(完整版)刚体转动守恒定律
- 格式:ppt
- 大小:1.05 MB
- 文档页数:12
刚体定轴转动的角动量定理和角动量守恒定律
1、刚体定轴转动的角动量
刚体绕定轴转动的角动量等于刚体对该轴的转动惯量与角速度的乘积;方向与角速度的方向相同。
2、刚体定轴转动的角动量定理
(1)微分形式:刚体绕某定轴转动时,作用于刚体的合外力矩,等于刚体绕该定轴的角动量随时间的变化率。
(2)积分形式:当物体绕某定轴转动时,作用在物体上的冲量矩等于角动量的增量。
3、刚体定轴转动的角动量守恒定律
如果物体所受的合外力矩等于零,或者不受外力矩作用,物体的角动量保持不变。
练习:1角动量守恒的条件是 。
0=M 11222
1ωωJ J Mdt t t -=⎰刚体 ) 21J J ==ωJ 恒量
ωJ L =()ωJ dt d dt dL M ==。
第三章 刚体的转动出发点:牛顿质点运动定律刚体的运动分为:平动,定轴转动,定点转动,平面平行运动,一般运动。
§3-1 刚体的平动,转动和定轴转动一 刚体的定义:在无论多大力作用下物体形状和大小均保持不变。
(理想模型)二 平动:在运动过程中,若刚体上任意一条直线在各个时刻的位置始终彼此平行,则这种运动叫做平动。
特征:1 平动时刚体中各质点的位移,速度,加速度相等。
2 动力学特征:将刚体看成是一个各质点间距离保持不变的质点组。
受力:内力和外力对每一个质元:满足牛顿运动定律+=Mi i 对刚体而言:∑(+fi )=∑Mi i⇒∑+∑=∑Mi i显然∑=0 ⇒∑=∑Mi I=∑Mi故:∑F ==M a即:刚体做平动时,其运动规律和一质点相当,该质点的质量与刚体的质量相等,所受的力等于刚体所受外力的矢量和。
三 转动和定轴转动定轴转动的运动学特征:用角位移、角速度、角加速度加以描述,且刚体中各质点的角位移 、角速度、角加速度相等。
ω=dt d θ, α=dtd ω对匀速、匀变速转动可参阅P210表4-2 角量与线量的关系:v=R ωa t=R αa n=ω2R更一般的形式:角速度矢量的定义:=ωγ⨯ , =dtd 显然,定轴转动的运动学问题与质点的圆周运动相同。
例:一飞轮在时间t 内转过角度θ=t b at 3+-c t 4,式中abc 都是常量。
求它的角加速度。
解: 飞轮上某点的角位置可用θ表示为θ=t b at 3+-c t 4,将此式对t 求导数,即得飞轮角速度的表达式为ω=(dtdt b at 3+-c t 4)=a+3b t 2-4c t 3角加速度是角速度对t 导数,因此得α =dt d ω=d td ( a+3b t 2-4c t 3)=6bt-12c t 2由此可见,飞轮作的是变加速转动。
§3-2 力距 刚体定轴转动定律一 力矩:设在转动平面内,=⨯是矢量,对绕固定轴转动,只有两种可能的方向,用正负即可表示,按代数求和(对多个力)。