试卷题型结构为:单项挑选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证实题)9小题,共94分高等数学一、函数、极限、延续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:0sin lim 1x x x →=,1lim 1xx e x →∞??+=函数延续的概念函数间断点的类型初等函数的延续性闭区间上延续函数的性质考试要求1.理解函数的概念,把握函数的表示法,并会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.把握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.把握极限的性质及四则运算法则.7.把握极限存在的两个准则,并会利用它们求极限,把握利用两个重要极限求极限的办法.8.理解无穷小量、无穷大量的概念,把握无穷小量的比较办法,会用等价无穷小量求极限.9.理解函数延续性的概念(含左延续与右延续),会判别函数间断点的类型.10.了解延续函数的性质和初等函数的延续性,理解闭区间上延续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与延续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital )法则函数单调性的判别函数的极值函数图形的高低性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与延续性之间的关系.2.把握导数的四则运算法则和复合函数的求导法则,把握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求容易函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle )定理、拉格朗日(Lagrange )中值定理和泰勒(Taylor )定理,了解并会用柯西( Cauchy )中值定理.6.把握用洛必达法则求未定式极限的办法.7.理解函数的极值概念,把握用导数推断函数的单调性和求函数极值的办法,把握函数最大值和最小值的求法及其应用.8.会用导数推断函数图形的高低性(注:在区间(),a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和容易无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.把握不定积分的基本公式,把握不定积分和定积分的性质及定积分中值定理,把握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和容易无理函数的积分.4.理解积分上限的函数,会求它的导数,把握牛顿一莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.把握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学多元函数的概念二元函数的几何意义二元函数的极限与延续的概念有界闭区域上二元延续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与延续的概念,了解有界闭区域上二元延续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,把握多元函数极值存在的须要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求容易多元函数的最大值和最小值,并会解决一些容易的应用问题.5.了解二重积分的概念与基本性质,把握二重积分的计算办法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念变量可分别的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程容易的二阶常系数非齐次线性微分方程微分方程的容易应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.把握变量可分别的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:()(),(,)n y f x y f x y '''== 和(,)y f y y '''=.4.理解二阶线性微分方程解的性质及解的结构定理.5.把握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些容易的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)绽开定理考试要求1.了解行列式的概念,把握行列式的性质.2.会应用行列式的性质和行列式按行(列)绽开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分须要条件陪同矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反驳称矩阵和正交矩阵以及它们的性质.2.把握矩阵的线性运算、乘法、转置以及它们的运算逻辑,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,把握逆矩阵的性质以及矩阵可逆的充分须要条件.理解陪同矩阵的概念,会用陪同矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,把握用初等变换求矩阵的秩和逆矩阵的办法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的的正交规范化办法考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,把握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,把握线性无关向量组正交规范化的施密特(Schmidt)办法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分须要条件非齐次线性方程组有解的充分须要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解考试要求1.会用克拉默法则.2.理解齐次线性方程组有非零解的充分须要条件及非齐次线性方程组有解的充分须要条件.3.理解齐次线性方程组的基础解系及通解的概念,把握齐次线性方程组基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值及特征向量考试内容矩阵的特征值和特征向量的概念、性质相像矩阵的概念及性质矩阵可相像对角化的充分须要条件及相像对角矩阵实对称矩阵的特征值、特征向量及其相像对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵特征值和特征向量.2.理解相像矩阵的概念、性质及矩阵可相像对角化的充分须要条件,会将矩阵化为相像对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配办法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配办法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并把握其判别法.文档内容到此结束,欢迎大家下载、修改、丰富并分享给更多有需要的人。
考研高数二考试大纲考研高数二考试大纲是针对中国研究生入学考试数学科目的指导性文件,它规定了考试的范围、内容和要求。
以下是考研高数二考试大纲的主要内容:一、考试目标考研高数二旨在测试考生对高等数学的基本概念、基本原理和基本方法的掌握程度,以及运用这些知识解决实际问题的能力。
二、考试内容1. 函数、极限与连续性- 函数的概念、性质- 极限的定义、性质和运算- 无穷小的比较- 函数的连续性与间断点2. 导数与微分- 导数的定义、几何意义和物理意义- 基本导数公式- 高阶导数- 隐函数和参数方程的导数- 微分的概念和运算3. 中值定理与导数的应用- 罗尔定理、拉格朗日中值定理和柯西中值定理- 洛必达法则- 泰勒公式- 导数在几何、物理和经济中的应用4. 不定积分- 不定积分的概念和性质- 换元积分法和分部积分法- 有理函数和三角函数的积分5. 定积分及其应用- 定积分的定义和性质- 定积分的计算方法- 定积分在几何、物理和概率统计中的应用6. 多元函数微分法- 偏导数和全微分- 多元函数的极值问题- 方向导数和梯度7. 重积分- 二重积分和三重积分的概念和性质- 重积分的计算方法- 重积分在几何和物理中的应用8. 曲线积分与曲面积分- 第一类和第二类曲线积分- 格林公式、高斯公式和斯托克斯公式- 曲面积分的概念和计算方法9. 无穷级数- 常数项级数的收敛性- 幂级数和泰勒级数- 函数的傅里叶级数三、考试形式与题型考试形式为闭卷笔试,题型包括选择题、填空题、计算题、证明题和应用题等。
四、考试要求1. 理解并能熟练运用高等数学的基本概念、原理和方法。
2. 能够运用数学知识解决实际问题,具备一定的数学建模能力。
3. 掌握数学运算的基本技巧,能够准确、快速地进行数学计算。
4. 具备良好的逻辑推理能力和抽象思维能力。
五、复习建议1. 系统复习高等数学的基础知识,注重概念的理解与记忆。
2. 大量练习各类题型,提高解题速度和准确率。
考研数学二大纲第一篇:线性代数一、向量空间1. 向量空间的定义与性质2. 子空间定义与例子3. 向量组的线性相关与线性无关4. 极大线性无关组与基5. 向量空间的维数6. 基变换公式7. 矩阵的秩8. 四个基本子空间9. 向量空间的同构10. 线性变换的定义和性质11. 矩阵的表示和转置12. 线性变换和矩阵的秩13. 相似矩阵和对角化二、矩阵论1. 矩阵的代数运算2. 矩阵的初等变换3. 行阶梯形和简化阶梯形矩阵4. 矩阵的逆和伴随矩阵5. 克拉默法则6. 矩阵的特征值和特征向量7. 对称矩阵的对角化8. 正交矩阵和单位ary矩阵9. 奇异值分解三、线性方程组1. 齐次线性方程组的解法2. 非齐次线性方程组的通解和特解3. 齐次线性方程组解的结构4. 非齐次线性方程组的高斯消元法5. 矩阵的秩和线性方程组的解的关系6. 非齐次线性方程组的解的个数7. 矩阵的行列式和线性方程组的解的关系8. 线性方程组的参数化解四、特殊矩阵1. 上三角矩阵、下三角矩阵和对角矩阵2. 实对称矩阵和正定矩阵3. 复共轭矩阵和Hermite矩阵4. Jordan标准形五、线性空间的几何应用1. 向量空间的内积和范数2. 正交向量组、正交投影和Gram-Schmidt正交化3. 向量的夹角和长度4. 平面及其方程和直线及其方程5. 空间中的直线和平面6. 球、圆和旋转的概念7. 二次曲线和二次曲面六、其他相关部分1. 行列式的定义、性质和计算2. 向量和矩阵的积3. 逆矩阵和线性方程组的通解4. 特征值和特征向量的计算5. 欧氏空间及其性质6. 线性空间和向量空间的差别7. 矩阵的迹和行列式的关系第二篇:概率统计一、随机事件及其概率1. 随机事件和样本空间2. 随机事件的概率和掷骰子问题3. 条件概率及乘法公式4. 全概率公式和贝叶斯公式5. 随机事件统计意义及其应用二、随机变量及其分布1. 随机变量和离散随机变量2. 连续随机变量和正态分布3. 分布函数和密度函数4. 分布函数函数的特点和变换5. 随机变量的期望和方差6. 协方差和相关系数三、概率分布和大数定律1. 均匀分布和二项分布2. 泊松分布和指数分布3. 伯努利分布和离散型分布4. 中心极限定理和大数定律五、假设检验及其应用1. 参数估计的方法和理论2. 假设检验及其基本步骤3. 判断检验统计量和检验的标准4. 检验的类型和检验的应用五、回归分析及其应用1. 简单线性回归模型和多元回归模型2. 线性估计和最小二乘估计3. 回归系数的解释和意义4. 回归分析的应用和推断六、其他相关部分1. 多项分布和正态总体的推断2. χ2分布和F分布的性质和应用3. 随机变量和概率的重点和难点4. 抽样分布和置信区间的估计5. 统计推断的应用和计算方法第三篇:实分析一、数列极限1. 数列和极限的概念2. 数列极限的性质和判别法则3. 收敛数列的上限和下限性质4. 数列的单调性和递推数列的收敛5. Cauchy准则和部分和与收敛的关系6. Stolz定理和夹逼定理二、函数极限和连续1. 函数极限的定义2. 函数极限的运算和计算方法3. 函数的连续性和间断点的分类4. 点、区间的连续性和闭集5. 一致连续性和介值定理三、导数和微分1. 导数的概念和定义2. 导数的性质、运算和计算法则3. 泰勒公式和应用4. 导数的连续性和可导性5. 微分的定义和性质6. 微分和导数的关系四、积分和不等式1. 可积性和Riemann和Lebesgue积分2. 积分的性质和常用的计算公式3. 积分的应用和重要定理4. 柯西不等式和霍尔德不等式5. 三角不等式和欧式空间的性质五、级数和函数项级数1. 级数和收敛性的定义和判别法2. 级数极限的性质和运算3. 绝对收敛和条件收敛的关系4. 非单调项级数和Leibniz定理5. 函数项级数的收敛和一致收敛六、一元函数的应用1. 绝对极值和有界性2. 函数的单调性和反函数3. 极值、驻点和拐点定理4. 曲率和曲率圆5. 多元函数的连续性和极限七、其他相关部分1. 多元函数的微分和全微分2. 多元函数的偏导数和方向导数3. 隐函数和反函数的求导和计算方法4. 一元函数和多元函数的应用5. 异常点和奇点的计算和讨论。
考研数学二大纲数学二考研大纲包括三个部分:线性代数、概率论与数理统计、高等数学。
1. 线性代数线性代数是数学中一门基础而重要的学科,对于从事数学、物理、计算机等领域具有重要意义。
在考研中,线性代数占了相当大的分量,是考研数学二的难点之一。
线性代数考点主要有以下内容:1.1 向量空间、线性变换和矩阵向量空间和线性变换是线性代数的基础。
矩阵是线性代数中另一个重要的概念,是线性变换和向量空间的重要表示形式。
1.2 特征值和特征向量特征值和特征向量是矩阵理论中十分重要的内容,数学二考试中也是必考内容。
掌握特征值和特征向量可方便地解决一些实际问题。
1.3 行列式行列式是线性代数中的一个十分重要的概念,它不仅与矩阵的求逆有密切的联系,而且还与线性方程组的解以及高维几何变换有关。
1.4 矩阵的相似变换和对角化矩阵的相似变换和对角化也是线性代数中的重要内容。
它们不仅与线性变换和向量空间有密切的联系,而且在应用中也有着广泛的应用。
2. 概率论与数理统计概率论与数理统计是现代数学的两门重要分支,对于理工科的各个领域都有着广泛的应用。
在考研中,概率论与数理统计也是数学二的重要难点。
它主要包括以下内容:2.1 随机变量与概率分布随机变量是概率论中的重要内容,概率分布则是确定随机变量所取值的概率的数学工具。
不同的随机变量有着不同的概率分布,掌握不同类型的概率分布是考研的重要内容。
2.2 数理统计数理统计的主要任务是从给定的数据中推断出总体的性质或者探究各因素之间的相互关系。
数理统计在各个领域都有着广泛的应用,考研中的数理统计主要涉及到各种估计和检验方法的理论和应用。
2.3 随机过程和时间序列分析随机过程和时间序列分析是概率论与数理统计的高级内容,在现代科学中有着广泛的应用。
考研中的随机过程和时间序列分析主要包括马尔可夫过程、布朗运动和时间序列分析等方面的内容。
3. 高等数学高等数学是纯数学的一门基础学科,也是理工科的重要工具。
考研数学二考试大纲(原文)网络版考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试试卷试卷满分为150分,考试试卷为180分钟二、答题方式答题方式为闭卷、笔试。
三、试卷内容结构高等数学约78%线性代数约22%四、试卷题型结构单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学部分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限于右极限无穷小量和无穷大量的概念及其关系无穷小量及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值、弧微分、曲率的概念、曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上连续函数的性质.3.了解多元函数偏导数和全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全积分,了解隐函数的存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元一次函数极值存在的充分条件,会求二元函数的极值,会有拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直接坐标、极坐标).八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和4理解线性微分方程解的性质及解的结构.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数部分一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系. 5了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.会用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.。
2014年数学二考研大
纲
仅供学习与交流,如有侵权请联系网站删除谢谢
仅供学习与交流,如有侵权请联系网站删除谢谢3
仅供学习与交流,如有侵权请联系网站删除谢谢
仅供学习与交流,如有侵权请联系网站删除谢谢5
仅供学习与交流,如有侵权请联系网站删除谢谢6
仅供学习与交流,如有侵权请联系网站删除谢谢7
仅供学习与交流,如有侵权请联系网站删除谢谢8
仅供学习与交流,如有侵权请联系网站删除谢谢9
仅供学习与交流,如有侵权请联系网站删除谢谢10
11
12。