准确数和近似数1-
- 格式:ppt
- 大小:1.11 MB
- 文档页数:17
近似数与精确数的区分数学中的近似数与精确数的区分在数学中,我们常常需要对数字进行运算、比较和描述。
而在处理数字时,我们会遇到两种不同的数:近似数和精确数。
本文将就近似数与精确数的区别进行探讨,并给出一些常见的例子。
一、近似数的定义和特点近似数是一种对原有数字进行近似描述的数。
在实际应用中,很难精确得到某个数的值,因此我们需要使用近似数来逼近真实数的值。
近似数通常会忽略掉某些小数位或整数位的精确值,而取其近似值。
近似数有以下几个主要特点:1. 常常使用小数形式:近似数通常以小数形式表示,比如2.14、3.857等。
2. 精确度有限:近似数只能提供有限的精确度,无法达到绝对精确。
3. 舍入误差:在进行近似时,常常需要舍入操作,这可能会引入一定的误差。
二、精确数的定义和特点精确数是指一个数值的严格准确表达。
精确数可以是整数、分数或无限小数等形式。
精确数不会舍入或近似,其大小和值都是准确无误的。
精确数有以下几个主要特点:1. 完全准确:精确数可以提供精确的数值和精确的计算结果。
2. 无限精确位:精确数可以使用无限的精确位来表达,精确到任意小数位或整数位。
3. 精确运算:对精确数进行运算时,可以得到精确的结果。
三、近似数与精确数的比较近似数和精确数在表达方式和计算方式上存在明显的差异。
下面通过几个例子来进行比较:1. π的近似数和精确数:- 近似数:3.14- 精确数:π近似数3.14是对π的一个近似描述,而π本身是一个无限不循环小数,其精确值无法被有限小数准确表达。
2. 分数和小数的区别:- 近似数:0.3333- 精确数:1/3近似数0.3333是对1/3的一种近似,而1/3作为一个分数,其精确值是无限循环的小数0.333...。
3. 计算结果的近似和精确:- 近似数:0.6667- 精确数:2/3近似数0.6667是对2/3的近似结果,而2/3本身是一个精确的分数。
四、近似数和精确数的应用近似数和精确数在数学和实际应用中都有各自的用途。
1.7 近似数1.准确数与近似数的意义(1)准确数(精确数)是与实际完全符合的数如七年级(1)班的人数是45人,一个单位的车辆数是29辆等,45和29就是准确数.近似数是与实际非常接近的数.如我国约有13.4亿人口,地球半径约为6.37×106m等.这里的13.4亿和6.37×106都是近似数.(2)产生近似数的主要原因①“计算”产生近似数,如除不尽,有圆周率π参加计算的结果等;②用测量工具测出的量一般都是近似数,如长度、重量、时间等;③不容易得到,或不可能得到准确数时,只能得到近似数,如调查池塘中鱼的尾数,结果就只能是一个近似数;④由于不必要知道准确数而产生近似数.【例1】下列各题中的数据,哪些是精确数?哪些是近似数?(1)某字典共有1 234页;(2)我们班级有97人,买门票大约需要800元;(3)小红测得数学书的长度是21.0厘米.分析:(1)字典的页数是不需要估计的或测量的,有多少页是固定的,所以1 234是一个精确数;(2)一个班级的人数是不需要估计的,而是确定的,所以97是一个精确数,买门票大约需要800元是一个估计值,所以800是一个近似数;(3)测量的结果都是近似的,所以21.0是一个近似数.解:(1)1 234是精确数;(2)97是精确数,800是近似数;(3)21.0是近似数.2.精确度(1)误差近似值与准确值的差,叫做误差,即误差=近似值-准确值.误差可能是正数,也可能是负数,误差的绝对值越小,近似值就越接近准确值,也就是近似程度越高.(2)精确度近似数与准确数的接近程度,通常用精确度表示.近似数一般由四舍五入法取得,四舍五入到某一位,就说这个近似数精确到那一位.如一个近似数M精确到十分位后的近似值是3.4,那么这个近似数M的取值范围是:3.35≤M<3.45.具体地做法是一个近似数要求精确到哪一位,只要从它的下一位四舍五入即可,按要求求近似数不能连续从末位向前四舍五入.如将数3.0246四舍五入到百分位,应从4开始四舍五入得3.02,而不是从6开始得3.03.【例2】用四舍五入法,按要求对下列各数取近似值:(1)38 063(精确到千位);(2)0.403 0(精确到百分位);(3)0.028 66(精确到0.000 1);(4)3.548 6(精确到十分位).分析:四舍五入要按题目要求精确到哪一位,然后确定这一位后面的数字是“舍”,还是“入”,只能四舍五入一次.(1)题的近似值中看不出它们的精确度,所以必须用科学记数法表示.精确到某一位时,应看它的下一位数字,若不小于5,则进一,否则舍去,另外最后一位是0的近似数不要将0去掉,否则精确度就变了.解:(1)38 063=3.806 3×104≈3.8×104;(2)0.403 0≈0.40;(3)0.028 66≈0.028 7;(4)3.548 6≈3.5.3.精确度的确定一个近似数四舍五入到哪一位,我们就说这位数精确到哪一位.(1)普通数直接判断.(2)科学记数法形式(形如a×10n).这类数先还原成普通数,再看a最右边的数字在什么数位上,在什么数位上就是精确到什么数位.(3)带有“文字单位”的近似数,在确定它的精确度时,分两种情况:当“文字单位”前面的数是整数时,则近似数精确到“文字单位”,当“文字单位”前面的数是小数时,则先将近似数还原成原来的数,再看最右边的数字的位置.【例3】(1)已知数549 039用四舍五入法得到的近似数是5.5×105,则所得近似数精确到().A.十位B.千位C.万位D.百位(2)某种鲸的体重约为1.36×105 kg.关于这个近似数,下列说法正确的是().A.精确到百分位B.精确到个位C.精确到百位D.精确到千位(3)12.30万精确到().A.千位B.百分位C.万位D.百位解析:(1)5.5×105精确到小数点后第一位,而5.5×105=550 000,小数点后第一位在万位上,所以精确到万位.(2)1.36×105kg最后一位的6表示6千.(3)12.30万还原成原来的数是123 000,所以精确到的数位是百位,故选D.答案:(1)C(2)D(3)D4.求近似数的范围如果一个数x的近似数为a,那么x可能取值的范围是:a-M≤x<a+M,如近似数1.20所表示的准确数x的取值范围是1.20-0.005≤x<1.20+0.005,即1.195≤x<1.205;又如近似数4.7×103所表示的准确数x的取值范围是4 700-50≤x<4 700+50,即4 650≤x<4 750.析规律如何求近似数的取值范围求近似数的取值范围时,只要把原近似数加上(减去)精确到的最后一个数位的半个单位即可得到近似数的取值范围.【例4】若k的近似值为4.3,求k的取值范围.分析:一个数的近似值为4.3,表明这个近似值是精确到十分位的近似数.十分位上的数字3是由下一位即百分位上的数字四舍五入得到的,如果百分位上的数字是0,1,2,3,4中的任意一个,根据四舍五入取近似值的方法,应该把百分位上的数字舍去,那么就要求k的十分位上的数字必须是3,才能保证近似数是4.3.若k的百分位上的数字是5,6,7,8,9中的任意一个,根据四舍五入取近似值的方法,应该把百分位上的数字去掉后,在十分位的数字上加1,那么就要求k的十分位上的数字必须是2,才能得到近似数4.3.综上所述,k只能取大于或等于4.25且小于4.35之间的数,才能保证得到精确到0.1的近似值是4.3.解:∵4.3-0.05≤k<4.3+0.05,∴4.25≤k<4.35.5.近似数在现实生活情境中的运用近似数的取法通常有以下几种:①四舍五入法,如,教室的宽度是6.025米,若要四舍五入到百分位即为6.03米;若要四舍五入到十分位即为6.0米;若要四舍五入到个位即为6米.②去尾法,如做一套西服需2.5米的面料,若现有47米的布料,问能做多少套衣服.由计算知可做18.8(套),想想看,这现实吗?而事实上,这里的尾数0.8就只能舍去了,而不能用四舍五入法,这种舍去尾数的方法叫做去尾法.③进一法,如现有100吨砂石,每辆卡车载重8吨,若要求一次运完应需几辆卡车?由计算可得12.5(辆),这里显然应需13辆卡车,因此就必须把十分位上的5进上去,这种方法就是进一法.上面的三种近似数的表示方法都各有用途,应根据具体问题具体运用,不能盲目取舍.【例5-1】全班51人参加100米短跑测验,每6人一组,问至少要分几组?分析:由于51÷6=8(组)……3(人),即分成8组后还剩下3人,所以采用进一法,分成9组.解:51÷6=8(组)……3(人),8+1=9(组),所以至少要分9组.【例5-2】一辆汽车要装4只轮胎,50只轮胎能装配几辆汽车?分析:由于50÷4=12(辆)……2(只),即能装配12辆汽车后还剩下2只轮胎,所以采用去尾法,能装配12辆汽车.解:50÷4=12(辆)……2(只),所以能装配12辆汽车.【例5-3】一根方便筷子的长,宽,高大约为0.5 cm,0.4 cm,20 cm,估计1 000万双方便筷子要用多少木材?这些木材要砍伐半径为0.1米、高10米(除掉不可用的树梢)的大树多少棵?(精确到个位)分析:长方体的体积公式V=abc,圆柱的体积公式V=πr2h.解:一双筷子的体积为2×0.4×0.5×20=8 (cm3),1 000万双筷子的体积为1 000×10 000×8=8×107 cm3=80 (m3),一棵大树的体积为π×0.12×10≈0.314 (m3),1 000万双筷子要砍伐大树的棵数为80÷0.314≈255.。
《近似数》知识点解读知识点1 准确数与近似数的意义准确数是与实际完全符合的数,如班级的人数,一个单位的车辆数等等.近似数是与实际非常接近的数,如我国有12亿人口,地球半径为6.37×106m 等等.例1 有下列数据:(1)某城市约有100万人口;(2)三角形有3条边;(3)小红家有3口人;(4)小明身高大约150cm;(5)课桌一边长约为60cm,其中近似数有( )A.1个(B)2个(C)3个(D)4个分析:(1)、(4)、(5)三个语句中带有“约有”“大约”“约为”字样,显然其后面的数据都是近似数.“三角形有3条边”中的3,“小红家有3口人”中的3都是准确数字.解答:C小结:在实际生活中经常要用到准确数和近似数,正确区分会使表达更为严密.知识点2 近似数的精确度1、精确度是描述一个近似数的近似程度的量.2、一般地,一个数四舍五入到了哪一位,就说这个数精确到了哪一位.如:近似数1345.785,(1)如果保留整数为1346,即1345.785≈1346,精确到个位;(2)精确到十位为1350,即1345.785≈1350;(3)精确到十分位为1345.8,即1345.785≈1345.8.注意:精确到哪一位,要把下一位四舍五入,不能从后纪委向前赶着进1.如:123.45保留整数时,123.45≈123,而不能123.45≈123.5≈124.3、何时用科学记数法表示近似数:当精确度要求精确到某一位的后一位时,应将近似数用科学记数法写出.例2用四舍五入法,按要求对下列各数取近似值.(1)0.90149(精确到千分位) (2)0.4030(精确到百分位);(3)0.02866(精确到0.0001) (4)3.5486(精确到十分位).分析:四舍五入要按题目要求精确到哪一位,然后确定这一位后面的数字是”舍”,还是“入”,只能四舍五入一次.解(1)0.90149≈0.901;(2)0.4030≈0.40;(3)0.02866≈0.0287;(4)3.5486≈3.5.小结:精确到某一位时,应看它的下一位数字,若不小于5,则进一,否则舍去,另外最后一位是0的近似数不要将0去掉,否则精确度就变了.对于一个用科学记数法N=a×10n(1≤a<10,n为正整数)所表示的数N,其精确度由n和a的小数的位数确定.例3 下列由四舍五入法得到的近似数各精确到哪一位?(1)2.4×102;(2)3.04×104;(3)5.0×105(4)1.02×106分析:这个数的最末一位处在哪一位,就说它精确到哪一位.解(1)2.4×102精确到十位;(2)3.04×104精确到百位;(3)5.0×105精确到万位;(4)1.02×106精确到万位.小结:在确定科学记数法表示的数的精确度时,常会忽略“10n”.所以在学习中一定要细心.。
准确数和近似数的概念
准确数:即这个数的最原始数据,没有经过约分、化简、或者四舍五入等任何运算之前的表达方法。
近似数:近似数即经过四舍五入、进一法或者去尾法等方法得到的一个与原始数据相差不大的一个数
求近似数的方法:
1.四舍五入法
这种最常用的求近似数的方法,主要是看它省略的尾数是4或比4小时,就把尾数舍去;如果省略的尾数最高位上的数是5或比5大时,把尾数省略去掉后,要向前一位进一。
如3096401≈310万,1÷3=0.333……≈0.3。
从上面两例可以看出“四舍”时近似数比准确值小,“五入”时近似数比准确值大。
2.进一法
在实际生活中,有时把一个数的尾数省略后,不管尾数最高位上的数是几,都要向前一位进一。
比如一辆车能容纳4个人,现在有15个人,则需要的车辆数目为15除以4等于3.75约定于4
3.去尾法
在实际生活中,有时把一个数的尾数省略后,不管尾数的最高位上的数是几,都不要向它的前一位进一。
例如一个牛皮盒子需要3平方分米的牛皮才能完成,而现在只有10平方分米的牛皮,则只能完成10除以3等于3,3约等于3个
这三种求近似数的方法,各自适用于不同的情况,一般来说,如果没有特殊要求或其他条件的限制时,都应采取四舍五入法。
最后,有些时候需要用科学计数法表达。