《角的平分线的性质》同步练习(1)及答案
- 格式:doc
- 大小:141.00 KB
- 文档页数:4
数学:-11.3《角的平分线的性质》同步练习(人教版八年级上)一. 教学内容:1. 角平分线的作法.2. 角平分线的性质及判定.3. 角平分线的性质及判定的应用.二. 知识要点:1. 角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.2. 角平分线的性质及判定(1)角平分线的性质:角的平分线上的点到角的两边的距离相等.①推导已知:OC平分∠MON,P是OC上任意一点,PA⊥OM,PB⊥ON,垂足分别为点A、点B.求证:PA=PB.证明:∵PA⊥OM,PB⊥ON∴∠PAO=∠PBO=90°∵OC平分∠MON∴∠1=∠2在△PAO和△PBO中,∴△PAO≌△PBO∴PA=PB②几何表达:(角的平分线上的点到角的两边的距离相等)如图所示,∵OP平分∠MON(∠1=∠2),PA⊥OM,PB⊥ON,∴PA=PB.(2)角平分线的判定:到角的两边的距离相等的点在角的平分线上.①推导已知:点P是∠MON内一点,PA⊥OM于A,PB⊥ON于B,且PA=PB.求证:点P在∠MON的平分线上.证明:连结OP在Rt△PAO和Rt△PBO中,∴Rt△PAO≌Rt△PBO(HL)∴∠1=∠2∴OP平分∠MON即点P在∠MON的平分线上.②几何表达:(到角的两边的距离相等的点在角的平分线上.)如图所示,∵PA⊥OM,PB⊥ON,PA=PB∴∠1=∠2(OP平分∠MON)3. 角平分线性质及判定的应用①为推导线段相等、角相等提供依据和思路;②实际生活中的应用.例:一个工厂,在公路西侧,到公路的距离与到河岸的距离相等,并且到河上公路桥头的距离为300米.在下图中标出工厂的位置,并说明理由.4. 画一个任意三角形并作出两个角(内角、外角)的平分线,观察交点到这个三角形三条边所在直线的距离的关系.三. 重点难点:1. 重点:角平分线的性质及判定2. 难点:角平分线的性质及判定的应用【考点分析】本讲内容作为基础内容来讲,它在中考题中偶尔以选择题或填空题的形式出现,但角平分线的性质及判定有时出现在综合题题目当中,因此还是比较重要的.【典型例题】例1. 已知:如图所示,∠C=∠C′=90°,AC=AC′.求证:(1)∠ABC=∠ABC′;(2)BC=BC′(要求:不用三角形全等判定).分析:由条件∠C=∠C′=90°,AC=AC′,可以把点A看作是∠CBC′平分线上的点,由此可打开思路.证明:(1)∵∠C=∠C′=90°(已知),∴AC⊥BC,AC′⊥BC′(垂直的定义).又∵AC=AC′(已知),∴点A在∠CBC′的角平分线上(到角的两边距离相等的点在这个角的平分线上).∴∠ABC=∠ABC′.(2)∵∠C=∠C′,∠ABC=∠ABC′,∴180°-(∠C+∠ABC)=180°-(∠C′+∠ABC′)(三角形内角和定理).即∠BAC=∠BAC′,∵AC⊥BC,AC′⊥BC′,∴BC=BC′(角平分线上的点到这个角两边的距离相等).评析:利用三角形全等进行问题证明对平面几何的学习有一定的积极作用,但也会产生消极作用,在解题时,要能打破思维定势,寻求解题方法的多样性.例2. 如图所示,已知△ABC中,PE∥AB交BC于E,PF∥AC交BC于F,P是AD上一点,且D点到PE的距离与到PF的距离相等,判断AD是否平分∠BAC,并说明理由.分析:判定一条射线是不是一个角的平分线,可用角平分线的定义和角平分线的判定定理.根据题意,首先由角平分线的判定定理推导出∠1=∠2,再利用平行线推得∠3=∠4,最后用角平分线的定义得证.解:AD平分∠BAC.∵D到PE的距离与到PF的距离相等,∴点D在∠EPF的平分线上.∴∠1=∠2.又∵PE∥AB,∴∠1=∠3.同理,∠2=∠4.∴∠3=∠4,∴AD平分∠BAC.评析:由角平分线的判定判断出PD平分∠EPF是解决本例的关键.“同理”是当推理过程相同,只是字母不同时为书写简便可以使用“同理”.例3. 如图所示,已知△ABC的角平分线BM,CN相交于点P,那么AP能否平分∠BAC?请说明理由.由此题你能得到一个什么结论?分析:由题中条件可知,本题可以采用角的平分线的性质及判定来解答,因此要作出点P 到三边的垂线段.解:AP平分∠BAC.结论:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等.理由:过点P分别作BC,AC,AB的垂线,垂足分别是E、F、D.∵BM是∠ABC的角平分线且点P在BM上,∴PD=PE(角平分线上的点到角的两边的距离相等).同理PF=PE,∴PD=PF.∴AP平分∠BAC(到角的两边的距离相等的点在这个角的平分线上).例4. 如图所示的是互相垂直的一条公路与铁路,学校位于公路与铁路所夹角的平分线上的P点处,距公路400m,现分别以公路、铁路所在直线为x轴、y轴建立平面直角坐标系.(1)学校距铁路的距离是多少?(2)请写出学校所在位置的坐标.分析:因为角平分线上的点到角的两边距离相等,所以点P到铁路的距离与到公路的距离相等,也是400m;点P在第四象限,求点P的坐标时要注意符号.解:(1)∵点P在公路与铁路所夹角的平分线上,∴点P到公路的距离与它到铁路的距离相等,又∵点P到公路的距离是400m,∴点P(学校)到铁路的距离是400m.(2)学校所在位置的坐标是(400,-400).评析:角平分线的性质的作用是通过角相等再结合垂直证明线段相等.例5. 如图所示,在△ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D,问能否在AB上确定一点E,使△BDE的周长等于AB的长?若能,请作出点E,并给出证明;若不能,请说明理由.分析:由于点D在∠CAB的平分线上,若过点D作DE⊥AB于E,则DE=DC.于是有BD+DE=BD+DC=BC =AC,只要知道AC与AE的关系即可得出结论.解:能.过点D作DE⊥AB于E,则△BDE的周长等于AB的长.理由如下:∵AD平分∠CAB,DC⊥AC,DE⊥AB,∴DC=DE.在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL).∴AC=AE.又∵AC=BC,∴AE=BC.∴△BDE的周长=BD+DE+BE=BD+DC+BE=BC+BE=AE+BE=AB.评析:本题是一道探索题,要善于利用已知条件获得新结论,寻找与要解决的问题之间的联系.本题利用角平分线的性质将要探究的结论进行转化.这是初中几何中常用的一种数学思想.【方法总结】学过“角的平分线上的点到角的两边的距离相等”与“到角的两边的距离相等的点在角的平分线上”这两个结论后,许多涉及角的平分线的问题用这两个结论解决很方便,需要注意的是有许多同学对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用这两个结论,仍然去找全等三角形,结果相当于重新证明了一次这两个结论.所以特别提醒大家,能用简单方法的,就不要绕远路.【模拟试题】(答题时间:90分钟)一. 选择题1. 如图所示,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是()A. PC>PDB. PC=PDC. PC<PDD. 不能确定2. 在Rt△ABC中,∠C=90°,AD是角平分线,若BC=10,BD∶CD=3∶2,则点D到AB的距离是()A.4B.6C. 8D. 103. 在△ABC中,∠C=90°,E是AB边的中点,BD是角平分线,且DE⊥AB,则()A. BC>AEB. BC=AEC. BC<AED. 以上都有可能4. 如图所示,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,已知PE=3,则点P到AB的距离是()A.3B.4C. 5D. 65. 如图所示,在△ABC中,∠C=90°,AD平分∠BAC,AE=AC,下列结论中错误的是()A. DC=DEB. ∠AED=90°C. ∠ADE=∠ADCD. DB=DC6. 到三角形三边距离相等的点是()A. 三条高的交点B. 三条中线的交点C. 三条角平分线的交点D. 不能确定7. 如图所示,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长为()A. 4cmB. 6cmC. 10cmD. 以上都不对8. 如图所示,三条公路两两相交,交点分别为A、B、C,现计划修一个油库,要求到三条公路的距离相等,可供选择的地址有()A. 一处B. 二处C. 三处D. 四处二. 填空题9. 如图所示,点P是∠CAB的平分线上一点,PF⊥AB于点F,PE⊥AC于点E,如果PF=3cm,那么PE=__________.10. 如图所示,DB⊥AB,DC⊥AC,BD=DC,∠BAC=80°,则∠BAD=__________,∠CDA=__________.11. 如图所示,P在∠AOB的平分线上,在利用角平分线性质推证PD=PE时,必须满足的条件是____________________.12. 如图所示,∠B=∠C,AB=AC,BD=DC,则要证明AD是∠BAC的__________线.需要通过__________来证明.如果在已知条件中增加∠B与∠C互补后,就可以通过__________来证明.因为此时BD与DC已经分别是__________的距离.13. 如图所示,C为∠DAB内一点,CD⊥AD于D,CB⊥AB于B,且CD=CB,则点C在__________.14. 如图所示,在Rt△ACB中,∠C=90°,AD平分∠BAC交BC于点D.(1)若BC=8,BD=5,则点D到AB的距离是__________.(2)若BD∶DC=3∶2,点D到AB的距离为6,则BC的长为__________.15. (1)∵OP平分∠AOB,点P在射线OC上,PD⊥OA于D,PE⊥OB于E,∴__________(依据:角平分线上的点到这个角两边的距离相等).(2)∵PD⊥OA,PE⊥OB,PD=PE,∴OP平分∠AOB(依据:___________).三. 解答题16. 已知:如图,在Rt△ABC中,∠C=90°,D是AC上一点,DE⊥AB于E,且DE=DC.(1)求证:BD平分∠ABC;(2)若∠A=36°,求∠DBC的度数.17. 如图:△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠BAF=180°.(1)求证:DE=DF;(2)若把最后一个条件改为:AE>AF,且∠AED+∠AFD=180°,那么结论还成立吗?18. 如图,∠1=∠2,AE⊥OB于E,BD⊥OA于D,AE与BD相交于点C.求证:AC=BC.19. 如图所示,某铁路MN与公路PQ相交于点O,且夹角为90°,其仓库G在A区,到公路和铁路距离相等,且到铁路图上距离为1cm.(1)在图上标出仓库G的位置.(比例尺为1∶10000,用尺规作图)(2)求出仓库G到铁路的实际距离.四. 探究题有位同学发现了“角平分线”的另一种尺规作法,其方法为:(1)如图所示,以O为圆心,任意长为半径画弧交OM、ON于点A、B;(2)以O为圆心,不等于(1)中的半径长为半径画弧交OM、ON于点C、D;(3)连接AD、BC相交于点E;(4)作射线OE,则OE为∠MON的平分线.你认为他这种作法对吗?试说明理由.参考答案一. 选择题1. B2. A3. B4. A5. D6. C7. B8. D二. 填空题9. 3cm 10. 40°,50° 11. PD⊥OA,PE⊥OB12. 角平分,全等,角平分线的性质,点D到AB、AC两边13. ∠DAB的角平分线上14. (1)3(2)1515. (1)PD=PE(2)到角的两边距离相等的点在角的平分线上三. 解答题16. (1)证明:∵DC⊥BC,DE⊥AB,DE=DC,∴点D在∠ABC的平分线上,∴BD平分∠ABC.(2)∵∠C=90°,∠A=36°,∴∠ABC=54°,∵BD平分∠ABC,∴∠DBC=∠ABC=27°.17. (1)证明:作DM⊥AB于M,DN⊥AC于N,又∵AD平分∠BAC,∴DM=DN,∵∠EAF+∠EDF=180°,∴∠AED+∠AFD=360°-180°=180°,∵∠AFD+∠CFD=180°,∴∠AED=∠CFD,∴△DME≌△DNF,∴DE=DF.(2)仍成立.18. 证明:∵∠1=∠2,BD⊥OA,AE⊥OB,∴CD=CE,∵∠DCA=∠ECB,∠ADC=∠BEC=90°,∴△ACD≌△BCE,∴AC=BC.19. (1)图略,仓库G在∠NOQ的平分线上,(2)仓库G到铁路的实际距离是100m.四. 探究题他这种作法对,理由如下:由作法可知:OC=OD,OB=OA,∠COB=∠DOA,∴△BCO≌△ADO,AC=BD,∴∠OCE=∠ODE,∵∠AEC=∠BED,∴△ACE≌△BDE,∴CE=DE,∵OE=OE,∴△OCE≌△ODE,∴∠COE=∠DOE,即OE平分∠MON.。
8年级数学人教版上册同步练习角的平分线的性质(含答案解析)专题一利用角的平分线的性质解题1.如图,在△ABC中,AC=AB,D在BC上,若DF⊥AB,垂足为F,DG⊥AC,垂足为G,且DF=DG.求证:AD⊥BC.2.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.求证:OB=OC.3.如图,在Rt△ABC中,∠C=90°,21∠∠,AD是∠BAC的角平分线,DE⊥ABBAC B∶∶于点E,AC=3 cm,求BE的长.专题二角平分线的性质在实际生活中的应用4.如图,三条公路把A﹨B﹨C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在()A.在AC﹨BC两边高线的交点处B.在AC﹨BC两边中线的交点处C.在∠A﹨∠B两内角平分线的交点处D.在AC﹨BC两边垂直平分线的交点处5.如图,要在河流的南边,公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A处的距离为1cm(指图上距离),则图中工厂的位置应在__________,理由是__________.6.已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距离相等,试找出该点.(保留作图痕迹)状元笔记【知识要点】1.角的平分线的性质角的平分线上的点到角的两边的距离相等.2.角的平分线的判定角的内部到角的两边的距离相等的点在角的平分线上.【温馨提示】1.到三角形三边距离相等的点是三角形三条角平分线的交点,不是其他线段的交点.2.到三角形三边距离相等的点不仅有内角的平分线的交点,还有相邻两外角的平分线的交点,这样的点共有4个.【方法技巧】1.利用角的平分线的性质解决问题的关键是:挖掘角的平分线上的一点到角两边的垂线段.若已知条件存在两条垂线段——直接考虑垂线段相等,若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段.2.利用角平分线的判定解决问题的策略是:挖掘已知图形中一点到角两边的垂线段.若已知条件存在两条垂线段——先证明两条垂线段相等,然后说明角平分线或角的关系;若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,再证明两条垂线段相等;若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段后,证明两条垂线段相等.参考答案:1.证明:∵DF AB DG AC DF DG ⊥⊥=,,,∴AD 是BAC ∠的平分线,∴BAD CAD =∠∠.在ABD △和ACD △中,⎪⎩⎪⎨⎧=∠=∠=(公共边)(已求)已知)AD AD DAC DAB AC AB (∴SAS)ABD ACD (△≌△.∴ADB ADC =∠∠.又∵180BDA CDA +=︒∠∠,∴90BDA =︒∠,∴AD BC ⊥.2.证明:∵AO 平分∠BAC ,OD ⊥AB ,OE ⊥AC ,∴OD =OE ,在Rt △BDO 和Rt △CEO 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,COE DOB OEOD CEO BDO ∴(ASA)BDO CEO △≌△.∴OB =OC .3.解:∵∠C =90°,∴∠BAC +∠B =90°,又DE ⊥AB ,∴∠C =∠AED =90°,又21BAC B =∶∶∠∠,∴∠A =60°,∠B =30°, 又∵AD 平分∠BAC ,DC ⊥AC ,DE ⊥AB ,∴DC =DE ,∴3AE AC ==cm .在Rt △DAE 和Rt △DBE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠.DE DE BEDAED B DAE∴△DAE ≌△DBE (AAS ),∴3BE AE == cm . 4.C 解析:根据角平分线的性质,集贸市场应建在∠A ﹨∠B 两内角平分线的交点处.故选C .5.∠A 的角平分线上,且距A1cm 处 角平分线上的点到角两边的距离相等6.解:作两个角的平分线,交点P 就是所求作的点.。
角的平分线的性质同步练习含答案解析一、填空题1.如图,∠B=∠D=90゜,依照角平分线性质填空:(1)若∠1=∠2,则______=______.(2)若∠3=∠4,则______=______.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD=______.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于______.4.如图,AD是△ABC的角平分线,若AB=2AC.则S△ABD :S△ACD=______.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.258.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S=90,AB=18,BC=12,求DE的长.△ABC13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.《12.3 角的平分线的性质》参考答案与试题解析一、填空题1.如图,∠B=∠D=90゜,依照角平分线性质填空:(1)若∠1=∠2,则BC = DC .(2)若∠3=∠4,则AB = AD .【考点】角平分线的性质.【分析】(1)依照角平分线性质推出即可;(2)依照角平分线性质推出即可.【解答】解:(1)∵∠B=∠D=90°,∴AB⊥BC,AD⊥DC,∵∠1=∠2,∴BC=CD,故答案为:BC,DC.(2)∵AB⊥BC,AD⊥DC,∵∠3=∠4,∴AB=AD,故答案为:AB,AD.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边距离相等.2.如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD =36,则S△BCD= 45 .【考点】角平分线的性质.【分析】第一依照△ABD的面积运算出DE的长,再依照角平分线上的点到角两边的距离相等可得DE=DF,然后运算出DF的长,再利用三角形的面积公式运算出△BCD的面积即可.【解答】解:∵S△ABD=36,∴•AB•ED=36,×12×ED=36,解得:DE=6,∵BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,∴DE=DF,∴DF=6,∵BC=15,∴S△BCD=•CB•DF=×15×6=45,故答案为:45.【点评】此题要紧考查了角平分线的性质,关键是把握角平分线上的点到角两边的距离相等.3.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于2:3:4 .【考点】角平分线的性质;三角形的面积.【专题】常规题型.【分析】由角平分线的性质可得,点O到三角形三边的距离相等,即三个三角形的AB、BC、CA的高相等,利用面积公式即可求解.【解答】解:过点O 作OD ⊥AC 于D ,OE ⊥AB 于E ,OF ⊥BC 于F ,∵O 是三角形三条角平分线的交点,∴OD=OE=OF ,∵AB=20,BC=30,AC=40,∴S △ABO :S △BCO :S △CAO =2:3:4.故答案为:2:3:4.【点评】此题要紧考查角平分线的性质和三角形面积的求法,难度不大,作辅助线专门关键.4.如图,AD 是△ABC 的角平分线,若AB=2AC .则S △ABD :S △ACD = 2 .【考点】角平分线的性质.【分析】过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,依照角平分线性质得出DM=DN ,依照三角形面积公式求出即可.【解答】解:过D 作DM ⊥AC 于M ,DN ⊥AB 于N ,∵AD 是△ABC 的角平分线,∴DM=DN ,∴S △ABD :S △ACD =(AB ×DN ):(AC ×DM )=AB :AC=2AC :AC=2,故答案为:2.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.二、选择题5.如图,已知点P、D、E分别在OC、OA、OB上,下列推理:①∵OC平分∠AOB,∴PD=PE;②∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE;③∵PD⊥OA,PE⊥OB,∴PD=PE;其中正确的个数有()A.0个B.1个C.2个D.3个【考点】角平分线的性质.【分析】直截了当依照角平分线的性质进行解答即可.【解答】解:∵OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.故选B.【点评】本题考查的是角平分线的性质,即角平分线上的点到角两边的距离相等.6.如图△ABC中,∠ACB=90゜,AD平分∠BAC交BC于D,DE垂直AB于E,若DE=1.5cm,BD=3cm,则BC=()A.3cm B.7.5cm C.6cm D.4.5cm【考点】角平分线的性质.【分析】依照角平分线的性质得出CD长,代入BC=BD+DC求出即可.【解答】解:∵∠ACB=90°,∴AC⊥BC,∵DE⊥AB,AD平分∠BAC,∴DE=DC=1.5cm,∵BD=3cm,∴BC=BD+DC=3cm+1.5cm=4.5cm,故选D.【点评】本题考查了角平分线性质的应用,注意:角平分线上的点到角两边的距离相等.7.在△ABC中,∠C=90゜,AD平分∠BAC交BC于D,BD:DC=3:2,点D到AB的距离为6,则BC 长为()A.10 B.20 C.15 D.25【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,依照角平分线上的点到角的两边的距离相等可得DC=DE,然后求出BD的长,再依照BC=BD+DE代入数据进行运算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵点D到AB的距离为6,∴DE=6,∵∠C=90°,AD平分∠BAC交BC于D,∴DC=DE=6,∵BD:DC=3:2,∴BD=×3=9,∴BC=BD+DE=9+6=15.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.8.如图,在△ABC中,∠B、∠C的角平分线交于点0,OD⊥AB于D,OE⊥AC于E,则OD与OE的大小关系是()A.OD>OE B.OD<OE C.OD=OE D.不能确定【考点】角平分线的性质.【分析】依照三角形的角平分线相交于一点,连接AO,则AO平分∠BAC,然后依照角平分线上的点到角的两边的距离相等解答.【解答】解:如图,连接AO,∵∠B、∠C的角平分线交于点0,∴AO平分∠BAC,∵OD⊥AB,OE⊥AC,∴OD=OE.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,依照三角形的角平分线相交于一点作辅助线并判定出AO平分∠BAC是解题的关键.三、解答题9.如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)依照角平分线上的点到角的两边的距离相等证明即可;(2)利用“边角边”证明△BDE和△FDC全等,再依照全等三角形对应边相等证明即可.【解答】证明:(1)∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DE=DC;(2)在△BDE和△FDC中,,∴△BDE≌△FDC(SAS),∴BD=DF.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,是基础题,熟记性质是解题的关键.10.如图,四边形ABCD中,AB=AD,CB=CD,点P是AC上一点,PE⊥BC于E,PF⊥CD于F,求证:PE=PF.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【分析】依照“SSS”可得到△ABC≌△ADC,则∠BCA=∠DCA,再利用角平分线的性质即可得到结论.【解答】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,∵PE⊥BC于E,PF⊥CD于F,∴PE=PF.【点评】本题考查了全等三角形的判定与性质:三边都对应相等的两三角形全等;全等三角形的对应边相等,对应角相等.角平分线的性质:角的平分线上的点到角的两边的距离相等.11.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】依照角平分线的性质以及已知条件证得△ABD≌△CBD(SAS),然后由全等三角形的对应角相等推知∠ADB=∠CDB;再由垂直的性质和全等三角形的判定定理AAS判定△PMD≌△PND,最后依照全等三角形的对应边相等推知PM=PN.【解答】证明:在△ABD和△CBD中,AB=BC(已知),∠ABD=∠CBD(角平分线的性质),BD=BD(公共边),∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB(全等三角形的对应角相等);∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°;又∵PD=PD(公共边),∴△PMD≌△PND(AAS),∴PM=PN(全等三角形的对应边相等).【点评】本题考查了角平分线的性质、全等三角形的判定与性质.由已知证明△ABD≌△CBD是解决的关键.12.如图,BD是∠ABC的平分线,DE⊥AB于E,S=90,AB=18,BC=12,求DE的长.△ABC【考点】角平分线的性质.【分析】过点D作DF⊥BC于F,依照角平分线上的点到角的两边的距离相等可得DE=DF,然后依照三角形的面积列出方程求解即可.【解答】解:如图,过点D作DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,=AB•DE+BC•DF=90,∴S△ABC即×18•DE+×12•DE=90,解得DE=6.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,熟记性质并作出辅助线是解题的关键.13.如图.已知在△ABC中,∠A、∠B的角平分线交于点O,过O作OP⊥BC于P,OQ⊥AC于Q,OR ⊥AB于R,AB=7,BC=8,AC=9.(1)求BP、CQ、AR的长.(2)若BO的延长线交AC于E,CO的延长线交AB于F,若∠A=60゜,求证:OE=OF.【考点】角平分线的性质;全等三角形的判定与性质.【分析】(1)依照角平分线性质得出OR=OQ=OP,依照勾股定理起床AR=AQ,CQ=CP,BR=BP,得出方程组,求出即可;(2)过O作OM⊥AC于肘,ON⊥AB于N,求出OM=ON,证出△FON≌△EOM即可.【解答】解:连接AO,OB,OC,∵OP⊥BC,OQ⊥AC,OR⊥AB,∠A、∠B的角平分线交于点O,∴OR=OQ,OR=OP,∴由勾股定理得:AR2=OA2﹣OR2,AQ2=AO2﹣OQ2,∴AR=AQ,同理BR=BP,CQ=CP,即O在∠ACB角平分线上,设BP=BR=x,CP=CQ=y,AQ=AR=z,则x=3,y=5,z=4,∴BP=3,CQ=5,AR=4.(2)过O作OM⊥AC于M,ON⊥AB于N,∵O在∠A的平分线,∴OM=ON,∠ANO=∠AMO=90°,∵∠A=60°,∴∠NOM=120°,∵O在∠ACB、∠ABC的角平分线上,∴∠EBC+∠FCB=(∠ABC+∠ACB)=×(180°﹣∠A)=60°,∴∠FON=∠EOM,在△FON和△EOM中∴△FON≌△EOM,∴OE=OF.【点评】本题考查了角平分线性质和全等三角形的性质和判定的应用,注意:角平分线上的点到角两边的距离相等.。
第1课时 角平分线的性质定理及其逆定理1.下列各图中,OP 是∠MON 的平分线,点E ,F ,G 分别在射线OM ,ON ,OP 上,则可以解释定理“角平分线上的点到角的两边的距离相等”的图形是( )2.如图,点P 是∠AOB 的平分线上一点,PC ⊥OA 于点C ,PD ⊥OB 于点D ,连接CD 交OP 于点E ,下列结论不一定正确的是( )A .PC =PDB .OC =OD C .OP 垂直平分CDD .OE =CD第2题图 第3题图3.如图,在△ABC 中,∠C =90°,AC =8,DC =13AD ,BD 平分∠ABC ,则点D 到AB 的距离等于( )A .4B .3C .2D .14.如图,点P 是∠AOC 的平分线上一点,PD ⊥OA ,垂足为D ,且PD =3,点M 是射线OC 上一动点,则PM 的最小值为 .第4题图 第5题图5.如图,BD 平分∠ABC ,DE ⊥BC 于点E ,AB =7,DE =4,则△ABD 的面积为 . 6.已知:如图所示,点O 在∠BAC 的平分线上,OD ⊥AC ,OE ⊥AB ,垂足分别为D ,E,DO,EO的延长线分别交AE,AD的延长线于点B,C,求证:OB=OC.7.如图,DA⊥AC,DE⊥BC.若AD=5 cm,DE=5 cm,∠ACD=30°,则∠DCE=()A.30°B.40°C.50°D.60°8.如图,BE=CF,DE⊥AB交AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠BAC的平分线.9.已知D,E分别是△ABC中AB边,AC边上的一点,在△ABC内有一点O,使OE =OD,则AO平分∠CAB吗?解:AO平分∠CAB,理由如下:因为点O到∠CAB两边的距离相等,所以点O在∠CAB的平分线上.所以AO平分∠CAB.以上解法是否正确?若不正确,请说明理由,并写出正确的结论.10.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点B.N点C.P点D.Q点第10题图第11题图11.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE ⊥AB,垂足为E.若DE=1,则BC的长为()A.2+ 2 B.2+3C.2+ 3 D.312.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥BA于点E,AB=6 cm,则△DEB的周长是cm.13.如图,在四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM 平分∠BAD,DM平分∠ADC.(1)求证:AM⊥DM;(2)若BC=8,求点M到AD的距离.14.已知:如图,锐角△ABC的两条高BD,CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的平分线上,并说明理由.15.如图,在△ABC中,∠BAC=60°,AD是∠BAC的平分线,AC= 6.若点P是AD上一动点,且作PN⊥AC于点N,则PN+PC2参考答案:第1课时 角平分线的性质定理及其逆定理1.下列各图中,OP 是∠MON 的平分线,点E ,F ,G 分别在射线OM ,ON ,OP 上,则可以解释定理“角平分线上的点到角的两边的距离相等”的图形是(D)2.如图,点P 是∠AOB 的平分线上一点,PC ⊥OA 于点C ,PD ⊥OB 于点D ,连接CD 交OP 于点E ,下列结论不一定正确的是(D)A .PC =PDB .OC =OD C .OP 垂直平分CDD .OE =CD第2题图 第3题图3.如图,在△ABC 中,∠C =90°,AC =8,DC =13AD ,BD 平分∠ABC ,则点D 到AB 的距离等于(C)A .4B .3C .2D .14.如图,点P 是∠AOC 的平分线上一点,PD ⊥OA ,垂足为D ,且PD =3,点M 是射线OC 上一动点,则PM 的最小值为3.第4题图 第5题图5.如图,BD 平分∠ABC ,DE ⊥BC 于点E ,AB =7,DE =4,则△ABD 的面积为14.6.已知:如图所示,点O 在∠BAC 的平分线上,OD ⊥AC ,OE ⊥AB ,垂足分别为D ,E ,DO ,EO 的延长线分别交AE ,AD 的延长线于点B ,C ,求证:OB =OC.证明:∵点O 在∠BAC 的平分线上,OD ⊥AC ,OE ⊥AB , ∴OE =OD ,∠BEO =∠CDO =90°. 在△BEO 和△CDO 中,⎩⎨⎧∠BEO =∠CDO ,OE =OD ,∠EOB =∠DOC ,∴△BEO ≌△CDO(ASA). ∴OB =OC.7.如图,DA ⊥AC ,DE ⊥BC.若AD =5 cm ,DE =5 cm ,∠ACD =30°,则∠DCE =(A)A .30°B .40°C .50°D .60°8.如图,BE =CF ,DE ⊥AB 交AB 的延长线于点E ,DF ⊥AC 于点F ,且DB =DC ,求证:AD 是∠BAC 的平分线.证明:∵DE ⊥AB ,DF ⊥AC , ∴∠BED =∠DFC =90°.在Rt △DEB 和Rt △DFC 中,⎩⎨⎧BE =CF ,DB =DC ,∴Rt △DEB ≌Rt △DFC(HL). ∴DE =DF.∴AD 是∠BAC 的平分线.9.已知D ,E 分别是△ABC 中AB 边,AC 边上的一点,在△ABC 内有一点O ,使OE =OD ,则AO 平分∠CAB 吗?解:AO 平分∠CAB ,理由如下:因为点O 到∠CAB 两边的距离相等,所以点O 在∠CAB 的平分线上.所以AO 平分∠CAB.以上解法是否正确?若不正确,请说明理由,并写出正确的结论.解:不正确.以上解法忽视了OD ,OE 分别垂直于AB ,AC 的条件,故产生错误.正确的结论是“AO 不一定平分∠CAB ”.10.在正方形网格中,∠AOB 的位置如图所示,到∠AOB 两边距离相等的点应是(A) A .M 点B .N 点C .P 点D .Q 点第10题图 第11题图11.如图,在△ABC 中,∠B =30°,∠C =45°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E.若DE =1,则BC 的长为(A)A .2+ 2 B.2+3 C .2+ 3D .312.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于点D ,DE ⊥BA 于点E ,AB =6 cm ,则△DEB 的周长是6cm.13.如图,在四边形ABCD 中,∠B =90°,AB ∥CD ,M 为BC 边上的一点,且AM 平分∠BAD ,DM 平分∠ADC.(1)求证:AM ⊥DM ;(2)若BC =8,求点M 到AD 的距离.解:(1)证明:∵AM 平分∠BAD ,DM 平分∠ADC , ∴∠MAD =12∠BAD ,∠ADM =12∠ADC.∵AB ∥CD ,∴∠BAD +∠ADC =180°.∴∠MAD +∠ADM =12(∠BAD +∠ADC)=90°.又∵∠AMD +∠MAD +∠ADM =180°,∴∠AMD =90°. ∴AM ⊥DM.(2)过点M 作MN ⊥AD 于点N. ∵AB ∥CD ,∠B =90°,∴∠C =90°,即BM ⊥AB ,MC ⊥DC. 又∵AM ,DM 分别平分∠BAD ,∠ADC , ∴BM =MN ,MN =MC. ∴MN =12BC =4.∴点M 到AD 的距离为4.14.已知:如图,锐角△ABC 的两条高BD ,CE 相交于点O ,且OB =OC. (1)求证:△ABC 是等腰三角形;(2)判断点O 是否在∠BAC 的平分线上,并说明理由.解:(1)证明:∵BD ,CE 是△ABC 的高, ∴∠BEC =∠CDB =90°. 又∵∠EOB =∠DOC , ∴∠ABD =∠ACE. ∵OB =OC , ∴∠OBC =∠OCB. ∴∠ABC =∠ACB.∴AB=AC.∴△ABC是等腰三角形.(2)点O在∠BAC的平分线上.理由:∵∠BEO=∠CDO=90°,∠BOE=∠COD,OB=OC,∴△BOE≌△COD(AAS).∴OE=OD.又∵OD⊥AC,OE⊥AB,∴点O在∠BAC的平分线上.15.如图,在△ABC中,∠BAC=60°,AD是∠BAC的平分线,AC= 6.若点P是AD上一动点,且作PN⊥AC于点N,则PN+PC2。
《12.3 角平分线的性质》课时练一、选择题1.在△ABC中,∠ABC、∠ACB的角平分线交于点O,连结AO,若△OAB、△OBC、△OCA的面积比为1:1:,则△ABC的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形2.如图,在三角形ABC中,∠C=90°,AC=4cm,AB=7cm,AD平分∠BAC交BC于点D,DE⊥AB于点E,则EB的长是()A.3cm B.4cm C.5cm D.不能确定3.如图,△ABC中,∠C=90°,BC=9,AD平分∠BAC,过点D作DE⊥AB于E,测得BE=3,则△BDE的周长是()A.15B.12C.9D.64.如图,△ABC外角∠CBD,∠BCE的平分线BF、CF相交于点F,则下列结论成立的是()A.AF平分BC B.AF⊥BC C.AF平分∠BAC D.AF平分∠BFC 5.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线交BC于点D,若CD=4m,AB =10m,则△ABD的面积是()A .20m 2B .30m 2C .40m 2D .无法确定 6.三条笔直的公路两两相交,若要建一座仓库,使它到三条公路的距离相等,则可供选择的点有( )A .1个B .2个C .3个D .4个7.AD 是△ABC 的角的平分线,AB =5,AC =3,则S △ABD :S △ACD =( )A .1:1B .2:1C .5:3D .3:58.如图,AB ∥CD ,点P 到AB 、BC 、CD 距离都相等,则∠P =( )A .120°B .90°C .75°D .60°9.如图,若OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论中错误的是( )A .PC =PDB .OC =PC C .∠CPO =∠DPOD .OC =OD 10.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,△ABC 面积是28cm 2,AB =16cm ,AC =12cm ,则DE 的长为( )A.2B.2.4C.3D.3.2二.填空题11.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,交BC于点D,已知CD=3,则D到AB的距离是.12.如图,在△ABC中,∠C=90°,D是BC上一点,∠1=∠2,CB=8,BD=5.则点D 到AB的距离为.13.如图,点I为△ABC角平分线交点,AB=8,AC=6,BC=4,将∠ACB平移使其顶点C与I重合,则图中阴影部分的周长为.14.如图,△ABC中,∠BAC的角平分线交BC于D,过D作AC的垂线DE交AC于E,DE=5,则D到AB的距离是.15.如图△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,给出下列结论:①DC=DE;②DA平分∠CDE;③DE平分∠ADB;④BE+AC=AB;⑤∠BAC=∠BDE.其中正确的是(写序号)三.解答题16.如图,在△ABC中,∠B=90°,点O到AB,BC三边的距离相等,求∠AOC的度数.17.已知,如图,A,B,C,D四点在∠MON的边上,AB=CD,P为∠MON内一点,并且△P AB的面积与△PCD的面积相等.求证:射线OP是∠MON的平分线.18.如图,在△ABC中,AB=5,AC=4,BC=6,AP平分∠BAC并交BC于点P.(1)求S△ABP 与S△ACP的比值;(2)求BP的长.19.已知:如图,在△ABC中,角平分线BM与角平分线CN相交于点P,过点P分别作AB,BC,AC的垂线,垂足分别为D,E,F.(1)求证:PD=PE=PF;(2)点P在∠BAC的平分线上吗?说明理由.参考答案一、选择题1.C 2.A 3.B 4.C 5.A 6.D 7.C 8.B 9.B 10.A 二.填空题(共5小题)11.312.313.814.515.①②④⑤三.解答题(共4小题)16.解:∵点O到AC、BC、AB三边的距离相等,∴AO,CO分别平分∠CAB,∠ACB,∵∠ABC=90°,∴∠CAB+∠BCA=90°,∴∠CAO+∠ACO=45°,∴∠AOC=180°﹣45°=135°,17.证明:过P点作PE⊥ON,PF⊥OM,∵△P AB的面积与△PCD的面积相等,AB=CD,∴PE=PF,∵PE⊥ON,PF⊥OM,∴射线OP是∠MON的平分线.18.解:(1)过P作PE⊥AB,PF⊥AC,∵AP平分∠BAC并交BC于点P.PE⊥AB,PF⊥AC ∴PE=PF,∴S△ABP 与S△ACP的比=;(2)∵==,∴==,∴PB=BC=.19.(1)证明:∵BM平分∠ABC,PE⊥BC,PD⊥AB,∴PE=PD,∵CN平分∠ACB,PE⊥BC,PF⊥AC,∴PE=PF,∴PD=PE=PF.(2)解:结论:点P在∠BAC的平分线上。
人教版初中数学八年级上册12.3角平分线的性质同步练习(含答案)一、选择题(本大题共7道小题)1. 如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D.若PD=2,则点P到边OA的距离是()A. 1B. 2C. 3D. 42. 用直尺和圆规作一个角的平分线,示意图如图,则能说明OC是∠AOB的平分线的依据是()A.SSS B.SAS C.AAS D.ASA3. 如图,AO是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N.若ON=8 cm,则OM的长为()A.4 cm B.5 cm C.8 cm D.20 cm4. 如图,P是∠AOB的平分线OC上一点,PD⊥OA,垂足为D.若PD=2,则点P到边OB的距离是()A.4 B. 3 C.2 D.15. 下面是黑板上给出的尺规作图题,需要回答横线上符号代表的内容.已知∠AOB.求作:∠AOB的平分线.作法如下:①以点O为圆心,适当长为半径画弧,交OA于点M,交__○__于点N;②分别以点__⊕__为圆心,大于__△__的长为半径画弧,两弧在__⊗__的内部交于点C;③画射线OC,OC即为所求.则下列回答正确的是()A.○表示OA B.⊕表示M,CC.△表示MN D.⊗表示∠AOB6. 如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和35,则△EDF的面积为()A.25 B.5.5 C.7.5 D.12.57. 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D.若CD=4,AB=16,则△ABD的面积是()A.14 B.32 C.42 D.56二、填空题(本大题共5道小题)8. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.9. 如图,∠B=∠D=90°,根据角平分线的性质填空:(1)若∠1=∠2,则________=________.(2)若∠3=∠4,则________=________.10. 如图,已知∠C=90°,AD平分∠BAC交BC于点D,BD=2CD,DE⊥AB于点E.若DE=5 cm,则BC=________cm.11. 将两块大小一样的含30°角的三角尺ABD和ABC如图所示叠放在一起,使它们的斜边AB重合,直角边不重合,当OD=4 cm时,点O到AB的距离为________ cm.12. 如图,请用符号语言表示“角的平分线上的点到角的两边的距离相等”.条件:____________________________________.结论:PC=PD.三、解答题(本大题共2道小题)13. 探究题如图,P为∠ABC的平分线上的一点,点D和点E分别在AB和BC 上(BD<BE),且PD=PE,试探究∠BDP与∠BEP的数量关系,并给予证明.14. 如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC 上,BE=FC.求证:BD=FD.人教版 初中数学八年级上册 12.3角平分线的性质 同步练习-答案一、选择题(本大题共7道小题)1. 【答案】B【解析】如解图,过点P 作PG ⊥OA 于点G ,根据角平分线上的点到角的两边距离相等可得,PG =PD =2.2. 【答案】A3. 【答案】C4. 【答案】C[解析] 如图,过点P 作PE ⊥OB 于点E.∵P 是∠AOB 的平分线OC 上一点,PD ⊥OA ,PE ⊥OB ,∴PE =PD =2.5. 【答案】D6. 【答案】D[解析] 如图,过点D 作DH ⊥AC 于点H.又∵AD 是△ABC 的角平分线,DF ⊥AB , ∴DF =DH.在Rt △ADF 和Rt △ADH 中,⎩⎨⎧AD =AD ,DF =DH ,∴Rt △ADF ≌Rt △ADH(HL). ∴S Rt △ADF =S Rt △ADH .在Rt △DEF 和Rt △DGH 中,⎩⎨⎧DE =DG ,DF =DH ,∴Rt △DEF ≌Rt △DGH(HL). ∴S Rt △DEF =S Rt △DGH .∵△ADG 和△AED 的面积分别为60和35, ∴35+S Rt △DEF =60-S Rt △DGH .∴S Rt △DEF =12.5.7. 【答案】B [解析] 如图,过点D 作DH ⊥AB 于点H.由作法得AP 平分∠BAC.∵DC ⊥AC ,DH ⊥AB ,∴DH =DC =4. ∴S △ABD =12×16×4=32.5道小题)8. 【答案】3 【解析】如解图,过点P 作PD ⊥OA 于点D ,∵OP 为∠AOB 的平分线,PC ⊥OB 于点C ,∴PD =PC ,∵PC =3,∴PD =3,即点P 到点OA 的距离为3.9. 【答案】(1)BC CD (2)AB AD10. 【答案】15[解析] ∵AD 平分∠BAC ,∠C =90°,DE ⊥AB ,∴DC =DE =5cm.∴BD =2CD =10 cm ,则BC =CD +BD =15 cm.11. 【答案】4[解析] 过点O 作OH ⊥AB 于点H.∵∠DAB =60°,∠CAB =30°,∴∠OAD =∠OAH =30°. ∵∠ODA =90°,∴OD ⊥AD.又∵OH∵AB ,∵OH =OD =4 cm.12. 【答案】∵AOP =∵BOP ,PC∵OA 于点C ,PD∵OB 于点D 三、解答题(本大题共2道小题)13. 【答案】解:∠BDP +∠BEP =180°.证明:过点P 作PM ⊥AB 于点M ,PN ⊥BC 于点N. ∵BP 是∠ABC 的平分线, ∴PM =PN.在Rt △DPM 和Rt △EPN 中, ⎩⎨⎧PD =PE ,PM =PN ,∴Rt △DPM ≌Rt △EPN(HL). ∴∠ADP =∠BEP.∵∠BDP +∠ADP =180°, ∵∵BDP +∵BEP =180°.14. 【答案】证明:∵AD 平分∠BAC ,DE ⊥AB ,∠C =90°, ∴DC =DE.在△DCF 和△DEB 中,⎩⎨⎧DC =DE ,∠C =∠BED =90°,FC =BE ,∵∵DCF∵∵DEB(SAS).∵BD =FD.。
角平分线的性质专项练习一、单选题知识点一:角平分线的有关证明1.在Rt ABC 中,90B ︒∠=,AD 平分BAC ∠,交BC 于点D ,DE AC ⊥,垂足为点E ,若3BD =,则DE 的长为( )A .3B .32C .2D .62.如图,在△ABC 中,AB =6,BC =5,AC =4,AD 平分∠BAC 交BC 于点D ,在AB 上截取AE =AC ,则△BDE 的周长为( )A .8B .7C .6D .53.如图,在ABC 中,90,C AD ∠=平分,BAC DE AB ∠⊥于点,E 给出下列结论.CD ED =①;,AC BE AB +=② ③BDE BAC ∠=∠, DA ④平分CDE ∠,::BDE ACD S S AB AC =⑤其中正确的有( )个A .5B .4C .3D .2知识点二:角平分线的性质定理4.如图,在Rt ABC ∆中,90B =∠,以点A 为圆心,适当长为半径画弧,分别交AB AC 、于点,D E ,再分别以点D E 、为圆心,大于12DE 为半径画弧,两弧交于点F ,作射线AF 交边BC 于点1,4BG AC ==,则ACG ∆的面积是( )A .1B .32C .2D .525.如图,在△ABC 中,AB =AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB ,AC 的距离相等;③∠BDE =∠CDF ;④∠1=∠2;其中正确的有( )A .1个B .2个C .3个D .4个6.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .27.如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A.24 B.30 C.36 D.42知识点三:角平分线判定定理=,则()8.如图,AC AD=,BC BDA.CD垂直平分AD B.AB垂直平分CDC.CD平分ACB∠D.以上结论均不对9.如图,已知AB∥CD,PE⊥AB,PF⊥BD,PG⊥CD,垂足分别E、F、G,且PF=PG=PE,则∠BPD=().A.60°B.70°C.80°D.90°10.如图所示,若DE⊥AB,DF⊥AC,则对于∠1和∠2的大小关系下列说法正确的是()A.一定相等B.一定不相等C.当BD=CD时相等D.当DE=DF时相等11.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A .线段CD 的中点B .OA 与OB 的中垂线的交点C .OA 与CD 的中垂线的交点 D .CD 与∠AOB 的平分线的交点知识点四:角平分线性质的实际应用12.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D 到AB 的距离等于( )A .4B .3C .2D .113.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,若AB=14,S △ABD=14,则CD=( )A .4B .3C .2D .114.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 长是( )A .6B .5C .4D .3知识点五:尺规作图-角平分线15.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP ≌的根据是( )A .SASB .ASAC .AASD .SSS16.如图,在ABC ∆中,,40AC BC A =∠=︒,观察图中尺规作图的痕迹,可知BCG ∠的度数为()A .40︒B .45︒C .50︒D .60︒17.如图1,已知ABC ∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在ABC ∠内部交于点P ;第三步:画射线BP .射线BP 即为所求.下列正确的是( )A .a ,b 均无限制B .0a >,12b DE >的长C .a 有最小限制,b 无限制D .0a ≥,12b DE <的长18.如图,观察图中尺规作图痕迹,下列说法错误的是( )A .OE 是AOB ∠的平分线B .OC OD =C .点C,D 到OE 的距离不相等D .AOE BOE ∠=∠二、填空题 知识点一:角平分线的有关证明19.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是_____.20.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。
2018年八年级数学《12.3 角平分线的性质与判定》同步复习资料【1】一.选择题(共10小题)1.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为()A.B.2 C.3 D.22.已知,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD:CD=9:7,则D到AB的距离为()A.18 B.16 C.14 D.123.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.44.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2【1】【3】【4】5.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.56.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,S△ABD=12,则S△ABD:S△ACD=()A.4:3 B.3:4 C.16:9 D.9:167.△ABC的三边AB,BC,CA的长分别为6cm,4cm,4cm,P为三边角平分线的交点,则△ABP,△BCP,△ACP 的面积比等于()A.1:1:1 B.2:2:3 C.2:3:2 D.3:2:28.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【5】【6】【8】9.如图,四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)10.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为()A.8 B.12 C.4 D.6【9】【10】二.填空题(共10小题)11.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是.12.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP=.13.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.14.如图所示,已知△ABC的周长是20,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是.【11】【12】【14】15.如图,在四边形ABCD中,∠A=90°,AD=8.对角线BD⊥CD,P是BC边上一动点,连结PD.若∠ADB=∠C,则PD长的最小值为.16.如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,∠BOC=.17.如图,AB∥CD,O为∠A、∠C的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD之间的距离等于.18.直线l1、l2、l3表示三条两两相互交叉的公路,现在拟建一个货物中转站,要求它到三条公路的距离都相等,则可供选择的地址有处.19.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,以下结论:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正确的是.(填写序号)【17】【18】【19】三.解答题(共10小题)20.如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN.21.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.22.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.22.如图,△ABC中∠B的外角平分线BD于∠C的外角平分线CE相交于点P,求证:点P在∠ABC的角平分线上.24.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.25.如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.26.四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC+∠B=180°求证:2AE=AB+AD.27.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.《12.3 角平分线的性质与判定》同步复习资料【1】参考答案与试题解析一.选择题(共10小题)1.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为()A.B.2 C.3 D.2【解答】解:过点P作PB⊥OM于B,∵OP平分∠MON,PA⊥ON,PA=3,∴PB=PA=3,∴PQ的最小值为3.故选:C.2.已知,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD:CD=9:7,则D到AB的距离为()A.18 B.16 C.14 D.12【解答】解:如图,∵BD+CD=BC=32,BD:DC=9:7作DE⊥AB于E,∵∠C=90°,AD平分∠BAC∴DE=CD=14.(角平分线上的点到角的两边的距离相等)即:点D到AB的距离为14,故选C.3.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.4【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,∴S△BCE=BC•EF=×5×2=5,故选C.4.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∴PA=PD=4,∴PE=4.故选C.5.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.5【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,∴×4×2+×AC×2=7,解得AC=3.故选:A.6.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,S△ABD=12,则S△ABD:S△ACD=()A.4:3 B.3:4 C.16:9 D.9:16【解答】解:过点D作DE⊥AB,DF⊥AC,垂足分别为E、F…(1分)∴DE=DF,…(3分)∴S△ABD=•DE•AB=12,∴DE=DF=3…(5分)∴S△ADC=•DF•AC=×3×6=9…(6分)∴S△ABD:S△ACD=12:9=4:3.故选A.7.△ABC的三边AB,BC,CA的长分别为6cm,4cm,4cm,P为三边角平分线的交点,则△ABP,△BCP,△ACP 的面积比等于()A.1:1:1 B.2:2:3 C.2:3:2 D.3:2:2【解答】解:∵P为三边角平分线的交点,∴点P到△ABC三边的距离相等,∵AB,BC,CA的长分别为6cm,4cm,4cm,∴△ABP,△BCP,△ACP的面积比=6:4:4=3:2:2.故选D.8.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【解答】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A选项正确,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°﹣∠BAC﹣∠ABO=180°﹣70°﹣25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=(180°﹣60°)=60°,∴∠BDC=180°﹣85°﹣60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=(180°﹣70°)=55°,故D选项正确.故选:B.9.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)【解答】解:作∠E的平分线,可得点P到AB和CD的距离相等,因为AB=CD,所以此时点P满足S△PAB=S△PCD.10.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为()A.8 B.12 C.4 D.6【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△EDF=S△GDH,设面积为S,同理Rt△ADF≌Rt△ADH,∴S△ADF=S△ADH,即38+S=50﹣S,解得S=6.故选D.二.填空题(共10小题)11.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是3.【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S△ABC=S△ABD+S△ACD,×4×2+×AC×2=7,解得AC=3.故答案为3.12.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP=50°.【解答】解:延长BA,作PN⊥BD,PF⊥BA,PM⊥AC,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∵∠BPC=40°,∴∠ABP=∠PBC=∠PCD﹣∠BPC=(x﹣40)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,∴∠CAF=100°,在Rt△PFA和Rt△PMA中,∵,∴Rt△PFA≌Rt△PMA(HL),∴∠FAP=∠PAC=50°.故答案为:50°.13.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是4:3.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.14.如图所示,已知△ABC的周长是20,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC 的面积是30.【解答】解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,∴OE=OF=OD=3,∵△ABC的周长是20,OD⊥BC于D,且OD=3,∴S△ABC=×AB×OE+×BC×OD+×AC×OF=×(AB+BC+AC)×3=20×3=30,故答案为:30.15.如图,在四边形ABCD中,∠A=90°,AD=8.对角线BD⊥CD,P是BC边上一动点,连结PD.若∠ADB=∠C,则PD长的最小值为8.【解答】解:根据垂线段最短,当DP⊥BC的时候,DP的长度最小.∵BD⊥CD,即∠BDC=90°,又∠A=90°,∴∠A=∠BDC,又∠ADB=∠C,∴∠ABD=∠CBD,又DA⊥BA,BD⊥DC,∴AD=DP,又AD=8,∴DP=8.故答案为:8.16.如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,∠BOC=125°.【解答】解:∵OF=OD=OE,∴OB、OC分别平分∠ABC和∠ACB,∵∠BAC=70°,∴∠ABC+∠ACB=180°﹣70°=110°,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×110°=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故答案为:125°.17.如图所示,AB∥CD,O为∠A、∠C的平分线的交点,OE⊥AC于E,且OE=1,则AB与CD之间的距离等于2.【解答】解:过点O作OF⊥AB于F,作OG⊥CD于G,∵O为∠BAC、∠DCA的平分线的交点,OE⊥AC,∴OE=OF,OE=OG,∴OE=OF=OG=1,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠EOF+∠EOG=(180°﹣∠BAC)+(180°﹣∠ACD)=180°,∴E、O、G三点共线,∴AB与CD之间的距离=OF+OG=1+1=2.故答案为:2.18.直线l1、l2、l3表示三条两两相互交叉的公路,现在拟建一个货物中转站,要求它到三条公路的距离都相等,则可供选择的地址有4处.【解答】解:∵中转站要到三条公路的距离都相等,∴货物中转站必须是三条相交直线所组成的三角形的内角或外角平分线的交点,而外角平分线有3个交点,内角平分线有一个交点,∴货物中转站可以供选择的地址有4个.故答案为:4.19.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,以下结论:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正确的是①③④.(填写序号)【解答】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣50°﹣60°=70°,①正确;∵BD是∠ABC的平分线,∴∠DBC=∠ABC=25°,∴∠DOC=25°+60°=85°,②错误;∠BDC=60°﹣25°=35°,③正确;∵∠ABC的平分线BD与∠ACE的平分线CD相交于点D,∴AD是∠BAC的外角平分线,∴∠DAC=55°,④正确,故答案为:①③④.三.解答题(共10小题)20.如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN.【解答】证明:∵BD为∠ABC的平分线,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB,∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.21.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.【解答】解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.22.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.【解答】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△CDF和Rt△EDB中,,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在Rt△ADF与Rt△ADE中,,∴Rt△ADF≌Rt△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.23.如图,△ABC中∠B的外角平分线BD于∠C的外角平分线CE相交于点P,求证:点P在∠ABC的角平分线上.【解答】证明:作PF⊥AB于F,PG⊥BC于G,PH⊥AC于H,∵∠B的外角平分线BD与∠C的外角平分线CE相交于点P,∴PF=PG,PH=PG,∴PF=PH,又PF⊥AB,PH⊥AC,∴点P在∠CAB的角平分线上.24.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB+AC与AE之间的等量关系.【解答】(1)证明:∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,∴△BDE与△CDE均为直角三角形,∵∴△BDE≌△CDF,∴DE=DF,即AD平分∠BAC;(2)AB+AC=2AE.证明:∵BE=CF,AD平分∠BAC,∴∠EAD=∠CAD,∵∠E=∠AFD=90°,∴∠ADE=∠ADF,在△AED与△AFD中,∵,∴△AED≌△AFD,∴AE=AF,∴AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.25.如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.【解答】证明:(1)过点O作OE⊥AC于E,∵∠ABD=90゜,OA平分∠BAC,∴OB=OE,∵点O为BD的中点,∴OB=OD,∴OE=OD,∴OC平分∠ACD;(2)在Rt△ABO和Rt△AEO中,,∴Rt△ABO≌Rt△AEO(HL),∴∠AOB=∠AOE,同理求出∠COD=∠COE,∴∠AOC=∠AOE+∠COE=×180°=90°,∴OA⊥OC;(3)∵Rt△ABO≌Rt△AEO,∴AB=AE,同理可得CD=CE,∵AC=AE+CE,∴AB+CD=AC.26.四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC+∠B=180°求证:2AE=AB+AD.【解答】证明:过C作CF⊥AD于F,∵AC平分∠BAD,∴∠FAC=∠EAC,∵CE⊥AB,CF⊥AD,∴∠DFC=∠CEB=90°,∴△AFC≌△AEC,∴AF=AE,CF=CE,∵∠ADC+∠B=180°∴∠FDC=∠EBC,∴△FDC≌△EBC∴DF=EB,∴AB+AD=AE+EB+AD=AE+DF+AD=AF+AE=2AE∴2AE=AB+AD27.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.【解答】证明:过点D作DE⊥BC于E,过点D作DF⊥AB交BA的延长线于F,∵BD平分∠ABC,∴DE=DF,∠DEC=∠F=90°,在RtCDE和Rt△ADF中,,∴Rt△CDE≌Rt△ADF(HL),∴∠FAD=∠C,∴∠BAD+∠C=∠BAD+∠FAD=180°.。
八年级数学上册《第十二章 角的平分线的性质》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.△ABC 是一个任意三角形,用直尺和圆规作出∠A 、∠B 的平分线,如果两条平分线交于点O ,那么下列选项中不正确的是( )A .点O 一定在△ABC 的内部B .∠C 的平分线一定经过点OC .点O 到△ABC 的三边距离一定相等D .点O 到△ABC 三顶点的距离一定相等2.如图,在△ABC 中,∠C =90°,使点P 到AB 、BC 的距离相等,则符合要求的作图痕迹( )A .B .C .D .3.如图,已知直线AB CD ,EG 平分BEF ∠,140∠=︒则2∠的度数是( )A .70︒B .50︒C .40︒D .140︒4.如图,在 ABC 中 90B ∠=︒ , AD 为 BAC ∠ 的角平分线.若 4BD = ,则点 D 到 AC 的距离为( )A .3B .4C .5D .65.如图:△ABC 中,AC=BC ,∠C=90°,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AC=6cm ,则DE+BD 等于( )A .5cmB .4cmC .6cmD .7cm6.如图,已知在ABC 中,AB=9,BC=12,AC=15,ABC 的三条角平分线交于点O ,则ABO BOC CAO SS S ::等于( )A .111::B .123::C .345::D .234::7.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE =DG ,△ADG 和△AED 的面积分别为50和25,则△EDF 的面积为( )A .35B .25C .15D .12.58.如图,△AOB 的外角∠CAB ,∠DBA 的平分线AP ,BP 相交于点P ,PE ⊥OC 于E ,PF ⊥OD 于F ,下列结论:(1)PE=PF ;(2)点P 在∠COD 的平分线上;(3) ∠APB=90°-∠O ,其中正确的有( )A .0个B .1个C .2个D .3个二、填空题:9.如图,已知∠CAE 是△ABC 的外角,AD ∥BC ,且AD 是∠EAC 的平分线,若∠B=71°,则∠BAC= .10.如图,∠AOB=80°,QC ⊥OA 于点C ,QD ⊥OB 于点D ,若QC=QD ,则∠AOQ= .11.如图,四边形ABCD 中 90BCD ∠=︒ ,∠ABD=∠DBC , AB=5 , DC=6 ,则 ABD 的面积为 .12.已知OC 平分∠AOB ,点P 为OC 上一点,PD ⊥OA 于D ,且PD=3cm ,过点P 作PE ∥OA 交OB 于E ,∠AOB=30°,求PE 的长度 cm .13.如图,在△ABC 中,∠ABC=48°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠ABE= °.三、解答题:14.如图,在ABC 中,BD 平分ABC ∠,DE BC 交AB 于点E ,50C ∠=︒和95BDC ∠=︒求BED ∠的度数.15.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长.16.如图,BD=CD ,BF ⊥AC 于F ,CE ⊥AB 于E.求证:点D 在∠BAC 的角平分线上.17.如图,已知DE ⊥AE ,垂足为E ,DF ⊥AC ,垂足为F ,BD=CD ,BE=CF .(1)求证:AD 平分∠BAC ;(2)丁丁同学观察图形后得出结论:AB+AC=2AE ,请你帮他写出证明过程.18.如图,在四边形ABDC 中90D B ∠=∠=︒,O 为BD 上的一点,且AO 平分BAC CO ∠,平分ACD ∠.求证:(1)OA OC ⊥.(2)AB CD AC +=参考答案:1.D 2.C 3.A 4.B 5.C 6.C 7.D 8.C9.38°10.40°11.1512.613.2414.解:∵50C ∠=︒ 95BDC ∠=︒∴180955035DBC ∠=︒-︒-︒=︒ BD 平分ABC ∠35ABD CBD ∴∠=∠=︒又∵DE BC∴180180235110BED ABC ∠=︒-∠=︒-⨯︒=︒ .15.解:∵在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ∴DE=DF∵△ABC 面积是28cm 2,AB=20cm ,AC=8cm∴S △ABC = 12 AB •DE+ 12 AC •DF=28即 12 ×20×DE+ 12 ×8×DF=28解得DE=2cm .16.解:∵BF ⊥AC ,CE ⊥AB∴∠BED=∠CFD=90°在△BED 和△CFD 中{∠BED =∠CFD∠BDE =∠CDF BD =CD∴△BED ≌△CFD (AAS )∴DE=DF又∵DE ⊥AB ,DF ⊥AC∴点D 在∠BAC 的平分线上.17.(1)证明: DE AB ⊥ DF AC ⊥90E DFC ∴∠=∠=︒在 Rt BED ∆ 和 Rt CFD ∆ 中BD CD BE CF =⎧⎨=⎩Rt BED Rt CFD(HL)∴∆≅∆DE DF ∴=DE AB ⊥ DF AC ⊥EAD CAD ∴∠=∠AD ∴ 平分 BAC ∠ ;(2)证明: 90E AFD ∠=∠=︒在 Rt AED ∆ 和 Rt AFD ∆ 中AD AD DE DF =⎧⎨=⎩Rt AED Rt AFD(HL)∴∆≅∆AE AF ∴=BE CF =2AB AC AE BE AF CF AE CF AE CF AE ∴+=-++=-++= .18.(1)证明:∵90D B ∠=∠=︒∴180B D ∠+∠=︒∴AB CD∴180BAC DCA ∠+∠=︒∵AO 平分BAC ∠,CO 平分ACD ∠ ∴12OAC OAB BAC ∠=∠=∠ 12ACO DCO ACD ∠=∠=∠ ∴119022OAC ACO BAC ACD ∠+∠=∠+∠=︒ ∴1809090AOC ∠=︒-︒=︒∴OA OC ⊥;(2)证明:过点O 作OE AC ⊥于点E ,如图所示:∵90D B ∠=∠=︒∴OB AB ⊥ OD CD ⊥∵AO 平分BAC ∠,CO 平分ACD ∠∴OB OE = OD OE =∵OA OA = OC OC =∴()Rt Rt HL OAB OAE ≌ ()Rt Rt HL OCE OCD ≌ ∴AB AE =,CD CE =∴AB CD AE CE AC +=+=。
第12章《全等三角形》同步练习班级学号姓名得分一、填空题(每题3分,共30分)1.到一个角的两边距离相等的点都在_________.2.∠AOB的平分线上一点M,M到OA的距离为1.5 cm,则M到OB的距离为_________. 3.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,则∠DOC=_________.4.如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3 cm,BD=5 cm,则BC=_________ cm.5.如图,已知AB、CD相交于点E,过E作∠AEC及∠AED的平分线PQ与MN,则直线MN与PQ的关系是_________.6.三角形内一点到三角形的三边的距离相等,则这个点是三角形_________的交点.7.△ABC中,∠C=90°,AD平分∠BAC交BC于D,且BD:CD=3:2,BC=15cm,则点D到AB的距离是__________.8.角平分线的性质定理:角平分线上的点_____________________________.9.(1)如图,已知∠1 =∠2,DE⊥AB,DF⊥AC,垂足分别为E、F,则DE____DF.(2)已知DE⊥AB,DF⊥AC,垂足分别为E、F,且DE = DF,则∠1_____∠2.10.直角三角形两锐角的平分线所夹的钝角为_______度.二、选择题(每题3分,共24分)11.如图,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D.下列结论中错误的是()A.PC = PD B.OC = ODC.∠CPO = ∠DPO D.OC = PC12.如图,△ABC中,∠C = 90°,AC = BC,AD是∠BAC的平分线,(第3题)(第4题)(第5题)21ABCDEF(第9题)ABCDOP(第11题)(第14题)DE ⊥AB 于E ,若AC = 10cm ,则△DBE 的周长等于( )A .10cmB .8cmC .6cmD .9cm13.到三角形三条边的距离都相等的点是这个三角形的( )A .三条中线的交点B .三条高的交点C .三条边的垂直平分线的交点D .三条角平分线的交点 14. 如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A.1处 B.2处 C.3处 D.4处 15.给出下列结论,正确的有( )①到角两边距离相等的点,在这个角的平分线上;②角的平分线与 三角形平分线都是射线;③任何一个命题都有逆命题;④假命题的 逆命题一定是假命题A .1个B .2个C .3个D .4个 16.已知,Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD ∶CD =9∶7,则D 到AB 的距离为( ) A .18 B .16 C .14 D .12 17.两个三角形有两个角对应相等,正确说法是( )A .两个三角形全等B .两个三角形一定不全等C .如果还有一角相等,两三角形就全等D .如果一对等角的角平分线相等,两三角形全等18.如图,OB 、OC 是∠AOD 的任意两条射线,OM 平分∠AOB ,ON 平分∠COD ,若∠MON =α,∠BOC =β,则表示∠AOD 的代数式为( )A .2α-βB .α-βC .α+βD .2α三、解答题(共46分) 19.(7分)如图,已知OE 、OD 分别平分∠AOB 和∠BOC ,若∠AOB =90°,∠EOD =70°,求∠BOC 的度数.ED CB A (第12题)(第18题)20.(7分)已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距离相等,试找出该点.(保留画图痕迹)21.(8分)如图,点D 、B 分别在∠A 的两边上,C 是∠A 内一点,AB = AD ,BC = CD ,CE ⊥AD 于E ,CF ⊥AF 于F . 求证:CE = CF22.(8分)已知:如图,在△ABC 中,∠A =90°,AB = AC ,BD 平分∠ABC .求证:BC = AB + ADF A B EC D D A23.(8分)如图,PB 和PC 是△ABC 的两条外角平分线. ①求证:∠BPC =90°-12∠BAC . ②根据第①问的结论猜想:三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形?24.(8分)如图,BP 是△ABC 的外角平分线,点P 在∠BAC 的角平分线上.求证:CP 是△ABC 的外角平分线.PC B A DE参考答案一、填空题1.这个角的平分线上2.1.5cm 3.30°4.8 5.MN⊥PQ 6.三条角平分线7.6cm 8.到角的两边的距离相等9.(1)=(2)= 10.135二、选择题11.D 12.B 13.D 14.D 15.B 16.C 17.D 18.A三、解答题19.50°20.画两个角的角平分线的交点P 21.略22.提示:过点D做DM⊥BC 23.①略;②锐角三角形24.提示:过P作三边AB、AC、BC的垂线段PD、PE、PF。
角的平分线的性质
知识点1:角平分线的性质
1.如图11.3-1所示,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=20cm ,DB=17cm ,则D 点到AB 的距离是_________.
2.如图11.3-2所示,点D 在AC 上,∠BAD=∠DBC ,△BDC 的内部到
∠BAD 两边距离相等的点有_______个,△BDC 内部到∠BAD 的两边、∠DBC 两边等距离的点有_____个.
图11.3-1 图11.3-2 图11.3-3
3.如图11.3-3,在Rt △ABC 中,∠C=90°,∠BAC 的平分线AD 交BC 于点D ,CD=2,则点D 到AB 的距离是 ( )
A .1
B .2
C .3
D .4
4.如图11.3-4,已知AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )
A .BD+ED=BC
B .DE 平分∠ADB
C .A
D 平分∠EDC D .ED+AC >AD
图11.3-4 图11.3-5
5.如图11.3-5,Q 是△OAB 的角平分线OP 上的一点,PC ⊥OA 于C ,PD ⊥OB 于D ,QE ⊥OB 于E ,FQ ⊥OQ 交OA 于F ,则下列结论正确的是 ( )
A .PA=P
B B .PC=PD
C .PC=QE
D .QE=QF
6.如图11.3-6,AP 平分∠BAC ,PE ⊥AC ,PF ⊥AB ,垂足分别为E 、F ,点O 是 AP 上任一点(除A 、P 外).求证:OF=OE .
B
D
A
E
A
D
C
B
A
C
B
D
A
B
C
D
E
A
O B P
C
D F
E
Q
证明:∵AP 平分∠BAC ,∴OF=OE . 以上证明过程是否正确?若不正确,请改正.
7.如图11.3-7,在△ABC 中,∠C=90°,AD 平分∠BAC ,D 到AB 的距离为12, BD ∶DC=5∶3.试求BC 的长.
知识点2:角平分线的性质与判定的综合应用
8.如图11.3-8,DB ⊥AB ,DC ⊥AC ,BD=DC ,∠BAC=80°,则∠BAD =_______,∠CAD=____.
9.如图11.3-9,已知点C 是∠AOB 的平分线上一点,点P 、P ′分别在边OA 、OB 上,若要得到OP=OP ′,需要添加以下条件中某一个即可,请你写出所有可能结果的序号:______________.
①∠OCP=∠OCP ′;②∠OPC=∠OP C′;③PC=PC ′;④PP ′⊥OC .
图11.3-8 图11.3-9
10.如图11.3-10,已知AB ∥CD ,PE ⊥AB ,PF ⊥BD ,PG ⊥CD ,垂足分别E 、F 、G ,且PF=PG=PE ,则∠BPD=________.
11.如图11.3-11,已知DB ⊥AE 于B ,DC ⊥AF 于C ,且DB=DC ,∠BAC= 40°,∠ADG=130°,则∠DGF=________.
B
A
E
C
P
O
F
图13.3-6
A
C
D
图13.3-7
A
B
C
D
A B
O
P C
图11.3-10 图11.3-11
12.与相交的两直线距离相等的点是在 ( )
A .一条射线上
B .一条直线上
C .两条互相垂直的直线上
D .以上都不对
13.下列结论中,错误的是 ( )
A .到已知角两边距离相等的点都在同一条直线上
B .一条直线上有一点到已知角的两边距离相等,这条直线平分已知角
C .到角的两边距离相等的点,与角顶点的连线平分这个角
D .角内有两点各自到角的两边的距离相等,经过这两点的直线平分这个角
14.如图11.3-12,已知BD 平分∠ABC ,AB=BC ,点P 在BD 上,PM ⊥AD ,PN ⊥CD ,M 、N 为垂足.求证:PM=PN .
15.如图11.3-13,AD ⊥DC ,BC ⊥DC ,E 是DC 上一点,AE 平分∠DAB . (1)如果BE 平分∠ABC ,求证:点E 是DC 的中点; (2)如果E 是DC 的中点,求证:BE 平分∠ABC .
A
B
C
D P
F E G
F
B D
A
C
G A
B
D
P
M
N C
图13.3-12
A
B
E 图13.3-13
参考答案
1.3cm[点拨:由角平分线性质,得DE=DC=BC-DB=20-17=3(cm )] 2.无数;1
3.B (点拨:点D 到AB 的距离等于DC ) 4.C
5.B (点拨:只有PC 、PD 都是角平分线上的点到角两边的距离)
6.不正确.AP 平分∠BAC ,PF ⊥AB ,PE ⊥AC ,∴PF=PE ,接着证△APE ≌△APF ,得AE=AF ,再证△AOF ≌△AOE 即可.
7.由题意,得DC=12,BC=DC=×12=32.
8.40°;40°(点拨:由BD=DC ,DB ⊥AB ,DC ⊥AC ,得DA 平分∠BAC ,所以∠BAD=∠CAD=∠BAC=40°)
9.①②④(点拨:SSA 不能判定两个三角形全等)
10.90°(点拨:由PE=PF 得∠PBD=∠ABD ,由PF=PG 得∠PDB=∠BDC.由AB//CD ,得∠ABD+∠BDC=180°,∴∠PBD+∠PDB=×180°=90°,∠BPD=90°)
11.150°(点拨:由
DB=DC
得∠GAD=∠BAD=
∠BAC=20°,
∠DGF=∠GAD+∠ADG=130+20°=150°)
12.C (点拨:相交的两直线有两对对顶角) 13.B
14.先证△ABD ≌△CBD ,得∠ADB=∠CDB ,由PM ⊥AD ,PN ⊥CD ,得PM=PN .
15.(1)如右图,过点E 作EF ⊥AB ,F 为垂足.由角平分线性质得ED=EF ,EF=EC ,∴ED=EC ,即点E 是DC 的中点 ;(2)过点E 作EF ⊥AB ,F 为垂
足.由角平分线性质得ED=EF ,又ED=EC ,∴EF=EC ,由角平分线的得和是BE 平分∠ABC .
A D
B
C
F
E。