LED基础知识及外延工艺
- 格式:ppt
- 大小:7.02 MB
- 文档页数:42
LED基础知识培训-外延、芯片王立 2009-3-16 Lattice Power (Jiangxi Corporation Lattice Power (Jiangxi Corporation Lattice Power (Jiangxi Corporation内容提要 1 2 3 4 LED器件基础知识 LED器件基础知识 LED材料生长 LED材料生长 LED芯片制造芯片制造高效率LED芯片设计芯片设计高效率 Lattice Power (Jiangxi Corporation Lattice Power (Jiangxi Corporation Lattice Power (Jiangxi CorporationLED器件基础知识 1、半导体发光的概念发光是物体内部以某种方式吸收的能量转化为光辐射的过程。
发光是一种非平衡辐射。
区分各种非平衡辐射的宏观光学参量是辐射期间—去掉激发后辐射还可延续的时间。
发光的辐射期间在10-11秒以上。
Lattice Power (Jiangxi Corporation Lattice Power (Jiangxi Corporation Lattice Power (Jiangxi CorporationLED器件基础知识半导体发光的不同形态粉末发光。
薄膜发光。
结型发光。
通常所说的半导体发光是指结型发光——器件的核心在于p-n结。
半导体照明技术是结型电致发光和粉末光致发光的结合。
Lattice Power (Jiangxi Corporation Lattice Power (Jiangxi Corporation Lattice Power (Jiangxi CorporationLED器件基础知识 2、半导体发光的研究历史 1907 ! Lattice Power (Jiangxi Corporation Lattice Power (Jiangxi Corporation Lattice Power (Jiangxi CorporationLED器件基础知识 1923, O.W. Lossev of Russia reported electroluminescent light emission in silicon carbide crystals. 1937, F. Destriau of France reported (field-excited electroluminescence of zinc sulfide powders. 1939 – 1944 World War II 1951 – Solid State Lighting potential resurfaced when a team of researchers led by Kurt Lehovec started to investigate the electroluminescent potential of silicon carbide. 1962 – Nick Holonyak Jr, working at General Electric, gave the first practical demonstration of LEDs. 1968 – HP Labs develops the first commercially available light-emitting diode. GE, Bell Labs make the same claim. LEDs were first invented in England, Korea and China as well, depending upon who you talk to. …… 1994 –高亮度蓝光LED实现产业化,半导体照明成为可能。
文档本源为 : 从网络收集整理.word版本可编写.欢送下载支持.LED 外延片外延工艺由 LED工作原理可知,外延资料是 LED的核心局部,事实上, LED的波长、亮度、正向电压等主要光电参数根本上取决于外延资料。
发光二极管对外延片的技术主要有以下四条:①禁带宽度适合。
②可获取电导率高的P 型和 N型资料。
③可获取完满性好的优异晶体。
④发光复合几率大。
外延技术与设备是外延片制造技术的关键所在,金属有机物化学气相淀积(Metal-Organic Chemical VaporDeposition ,简称 MOCVD)技术生长 III-V族,II-VI族化合物及合金的薄层单晶的主要方法。
II 、III族金属有机化合物平时为甲基或乙基化合物,如:Ga(CH3)3,In(CH3)3 , Al(CH3)3 ,Ga(C2H5)3,Zn(C2H5)3 等,它们大多数是高蒸汽压的液体或固体。
用氢气或氮气作为载气,通入液体中携带出蒸汽,与V 族的氢化物 ( 如 NH3, PH3,AsH3)混淆,再通入反响室,在加热的衬底表面发生反响,外延生长化合物晶体薄膜。
MOCVD拥有以下优点:用来生长化合物晶体的各组份和混淆剂都能够以气态方式通入反响室中,能够经过控制各种气体的流量来控制外延层的组分,导电种类,载流子浓度,厚度等特色。
因有抽气装置,反响室中气体流速快,对于异质外延时,反响气体切换很快,能够获取陡峭的界面。
外延发生在加热的衬底的表面上,经过监控衬底的温度能够控制反响过程。
在必然条件下,外延层的生长速度与金属有机源的供给量成正比。
MOCVD及相关设备技术睁开现状:MOCVD技术自二十世纪六十年代第一提出以来,经过七十至八十年代的发展,九十年代已经成为砷化镓、磷化铟等光电子资料外延片制备的核心生长技术。
目前已经在砷化镓、磷化铟等光电子资料生产中获取广泛应用。
日本科学家 Nakamura将 MOCVD应用氮化镓资料制备,利用他自己研制的MOCVD设备 ( 一种特别特其他反响室结构 ) ,于 1994 年第一世产出高亮度蓝光和绿光发光二极管, 1998 年实现了室温下连续激射 10,000 小时,获取了划时代的进展。
LED外延片工艺流程
第一步:材料准备
材料准备是整个工艺流程的第一步,主要包括液态外延源材料的配制,包括金属有机气相外延(MOVPE)的源气体、溶液或粉末,以及外延基片
的选择。
材料的选取和配制在工艺中起着至关重要的作用,决定了外延片
的质量和性能。
第二步:晶体生长
晶体生长是外延片工艺的核心步骤,它包括将材料加热到适当的温度,使其在外延基片上生长出晶体。
晶体生长的方法有多种,如流体外延法(MOCVD)、气相外延法(VPE)等。
晶体生长的条件和参数需要根据具体
材料和器件要求进行调整。
第三步:原始外延片加工
在晶体生长完成后,外延片需要进行一系列的加工步骤,以得到符合
要求的外延片。
这些加工步骤包括外延片去掉残留的外延材料、切割成适
当大小的片状、进行化学机械抛光(CMP)等。
第四步:表面处理
表面处理是为了提高外延片的表面质量和电学特性。
它包括去除表面
污染物、改善表面平整度、提高表面光洁度等。
常用的表面处理方法有氧化、化学溶液处理、离子注入、聚焦离子激活、成键等。
第五步:测试
测试是对外延片进行性能测量和质量检验的过程。
通过测试,可以评估外延片的电学特性、光电特性和可靠性,以确保其质量符合产品要求。
常用的测试方法包括IV测试、光谱测试、X射线衍射、显微镜观察等。
以上是一个大致的LED外延片工艺流程,不同的企业和研究机构可能会有一些微小的差异。
随着科技的进步和工艺的不断优化,LED外延片工艺流程也在不断演变,以提高LED器件的性能和可靠性。
LED工艺流程完美讲解LED(Light Emitting Diode)即发光二极管,是一种能够将电能转化为光能的半导体器件。
LED具有高效能、长寿命、节能环保等优点,广泛应用于照明、显示屏幕、信号传输等领域。
一、晶圆制备:晶圆是LED芯片的基础材料,一般采用氮化铝晶圆。
该步骤主要包括基片选择、基片清洗、基片架放置、磨割加工等。
基片清洗能够去除表面污染物,确保芯片质量。
二、外延生长:外延生长是指在晶圆表面逐渐沉积LED材料的过程,主要材料为三五族化合物,如氮化镓等。
该步骤是制备LED芯片的关键,需要严格控制温度、气压、混合气体比例等因素,以保证外延层的质量。
三、击晶:在外延层上,通过模具或激光刻蚀的方式,将外延层进行形状切割,形成各个LED芯片的形状。
击晶的过程需要精确控制切割深度和角度,以免损坏芯片。
四、脱胶:击晶的过程中,会在芯片表面形成胶层。
脱胶的目的是去除这些残留的胶层,以保证后续工序的顺利进行。
常用的脱胶方法包括化学脱胶和热脱胶。
五、划线:划线是在芯片表面进行金属线的印制,以连接芯片的正负极。
划线主要使用导电胶或金线,需要精细操作以保证线的精确位置和质量。
六、加工:加工步骤包括剥薄、抛光、荧光粉涂覆等。
剥薄是指将芯片由外延层剥离,使其达到所需的光学效果。
抛光是为了使外观更加光滑,提高反射率。
荧光粉涂覆是为了增强LED的发光效果。
七、金球焊接:金球焊接是将金属线与LED芯片连接的过程。
焊接方式包括热压焊接、超声波焊接等。
金球焊接需要高精度的设备,以确保焊接的稳定性和可靠性。
八、封装:封装是将LED芯片置于LED灯泡或LED显示屏等外壳中,以便安装和使用。
封装过程包括金膏涂覆、打枪、密封等步骤。
金膏涂覆是为了在芯片上形成保护层,提高散热能力。
打枪是将芯片固定在片头,以确保芯片位置准确。
密封是将芯片与外壳连接,并填充封装胶,以保护芯片。
九、测试:测试是对已封装的LED产品进行功能、亮度、颜色等方面的检测。
LED外延片--外延工艺由LED工作原理可知,外延材料是LED的核心部分,事实上,LED的波长、亮度、正向电压等主要光电参数基本上取决于外延材料。
发光二极管对外延片的技术主要有以下四条:•①禁带宽度适合。
•②可获得电导率高的P型和N型材料。
•③可获得完整性好的优质晶体。
•④发光复合几率大。
外延技术与设备是外延片制造技术的关键所在,金属有机物化学气相淀积(Metal-Organic Chemical Vapor Deposition,简称MOCVD)技术生长III-V 族,II-VI族化合物及合金的薄层单晶的主要方法。
II、III族金属有机化合物通常为甲基或乙基化合物,如:Ga(CH3)3,In(CH3)3,Al(CH3)3,Ga(C2H5)3,Zn(C2H5)3等,它们大多数是高蒸汽压的液体或固体。
用氢气或氮气作为载气,通入液体中携带出蒸汽,与V族的氢化物(如NH3,PH3,AsH3)混合,再通入反应室,在加热的衬底表面发生反应,外延生长化合物晶体薄膜。
MOCVD具有以下优点:1.用来生长化合物晶体的各组份和掺杂剂都可以以气态方式通入反应室中,可以通过控制各种气体的流量来控制外延层的组分,导电类型,载流子浓度,厚度等特性。
2.因有抽气装置,反应室中气体流速快,对于异质外延时,反应气体切换很快,可以得到陡峭的界面。
3.外延发生在加热的衬底的表面上,通过监控衬底的温度可以控制反应过程。
4.在一定条件下,外延层的生长速度与金属有机源的供应量成正比。
MOCVD及相关设备技术发展现状:MOCVD 技术自二十世纪六十年代首先提出以来,经过七十至八十年代的发展,九十年代已经成为砷化镓、磷化铟等光电子材料外延片制备的核心生长技术。
目前已经在砷化镓、磷化铟等光电子材料生产中得到广泛应用。
日本科学家Nakamura将MOCVD应用氮化镓材料制备,利用他自己研制的MOCVD 设备(一种非常特殊的反应室结构),于1994年首先生产出高亮度蓝光和绿光发光二极管,1998年实现了室温下连续激射10,000小时,取得了划时代的进展。
由LED工作原理可知,外延材料是LED的核心部分,事实上,LED的波长、亮度、正向电压等主要光电参数基本上取决于外延材料。
发光二极管对外延片的技术主要有以下四条:①禁带宽度适合。
②可获得电导率高的P型和N型材料。
③可获得完整性好的优质晶体。
④发光复合几率大。
外延技术与设备是外延片制造技术的关键所在,金属有机物化学气相淀积(Metal-Organic Chemical Vapor Deposition,简称MOCVD)技术生长III-V族,II-VI族化合物及合金的薄层单晶的主要方法。
II、III族金属有机化合物通常为甲基或乙基化合物,如:Ga(CH3)3,In(CH3)3,Al(CH3)3,Ga(C2H5)3,Zn(C2H5)3等,它们大多数是高蒸汽压的液体或固体。
用氢气或氮气作为载气,通入液体中携带出蒸汽,与V族的氢化物(如NH3,PH3,AsH3)混合,再通入反应室,在加热的衬底表面发生反应,外延生长化合物晶体薄膜。
MOCVD具有以下优点:用来生长化合物晶体的各组份和掺杂剂都可以以气态方式通入反应室中,可以通过控制各种气体的流量来控制外延层的组分,导电类型,载流子浓度,厚度等特性。
因有抽气装置,反应室中气体流速快,对于异质外延时,反应气体切换很快,可以得到陡峭的界面。
外延发生在加热的衬底的表面上,通过监控衬底的温度可以控制反应过程。
在一定条件下,外延层的生长速度与金属有机源的供应量成正比。
MOCVD及相关设备技术发展现状:MOCVD技术自二十世纪六十年代首先提出以来,经过七十至八十年代的发展,九十年代已经成为砷化镓、磷化铟等光电子材料外延片制备的核心生长技术。
目前已经在砷化镓、磷化铟等光电子材料生产中得到广泛应用。
日本科学家Nakamura将MOCVD应用氮化镓材料制备,利用他自己研制的MOCVD设备(一种非常特殊的反应室结构),于1994年首先生产出高亮度蓝光和绿光发光二极管,1998年实现了室温下连续激射10,000小时,取得了划时代的进展。