(时间管理)时间序列分析方法第章谱分析
- 格式:docx
- 大小:109.26 KB
- 文档页数:5
时间序列分析方法第章谱分析HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第六章 谱分析 Spectral Analysis到目前为止,t 时刻变量t Y 的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为:我们研究的重点在于,这个结构对不同时点t 和τ上的变量t Y 和τY 的协方差具有什么样的启示。
这种方法被称为在时间域(time domain)上分析时间序列+∞∞-}{t Y 的性质。
在本章中,我们讨论如何利用型如)cos(t ω和)sin(t ω的周期函数的加权组合来描述时间序列t Y 数值的方法,这里ω表示特定的频率,表示形式为:上述分析的目的在于判断不同频率的周期在解释时间序列+∞∞-}{t Y 性质时所发挥的重要程度如何。
如此方法被称为频域分析(frequency domain analysis)或者谱分析(spectral analysis)。
我们将要看到,时域分析和频域分析之间不是相互排斥的,任何协方差平稳过程既有时域表示,也有频域表示,由一种表示可以描述的任何数据性质,都可以利用另一种表示来加以体现。
对某些性质来说,时域表示可能简单一些;而对另外一些性质,可能频域表示更为简单。
§ 母体谱我们首先介绍母体谱,然后讨论它的性质。
6.1.1 母体谱及性质 假设+∞∞-}{t Y 是一个具有均值μ的协方差平稳过程,第j 个自协方差为:假设这些自协方差函数是绝对可加的,则自协方差生成函数为:这里z 表示复变量。
将上述函数除以π2,并将复数z 表示成为指数虚数形式)ex p(ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱:注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞∞-}{j γ,原则上都可以计算)(ωY s 的数值。
利用De Moivre 定理,我们可以将j i e ω-表示成为: 因此,谱函数可以等价地表示成为:注意到对于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为:利用三角函数的奇偶性,可以得到: 假设自协方差序列+∞∞-}{j γ是绝对可加的,则可以证明上述谱函数)(ωY s 存在,并且是ω的实值、对称、连续函数。
第六章 谱分析 Spectral Analysis到目前为止,t 时刻变量t Y 的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为:我们研究的重点在于,这个结构对不同时点t 和τ上的变量t Y 和τY 的协方差具有什么样的启示。
这种方法被称为在时间域(time domain)上分析时间序列+∞∞-}{t Y 的性质。
在本章中,我们讨论如何利用型如)cos(t ω和)sin(t ω的周期函数的加权组合来描述时间序列t Y 数值的方法,这里ω表示特定的频率,表示形式为:上述分析的目的在于判断不同频率的周期在解释时间序列+∞∞-}{t Y 性质时所发挥的重要程度如何。
如此方法被称为频域分析(frequency domain analysis)或者谱分析(spectral analysis)。
我们将要看到,时域分析和频域分析之间不是相互排斥的,任何协方差平稳过程既有时域表示,也有频域表示,由一种表示可以描述的任何数据性质,都可以利用另一种表示来加以体现。
对某些性质来说,时域表示可能简单一些;而对另外一些性质,可能频域表示更为简单。
§6.1 母体谱我们首先介绍母体谱,然后讨论它的性质。
6.1.1 母体谱及性质假设+∞∞-}{t Y 是一个具有均值μ的协方差平稳过程,第j 个自协方差为:假设这些自协方差函数是绝对可加的,则自协方差生成函数为:这里z 表示复变量。
将上述函数除以π2,并将复数z 表示成为指数虚数形式)exp (ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱:注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞∞-}{j γ,原则上都可以计算)(ωY s 的数值。
利用De Moivre 定理,我们可以将j i e ω-表示成为:因此,谱函数可以等价地表示成为:注意到对于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为:利用三角函数的奇偶性,可以得到:假设自协方差序列+∞∞-}{j γ是绝对可加的,则可以证明上述谱函数)(ωY s 存在,并且是ω的实值、对称、连续函数。
时间序列分析法时间序列分析是一种广泛应用于统计学和经济学领域的方法,它专门用于处理具有时间依赖性的数据。
时间序列数据是按时间顺序排列的一组观测值,例如股票价格、气温变化、经济指标等。
时间序列分析的目标是从历史数据中提取模式、趋势和周期以及预测未来的数据走势。
时间序列分析包括了多种方法和技术,下面将介绍其中几种常用的方法:1. 均值模型均值模型是最简单的时间序列模型之一,它假设时间序列的未来值将等于过去几期的平均值。
均值模型最常用的是移动平均模型(MA)和指数平滑模型(ES)。
移动平均模型根据过去几期的观测值对未来值进行预测,而指数平滑模型则给予较大权重给近期的观测值。
2. 趋势分析趋势分析用于识别时间序列中的长期趋势。
常用的趋势分析方法包括线性趋势分析、多项式回归分析以及指数平滑趋势分析。
这些方法主要是通过拟合一个数学模型来描述时间序列的趋势,然后根据模型对未来走势进行预测。
3. 季节性分析季节性分析用于识别和预测时间序列中的季节性模式。
常用的季节性分析方法包括季节性平均法、回归分析以及季节性指数平滑法。
这些方法可以通过拟合一个季节性模型来描述时间序列的季节性变动,并进行未来的预测。
4. 自回归移动平均模型(ARMA)ARMA模型是一种将自回归模型(AR)和移动平均模型(MA)结合起来的时间序列模型。
AR模型通过过去的观测值对未来值进行预测,而MA模型则根据过去的误差对未来值进行预测。
ARMA模型可以通过估计AR和MA参数来对时间序列进行预测。
5. 自回归积分移动平均模型(ARIMA)ARIMA模型是一种将自回归模型(AR)和移动平均模型(MA)与差分运算结合起来的时间序列模型。
ARIMA模型可以通过求解差分参数来对非平稳时间序列进行预测。
差分运算可以减少时间序列的趋势和季节性,使其更具平稳性。
以上是常用的时间序列分析方法,每种方法都有其适用性和局限性。
在实际应用中,根据具体情况选择合适的方法进行分析和预测。
【分享】应用时间序列分析课后答案在学习应用时间序列分析这门课程时,课后答案对于我们巩固知识、检验学习成果以及发现自身的不足之处都具有重要的意义。
下面,我将为大家分享一下这门课程的课后答案,并结合答案对一些重点和难点问题进行分析和讲解。
首先,让我们来看看第一章的课后答案。
第一章主要介绍了时间序列分析的基本概念和方法,包括时间序列的定义、分类以及平稳性的概念等。
在课后习题中,有这样一道题:“请解释什么是时间序列,并举例说明。
”答案是:“时间序列是按时间顺序排列的一组数据。
例如,某地区每天的气温记录、股票市场每天的收盘价、某工厂每月的产量等都是时间序列。
”通过这道题,我们可以更清晰地理解时间序列的概念,并且能够将其与实际生活中的例子相结合,加深对知识的理解。
另一道题是:“判断一个时间序列是否平稳的方法有哪些?”答案为:“常见的方法有观察序列的均值、方差是否随时间变化;自相关函数是否只与时间间隔有关,而与时间起点无关等。
”这道题帮助我们掌握了判断时间序列平稳性的关键要点。
第二章主要讲解了时间序列的模型,如 AR 模型、MA 模型和ARMA 模型等。
比如,有这样一道习题:“请简述 AR(1)模型的表达式和特点。
”答案是:“AR(1)模型的表达式为 Xt =φXt-1 +εt,其中φ 为自回归系数,εt 为白噪声。
其特点是当前值主要由前一期的值和随机扰动项决定。
”通过这个答案,我们能够明确 AR(1)模型的数学形式和基本特征。
还有一道题是:“比较 AR 模型和 MA 模型的异同。
”答案从模型的表达式、参数含义、适用情况等方面进行了详细的比较,让我们对这两种模型有了更全面的认识。
第三章涉及时间序列的预测方法。
像“简述时间序列预测的基本步骤”这道题,答案是:“首先对时间序列进行平稳性检验和预处理;然后选择合适的模型进行拟合;接着对模型进行参数估计和诊断检验;最后利用模型进行预测。
”这个答案为我们提供了一个清晰的预测流程框架。
时间序列分析法概述时间序列分析(Time Series Analysis)是一种对时间序列数据进行统计分析和预测的方法。
时间序列数据是以时间顺序排列的、按一定时间间隔收集到的一系列数据观测值。
时间序列分析通过对过去的数据进行分析,揭示出数据内部的规律和变化趋势,从而对未来的数据进行预测和模拟。
时间序列分析方法广泛应用于经济学、金融学、工程学、气象学等领域,可以用于分析和预测股票价格、销售数据、气温变化等各种现象。
时间序列分析方法包括描述性统计分析、平稳性检验、自相关与偏相关分析、谱分析、移动平均模型和自回归模型等。
描述性统计分析是时间序列分析的起点,其目的是对时间序列数据的基本特征进行描述和总结。
描述性统计分析通常包括计算数据的均值、方差、极值等指标,以及绘制数据的线图、直方图等图形。
通过对描述性统计分析的结果进行观察和比较,可以初步了解数据的分布和趋势。
平稳性检验是时间序列分析的基础,其目的是判断时间序列数据是否具有平稳性。
平稳性是指时间序列数据的统计特性在不同时间段内是相似的,即均值和方差不随时间的变化而变化。
常用的平稳性检验方法有ADF检验和KPSS检验。
如果时间序列数据不具有平稳性,需要进行平稳化处理,以满足时间序列分析的前提条件。
自相关与偏相关分析是时间序列分析中的重要内容,其目的是研究时间序列数据之间的相关性和连接性。
自相关是指时间序列数据与其在不同时间点上的滞后值之间的相关性,反映了时间序列数据的时间间隔相关性。
偏相关是在控制其他变量的影响下,研究两个时间序列数据之间的相关性。
通过自相关与偏相关分析,可以揭示时间序列数据内部的规律和关系。
谱分析是时间序列分析的重要方法之一,其目的是研究时间序列数据的频率特征和功率谱密度。
谱分析基于傅里叶变换,将时间序列数据转换到频域分析。
谱分析可以揭示时间序列数据的周期性和趋势性,为进一步的数据分析和预测提供依据。
移动平均模型是一种常用的时间序列预测方法,它基于过去若干个时间点的数据,预测未来一个时间点的数据。
时间序列分析的方法时间序列分析是一种用于研究和预测时间相关数据的方法。
时间序列数据是按照一定时间间隔收集到的连续观测值,如每月销售数据、每日气温、每小时股票价格等。
通过对时间序列数据的分析,我们可以揭示数据的趋势、季节性变动以及随机波动等重要特征,从而为未来的预测和决策提供参考。
时间序列分析方法主要分为描述性分析、平滑法、分解法、平稳性检验、模型建立和模型预测等几个步骤。
首先是描述性分析,通过绘制时间序列图,可以直观地观察数据的变动趋势和周期性。
时间序列图包括横坐标表示时间,纵坐标表示观测值。
通常可以采用折线图、柱状图、散点图等图形来表示。
观察时间序列图,可以初步判断数据的趋势、季节性变动和长期趋势等。
其次是平滑法,平滑法是对时间序列数据进行平滑处理的方法,旨在去除数据中的随机波动,使数据变得更加平稳。
常用的平滑法包括移动平均法和指数平滑法。
移动平均法是通过计算数据某一时期的平均值来平滑数据,可以计算不同长度的移动平均值,如3期移动平均、5期移动平均等。
指数平滑法是用一个加权平均数来预测未来的值。
加权平均数的权重越大,对最新的数据影响也越大。
第三是分解法,分解法是将时间序列数据分解为趋势、季节性和随机波动几个部分,以便更好地理解数据的变动。
常用的分解方法有加法模型和乘法模型。
加法模型是将数据分解为趋势、周期性和残差之和,乘法模型是将数据分解为趋势、周期性和残差之积。
通过对分解后的数据进行分析,可以更好地理解数据的特点和规律。
第四是平稳性检验,平稳性是时间序列数据分析的重要假设之一。
平稳性指的是时间序列数据的均值、方差和自协方差在时间上保持不变。
常用的平稳性检验方法有单位根检验、ADF检验、KPSS检验等。
通过平稳性检验,可以判断数据是否具有宏观的趋势、季节性和周期性,从而确定是否需要进行进一步的模型建立和分析。
第五是模型建立,时间序列分析的核心是建立合适的模型来描述和预测数据。
常用的时间序列模型有ARIMA模型、ARCH模型、GARCH模型、VAR模型等。
第六章谱分析Spectral Analysis到目前为止,时刻变量的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为:我们研究的重点在于,那个结构对不同时点和上的变量和的协方差具有什么样的启发。
这种方法被称为在时刻域(time domain)上分析时刻序列的性质。
在本章中,我们讨论如何利用型如和的周期函数的加权组合来描述时刻序列数值的方法,那个地点表示特定的频率,表示形式为:上述分析的目的在于推断不同频率的周期在解释时刻序列性质时所发挥的重要程度如何。
如此方法被称为频域分析(frequency domain analysis)或者谱分析(spectral analysis)。
我们将要看到,时域分析和频域分析之间不是相互排斥的,任何协方差平稳过程既有时域表示,也有频域表示,由一种表示能够描述的任何数据性质,都能够利用另一种表示来加以体现。
对某些性质来讲,时域表示可能简单一些;而对另外一些性质,可能频域表示更为简单。
§6.1 母体谱我们首先介绍母体谱,然后讨论它的性质。
6.1.1 母体谱及性质假设是一个具有均值的协方差平稳过程,第个自协方差为:假设这些自协方差函数是绝对可加的,则自协方差生成函数为:∑+∞-∞==j jj Y z z g γ)(那个地点z 表示复变量。
将上述函数除以π2,并将复数z 表示成为指数虚数形式)ex p(ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱:∑+∞-∞=--==j j i j i Y Y e e g s ωωγππω21)(21)(注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞∞-}{j γ,原则上都能够计算)(ωY s 的数值。
利用De Moivre 定理,我们能够将j i e ω-表示成为:)sin()cos(j i j e j i ωωω-=-因此,谱函数能够等价地表示成为:∑+∞-∞=-=j j Y j i j s )]sin()[cos(21)(ωωγπω注意到关于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为:⎭⎬⎫⎩⎨⎧----++-=∑+∞=10)]sin()sin()cos()[cos(21)]0sin()0[cos(21)(j j Y j i j i j j i s ωωωωγπγπω 利用三角函数的奇偶性,能够得到:⎭⎬⎫⎩⎨⎧+=∑+∞=10)cos(221)(j jY j s ωγγπω 假设自协方差序列+∞∞-}{j γ是绝对可加的,则能够证明上述谱函数)(ωY s 存在,同时是ω的实值、对称、连续函数。
(时间管理)第章平稳时间序列分析第3章平稳时间序列分析本章教学内容和要求:了解时间序列分析的方法性工具;理解且掌握ARMA模型的性质;掌握时间序列建模的方法步骤及预测;能够利用软件进行模型的识别、参数的估计以及序列的建模和预测。
本章教学重点和难点:利用软件进行模型的识别、参数的估计以及序列的建模和预测。
计划课时:21(讲授16课时,上机3课时、习题3课时)教学方法和手段:课堂讲授和上机操作§3.1方法性工具壹个序列经过预处理被识别为平稳非白噪声序列,那就说明该序列是壹个蕴含着关联信息的平稳序列。
于统计上,我么通常是建立壹个线性模型来拟合该序列的发展,借此提取该序列中的有用信息。
ARMA(autoregressionmovingaverage)模型是目前最常用的壹个平稳序列拟合模型。
时间序列分析中壹些常用的方法性工具能够使我们的模型表达和序列分析更加简洁、方便。
壹、差分运算(壹)p阶差分相距壹期的俩个序列值之间的减法运算称为1阶差分运算。
记▽为的1阶差分:▽对1阶差分后的序列再进行壹次1阶差分运算称为2阶差分,记▽2为的2阶差分:▽2=▽-▽以此类推,对p-1阶差分厚序列再进行壹次1阶差分运算称为p阶差分。
记▽p为的p阶差分:▽p=▽p-1-▽p-1(二)k步差分相距k期的俩个序列值之间的减法运算称为k步差分运算。
记▽k为的k步差分:▽k=例:简单的序列::6,9,15,43,8,17,20,38,4,10,1阶差分:▽▽……▽,即1阶差分序列▽:3,6,28,-35,9,3,18,-34,6,2阶差分:▽2=▽-▽=3▽2=▽-▽=22……▽2=▽-▽=-40即2阶差分序列▽2:3,22,-63,-54,-6,16,-52,-40,2步差分:▽2▽2……▽2即2步差分序列:9,34,-7,-26,12,21,-16,-28二、延迟算子(滞后算子)(壹)定义延迟算子类似于壹个时间指针,当前序列值乘以壹个延迟算子,就相当于把当前序列值的时间向过去拨去了壹个时刻。
第六章 谱分析 S p e c t r a l A n a l y s i s到目前为止,t 时刻变量t Y 的数值一般都表示成为一系列随机扰动的函数形式,一般的模型形式为:我们研究的重点在于,这个结构对不同时点t 和τ上的变量t Y 和τY 的协方差具有什么样的启示。
这种方法被称为在时间域(time domain)上分析时间序列+∞∞-}{t Y 的性质。
在本章中,我们讨论如何利用型如)cos(t ω和)sin(t ω的周期函数的加权组合来描述时间序列t Y 数值的方法,这里ω表示特定的频率,表示形式为:上述分析的目的在于判断不同频率的周期在解释时间序列+∞∞-}{t Y 性质时所发挥的重要程度如何。
如此方法被称为频域分析(frequency domain analysis)或者谱分析(spectral analysis)。
我们将要看到,时域分析和频域分析之间不是相互排斥的,任何协方差平稳过程既有时域表示,也有频域表示,由一种表示可以描述的任何数据性质,都可以利用另一种表示来加以体现。
对某些性质来说,时域表示可能简单一些;而对另外一些性质,可能频域表示更为简单。
§6.1 母体谱我们首先介绍母体谱,然后讨论它的性质。
6.1.1 母体谱及性质 假设+∞∞-}{t Y 是一个具有均值μ的协方差平稳过程,第j 个自协方差为: 假设这些自协方差函数是绝对可加的,则自协方差生成函数为:这里z 表示复变量。
将上述函数除以π2,并将复数z 表示成为指数虚数形式)ex p(ωi z -=,1-=i ,则得到的结果(表达式)称为变量Y 的母体谱:注意到谱是ω的函数:给定任何特定的ω值和自协方差j γ的序列+∞∞-}{j γ,原则上都可以计算)(ωY s 的数值。
利用De Moivre 定理,我们可以将j i e ω-表示成为: 因此,谱函数可以等价地表示成为:注意到对于协方差平稳过程而言,有:j j -=γγ,因此上述谱函数化简为: 利用三角函数的奇偶性,可以得到: 假设自协方差序列+∞∞-}{j γ是绝对可加的,则可以证明上述谱函数)(ωY s 存在,并且是ω的实值、对称、连续函数。
(时间管理)时间序列分析方法第章谱分析第六章谱分析SpectralAnalysis到目前为止,时刻变量的数值壹般均表示成为壹系列随机扰动的函数形式,壹般的模型形式为:我们研究的重点于于,这个结构对不同时点和上的变量和的协方差具有什么样的启示。
这种方法被称为于时间域(timedomain)上分析时间序列的性质。
于本章中,我们讨论如何利用型如和的周期函数的加权组合来描述时间序列数值的方法, 这里表示特定的频率,表示形式为:上述分析的目的于于判断不同频率的周期于解释时间序列性质时所发挥的重要程度如何。
如此方法被称为频域分析(frequencydomainanalysis)或者谱分析(spectralanalysis)。
我们将要见到,时域分析和频域分析之间不是相互排斥的,任何协方差平稳过程既有时域表示,也有频域表示,由壹种表示能够描述的任何数据性质,均能够利用另壹种表示来加以体现。
对某些性质来说,时域表示可能简单壹些;而对另外壹些性质,可能频域表示更为简单。
§6.1 母体谱我们首先介绍母体谱,然后讨论它的性质。
6.1.1 母体谱及性质假设是壹个具有均值的协方差平稳过程,第个自协方差为:假设这些自协方差函数是绝对可加的,则自协方差生成函数为:这里表示复变量。
将上述函数除以,且将复数表示成为指数虚数形式,,则得到的结果(表达式)称为变量的母体谱:注意到谱是的函数:给定任何特定的值和自协方差的序列,原则上均能够计算的数值。
利用DeMoivre 定理,我们能够将表示成为:因此,谱函数能够等价地表示成为:注意到对于协方差平稳过程而言,有:,因此上述谱函数化简为:利用三角函数的奇偶性,能够得到:假设自协方差序列是绝对可加的,则能够证明上述谱函数存于,且且是的实值、对称、连续函数。
由于对任意,有:,因此是周期函数,如果我们知道了内的所有的值,我们能够获得任意时的值。
§6.2 不同过程下母体谱的计算假设随机过程服从过程:这里:,根据前面关于过程自协方差生成函数的推导:因此得到过程的母体谱为:例如,对白噪声过程而言,,这时它的母体谱函数是常数:下面我们考虑过程,此时:,则母体谱为:能够化简成为:显然,当时,谱函数于内是的单调递减函数;当时,谱函数于内是的单调递增函数。
对过程而言,有:这时只要,则有:,因此谱函数为:该谱函数的性质为:当时,谱函数于内是的单调递增函数;当时,谱函数于内是的单调递减函数。
壹般地,对过程而言:则母体谱函数为:如果移动平均和自回归算子多项式能够进行下述因式分解:则母体谱函数能够表示为:从母体谱函数中计算自协方差如果我们知道了自协方差序列,原则上我们就能够计算ft任意的谱函数的数值。
反过来也是对的:如果对所有于内的,已知谱函数的数值,则对任意给定的整数k,我们也能够计算k 阶自协方差。
这意味着母体谱函数和自协方差序列包含着相同的信息。
其中任何壹个均无法为我们提供另外壹个无法给ft的推断。
下面的命题为从谱函数计算自协方差提供了壹个有用的公式:命题 6.1 假设是绝对可加的自协方差序列,则母体谱函数和自协方差之间的关系为:上述公式也能够等价地表示为:利用上述谱公式,能够实现谱函数和自协方差函数之间的转换。
解释母体谱函数假设,则利用命题 6.1 能够得到时间序列的方差,即,计算公式为:根据定积分的几何意义,上式说明母体谱函数于区间内的面积就是,也就是过程的方差。
更壹般的,由于谱函数是非负的,对任意,如果我们能够计算:这个积分结果也是壹个正的数值,能够解释为的方差中和频率的绝对值小于的成分关联的部分。
注意到谱函数也是对称的,因此也能够表示为:这个积分表示频率小于的随机成分对方差的贡献。
可是,频率小于的随机成分对方差的贡献意味着什么?为了探索这个问题,我们考虑更为特殊壹些的时间序列模型:这里和是零均值的随机变量,这意味着对所有时间t,有。
进壹步假设序列和是序列不关联和相互不关联的:,,对所有的j 和k这时的方差是:因此,对这个过程来说,具有频率的周期成分对的方差的贡献部分是。
如果频率是有顺序的:,则的方差中由频率小于或者等于的周期形成的部分是:。
这种情形下的k 阶自协方差为:因为过程的均值和自协方差函数均不是时间的函数,因此这个过程是协方差平稳过程。
可是,能够验证此时的自协方差序列不是绝对可加的。
虽然于上述过程中,我们已经过程的方差分解为频率低于某种程度的周期成分的贡献, 我们能够这样做的原因于于这个过程是比较特殊的。
对于壹般的情形,著名的谱表示定理(thespectralrepresentationtheorem)说明:任何协方差平稳过程均能够表示成为不同频率周期成分的和形式。
对任意给定的固定频率,我们定义随机变量和,且假设能够将壹个具有绝对可加自协方差的协方差平稳过程表示为:这里需要对随机变量和的关联性给ft更为具体的假设,可是上述公式便是谱表示定理的壹般形式。
§6.2 样本周期图SamplePeriodogram对壹个具有绝对可加自协方差的协方差平稳过程,我们已经定义于频率处的谱函数值为:,注意到母体谱是利用表示的,而表示的是母体的二阶矩性质。
给定由表示的T 个样本,我们能够利用下述公式计算直到阶的样本自协方差:,对于给定的,我们能够获得母体谱密度对应的样本情形,我们称其为样本周期图:样本周期图也能够表示成为如下形式:类似地,我们能够证明样本周期图下的面积等于样本方差:样本周期图也是关于原点对称的,因此也有:更为重要的是,谱表示定理于样本情形也有类似的表示。
我们将要说明,对于平稳过程的任意壹个容量为的观测值序列,存于频率和系数,,使得期的值能够表示成为:其中:当时,和不关联;当时,和不关联;对于所有的和,和不关联。
的样本方差是,该方差中能够归因于频率为的周期成分的部分由样本周期图给ft。
我们对样本容量是奇数的情形展开讨论上述谱表示模式。
这时能够表示成为由个不同频率组成的周期函数,频率如下:,……,因此最高频率为:我们考虑基于常数项、正弦函数和余弦函数的线性回归:将这个回归方程表示成为下述方式:其中:,这是壹个具有个解释变量的回归方程,因此解释变量和观测值是壹样多的。
我们将证明解释变量之间是线性无关的,这意味着基于回归的OLS 预计具有惟壹解。
该回归方程的系数具有显著的统计意义:表示中能够归因于频率的周期成分的那部分。
这就是说,任意观测到的序列,它均能够利用上述周期函数形式表示,且且不同频率的周期成分对方差的贡献均能够于样本周期图中找到。
命题6.2假设样本容量是奇数,定义,且设定,,假设解释变量为:则有:进壹步,假设是任意个实数,则下述推断成立:(a)过程能够表示为:这里:,(b)的样本方差能够表示为:样本方差能够归因于频率为的周期成分的部分为。
(c)的样本方差中能够归因于频率为的周期成分的部分仍能够表示为:其中是样本周期图于频率处的值。
上述结果说明,是对角矩阵,这意味着包含于向量中的向量之间是相互正交的。
这个命题分断言:任何奇数个观测到的时间序列能够表示成为壹个常数加上具有个不同频率的个周期成的加权和。
当是偶数整数的时候,类似的结果也是成立的。
因此,这个命题给ft了类似谱表示定理的有限样本的类似情况。
这个命题进壹步表明了样本周期图的特征是将的方差按部分分解为不同频率的周期成分的贡献。
注意到解释的方差的频率均落于区间中。
为什么不使用负的频率?假设数据确实是由上述过程的壹种特殊情形生成的:这里代表某个特殊的负频率,和是零均值的随机变量,利用三角函数的奇偶性,能够将表示为:因此,利用上述式子无法从数据中识别数据是从正发频率仍是负的频率生成的。
这时壹种简单的方式是假设数据是从具有正的频率中生成的。
为什么只考虑作为最大的频率呢?假设数据真的是从频率的周期函数中生成的,例如:这时正弦和余弦函数的周期性质表明,上式能够表示成为:因此,根据以前的讨论,具有频率的周期于观测值上等价于具有频率的周期。
注意到频率和周期之间的关系,频率对应的周期为。
由于我们考虑的最高频率为,因此我们所观测到的能够自己重复的最短阶段是。
如果,则周期是每阶段重复自己。
可是,如果数据是整数阶段观测的,因此数据能够观测的时间间隔仍然是每4 个阶段观测到,这对应着周期频率是。
例如,函数和函数于整数的时间间隔上,它们的观测值是壹致的。
命题6.2 也为计算于频率()上的样本周期图的数值提供了方法。
定义:这里:,因此能够得到:§6.3 预计总本谱EstimatingthePopulationSpectrum上面我们介绍了母体谱的意义和性质,下面我们面对的问题是:获得了观测样本以后, 如何预计母体谱函数?样本周期图的大样本性质壹个显然的方法是利用样本周期图去预计母体谱函数。
可是,这种方法具有显著的限制。
假设对于无限移动平均过程而言:这里系数是绝对可加的,是具有均值和方差的独立同分布序列,假设是如上定义的母体谱函数,且对所有的,均有。
假设是如上定义的样本谱函数,Fuller(1976)证明了,对和充分大的样本容量,样本周期图和母体谱函数之比的二倍具有下述渐近分布:进壹步,如果,也有:且且上述俩个渐近分布的随机变量是相互独立的。
注意到的均值等于自由度,因此有:因为是母体数量,不是壹个随机变量,因此上式也能够表示成为:因此,对充分大的样本容量,样本周期函数为母体谱提供了壹个渐近无偏预计。
母体谱的参数化预计假设我们认为数据能够由模型表示:这里是具有方差的白噪声。
这时壹个预计母体谱的ft色方法是先利用前面介绍的极大似然预计预计参数,具有绝对可加自协方差的协方差平稳过程,我们已经定义于频率处的谱函数§6.4 谱分析的应用UsesofSpectralAnalysis我们利用美国制造业生产的数据来说明谱分析的应用。
书中给ft了联邦储备委员会的季节非调整的月度指数,从1947 年1 月至1989 年11 月。
其中ft现经济衰退的时候ft现了生产的下降,大约持续壹年左右。
数据中ft现了显著的季节成分,大约于7 月ft现下降,而于8 月ft现复苏。
图 6.4 给ft了原始数据的样本周期图。
这里显示的是的函数,这里。
知识改变命运。