离散傅里叶变换性质证明
- 格式:doc
- 大小:74.50 KB
- 文档页数:3
离散序列的傅里叶变换离散序列的傅里叶变换(Discrete Fourier Transform,简称DFT)是一种将离散序列从时域转换到频域的数学工具。
它在信号处理、图像处理、通信等领域扮演着重要角色。
本文将介绍离散序列的傅里叶变换的基本概念、性质以及在实际应用中的一些例子。
一、离散序列的傅里叶变换的基本概念离散序列的傅里叶变换是将一个离散序列转换为一系列复数的运算。
它的定义公式为:X(k) = Σx(n)e^(-j2πkn/N)其中,X(k)为频域上的复数序列,表示原始序列在频率为k的分量上的幅度和相位信息;x(n)为时域上的离散序列,表示原始序列在时间点n上的取值;N为序列的长度;e为自然对数的底数,j为虚数单位。
二、离散序列的傅里叶变换的性质离散序列的傅里叶变换具有一些重要的性质,包括线性性、平移性、对称性等。
1. 线性性:对于离散序列x(n)和y(n),以及任意常数a和b,有DFT(ax(n) + by(n)) = aDFT(x(n)) + bDFT(y(n))。
2. 平移性:如果将离散序列x(n)平移m个单位,则其傅里叶变换为X(k)e^(-j2πkm/N)。
3. 对称性:如果离散序列x(n)是实数序列且长度为N,则其傅里叶变换满足X(k) = X(N-k)。
三、离散序列的傅里叶变换的应用举例离散序列的傅里叶变换在实际应用中有着广泛的应用。
以下是几个常见的例子:1. 信号处理:在音乐、语音、图像等信号处理领域,离散序列的傅里叶变换可以用来分析信号的频谱特性,包括频率成分、能量分布等。
通过傅里叶变换,我们可以将时域上的信号转换为频域上的信号,从而更好地理解信号的特征。
2. 图像处理:在图像处理中,离散序列的傅里叶变换可以用来进行图像的滤波、增强、压缩等操作。
通过将图像转换到频域上,我们可以对不同频率分量进行处理,从而实现对图像的各种操作。
3. 通信系统:在通信系统中,离散序列的傅里叶变换可以用来实现信号的调制、解调、滤波等功能。
[数字信号处理]离散傅⾥叶变换及其性质DFT定义
离散傅⾥叶变换的公式如下
X(k)=N−1
∑
n=0x(n)W nk N
其中W n是单位根,定义如下
W N=e−j 2πN
逆变换如下
x(n)=1
N
N−1
∑
k=0X(k)W−nk
N
性质
线性
如果有x1(n)和x2(n)两个有限长序列,长度分别为N1和N2,且
y(n)=ax1(n)+bx2(n),(a,b为常数)取变换区间长度N=[N1,N2]max
X1(k)=DFT[x1(n)]N;X2(k)=DFT[x2(n)]N 则y(n)的N点DFT为
Y(k)=DFT[y(n)]N=aX1(k)+bX2(k)循环移位性质
设x(n)为有限长序列,长度为M,则x(n)的循环移位定义为
y(n)=x((n+m))N R N(n)
如果⼀个序列移位之后,⼀些样值被移到了起始点前⾯,那他实际上会在后⾯再补回来,实际的顺序并没有变.
频域循环移位定理
如果X(k)=DFT[x(n)]N
Y(k)=X((k+l))N R N(k)
则y(n)=IDFT[Y(k)]N=W nl N x(n)
循环卷积定理
如果x_1(n)和x_2(n)是两个有限长序列,长度分别为M1和M2,且取循环卷积区间长度L≥max[M1,M2]
X1(k)是x1(n)的L点DFT
X2(k)是x2(n)的L点DFT
如果y(n)=x1(n)∗x2(n)=[∑L−1
m=0
x1(m)x2((n−m))L]R L(n),
那么他的的DFT为Y(k)=X1(k)X2(k)
Processing math: 100%。
第3章 离散时间傅里叶变换在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。
与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。
本章将介绍离散时间系统的频域分析方法。
3.1 非周期序列的傅里叶变换及性质3.1.1 非周期序列傅里叶变换1.定义一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。
若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为:正变换: ∑∞-∞=ω-ω==n nj j en x e X n x DTFT )()()]([ (3-1-1)反变换: ⎰ππ-ωωω-ωπ==d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2)记为:)()(ω−→←j Fe X n x当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。
[例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X解:由定义式(3-1-1)可得ωω=--=--===ω-ω-ωω-ω-ωω-ω-ω-ω-=ω-∞-∞=ω∑∑21sin 3sin )()(11)()(25212121333656j j j j j j j j j nj n nj n j ee e e e e e e e een R e X 2.离散时间序列傅里叶变换存在的条件:离散时间序列)(n x 的傅里叶变换存在且连续的条件为)(n x 满足绝对可和。
即:∞<∑∞-∞=)(n x n (3-1-3)反之,序列的傅里叶变换存在且连续,则序列一定是绝对可和的。
离散时间傅⾥叶变换1. 离散时间傅⾥叶变换的导出针对离散时间⾮周期序列,为了建⽴它的傅⾥叶变换表⽰,我们将采⽤与连续情况下完全类似的步骤进⾏。
考虑某⼀序列x[n],它具有有限持续期;也就是说,对于某个整数N1和N2,在 −N1⩽以外,x[n]=0。
下图给出了这种类型的⼀个信号。
由这个⾮周期信号可以构成⼀个周期序列\tilde x[n],使x[n]就是\tilde x[n]的⼀个周期。
随着N的增⼤,x[n]就在⼀个更长的时间间隔内与\tilde x[n]相⼀致。
⽽当N\to \infty,对任意有限时间值n⽽⾔,有\tilde x[n]=x[n]。
现在我们来考虑⼀下\tilde x[n]的傅⾥叶级数表⽰式\tag{1}\tilde x[n] = \sum_{k=(N)}a_ke^{jk{(2\pi/N)}n}\tag{2}a_k = \frac{1}{N} \sum_{n=(N)} \tilde x[n]e^{-jk{(2\pi/N)}n}因为在-N_1 \leqslant N \leqslant N_2区间的⼀个周期上\tilde x[n]=x[n],因此我们将上式的求和区间就选在这个周期上\tag{3}a_k = \frac{1}{N} \sum_{n=-N_1}^{N_2} x[n]e^{-jk{(2\pi/N)}n} = \frac{1}{N} \sum_{n=-\infty}^{+\infty} x[n]e^{-jk{(2\pi/N)}n}现定义函数\tag{4}X(e^{j\omega})=\sum_{n=-\infty}^{+\infty}x[n]e^{-j\omega n}可见这些系数a_k正⽐于X(e^{j\omega})的各样本值,即\tag{5}a_k = \frac{1}{N}X(e^{jk\omega_0})式中,\omega_0=2\pi/N⽤来记作在频域中的样本间隔。
离散傅⾥叶变换及其性质1 ⼀维与⼆维离散傅⾥叶变换以周期对函数 f(t) 采样可表⽰为,对采样函数进⾏傅⾥叶变换得,整理得。
由于对函数 f(t) 的采样周期为,采样函数的傅⾥叶变换的⼀个完整周期为,同样的,也是采样函数的傅⾥叶变换的⼀个完整周期,只是这个周期不是以原点对称的。
在区间中取 M 个点,则第 m 个点的频率为,带⼊公式得,其中,为连续函数 f(t) 对应的 M 个离散值,为取样函数的傅⾥叶变换对应的 M 个离散值,整理公式得(由于函数仅在 [0,M-1] 上有⾮零值,故真实求和区间为 [0,M-1])。
因此,⼀维离散傅⾥叶变换对为,。
类似的,⼆维离散傅⾥叶变换对为,。
2 傅⾥叶变换的性质1)傅⾥叶变换平移特性,⽤指数项乘以 f(t) 使得傅⾥叶变换后原点移动到处,使⽤负指数乘以使得反傅⾥叶变换后原点移动到处,证明如下:,使⽤替换得,因此有,类似推导可得。
将平移特性扩展到⼆维离散变量上有。
2)离散傅⾥叶变换⼀定具有周期特性,因为离散傅⾥叶变换的频率取值在区间内,有限频率导致必然具有周期性,连续傅⾥叶变换频率取值为⽆穷⼤,所以连续傅⾥叶变换⼀般不具有周期性(但也有所有频率都⼀样的函数)。
离散傅⾥叶变换周期性可表⽰为。
观察公式 或,发现频率取值在之间,⽽⼀个完整的频率应该在之间,如下图:如果直接应⽤公式进⾏傅⾥叶变换,得到的频率为 [0,M-1]区间,这是两个半周期组成的⼀个周期。
在图像中则表现为低频信号分布在4个⾓落,这显然不便于观察频率信息。
结合傅⾥叶变换的平移特性,可以将原函数乘以⼀个正指数项,使得平移后傅⾥叶变换再 [0,M-1]区间正好是⼀个完整的周期。
将原函数平移 M/2 可以实现该⽬标,具体分析如下: 原函数平移 M/2 得 ,由于 x 为⾮负整数,,最终得到。
对于⼆维离散变量有相似结论 。
3)原函数(⼆维及以上)旋转⼀定⾓度,其傅⾥叶变换也旋转对应⾓度。
令 为原函数变量的列向量, 为傅⾥叶变换函数变量的列向量,对的傅⾥叶变换可表⽰为,对 旋转⼀定⾓度可表⽰为,其中 R 为旋转矩阵,对 的傅⾥叶变换可表⽰为 ,由 得 ,并将其带⼊上式得,由于,因此 ,使得傅⾥叶变换旋转相应⾓度。
离散傅里叶推导离散傅里叶变换(Discrete Fourier Transform,DFT)是一种将离散时间域信号转换为频域信号的方法。
它在信号处理、图像处理等领域中得到广泛应用。
本文将详细介绍离散傅里叶变换的推导过程。
一、离散傅里叶变换的定义离散傅里叶变换可以将一个离散时间序列表示为离散复频谱序列。
给定长度为N的信号序列x(n),其中n = 0, 1, 2, ..., N-1,其离散傅里叶变换定义如下:X(k) = Σ[x(n)·e^(-j2πkn/N)],k = 0, 1, 2, ..., N-1其中,X(k)为频谱序列,x(n)为时间序列,j为虚数单位。
二、离散傅里叶变换的推导为了推导离散傅里叶变换,我们首先需要了解指数函数的周期性。
对于任意整数k,有e^(j2πk) = 1。
因此,我们可以将指数e^(-j2πkn/N)简化为e^(-j2π\*k/N)。
接下来,我们以N为周期,将时间序列x(n)分解为N个部分。
x(n) = X(0) + X(1)·e^(j2πn/N) + X(2)·e^(j2π2n/N) + ... + X(N-1)·e^(j2π(N-1)n/N)将上述公式代入离散傅里叶变换的定义中,可得:X(k) = Σ[x(n)·e^(-j2πkn/N)]= Σ[(X(0) + X(1)·e^(j2πn/N) + X(2)·e^(j2π2n/N) + ... + X(N-1)·e^(j2π(N-1)n/N)) · e^(-j2πkn/N)]由于指数函数的周期性,我们可以将每一项中的指数函数合并起来:X(k) = X(0)·Σ[e^(-j2πkn/N)] + X(1)·Σ[(e^(j2π/N))^n] +X(2)·Σ[(e^(j4π/N))^n] + ... + X(N-1)·Σ[(e^(j2π(N-1)/N))^n]根据等比数列的求和公式,可得:X(k) = X(0)·N + X(1)·0 + X(2)·0 + ... + X(N-1)·0由于e^(-j2πkn/N)的周期为N,除非k=0,否则其和为0。
第三章离散傅立叶变换(DFT)3.1 引言有限长序列在数字信号处理是很重要的一种序列,当然可以用Z变换和傅里叶变换来研究它,但是,可以导出反映它的"有限长"特点的一种有用工具是离散傅里叶变换(DFT)。
离散傅里叶变换除了作为有限长序列的一种傅里叶表示法在理论上相当重要之外,而且由于存在着计算离散傅里叶变换的有效快速算法,因而离散傅里叶变换在各种数字信号处理的算法中起着核心的作用。
有限长序列的离散傅里叶变换(DFT)和周期序列的离散傅里叶级数(DFS)本质上是一样的。
为了更好地理解DFT,需要先讨论周期序列的离散傅里叶级数DFS。
而为了讨论离散傅里叶级数及离散傅里叶变换,我们首先来回顾并讨论傅里叶变换的几种可能形式。
(连续时间信号:如果在讨论的时间间隔内,除若干不连续点之外,对于任意时间值都可给出确定的函数值,此信号就称为连续时间信号。
)一、连续时间、连续频率——连续傅立叶变换(FT)设x(t)为连续时间非周期信号,傅里叶变换关系如下图所示:可以看出时域连续函数造成频域是非周期的谱,而时域的非周期造成频域是连续的谱。
二、连续时间,离散频率------傅 里 叶 级 数设f(t)代表一个周期为T 1的周期性连续时间函数,f(t)可展成傅里叶级数,其傅里叶级数的系数为n F ,f(t)和n F 组成变换对,表示为:tjn n n e F t f 1)(Ω∞-∞=∑=(112Ω=πT )dte tf T F TT t jn n ⎰-Ω-=221111)(1注意符号:如果是周期性的采样脉冲信号p(t),周期用T 表示(采样间隔)。
采样脉冲信号的频率为Ts π2=Ω可以看出时域连续函数造成频域是非周期的谱,而时域的周期造成频域是离散的谱三、离散时间,连续频率------序列的傅里叶变换正变换:DTFT[x(n)]=()()j nj n X e x n eωω∞-=-∞=∑反变换:DTFT-11[()]()()2j n j j X e x n X e e d πωωωπωπ-==⎰)(ωj e X 级数收敛条件为|()j nn x n eω∞-=-∞∑|=∞<∑∞-∞=n n x )(可以看出时域离散函数造成频域是周期的谱,而时域的非周期造成频域是连续的谱四、离散时间,离散频率------离散傅里叶变换上面讨论的三种傅里叶变换对,都不适用在计算机上运算,因为至少在一个域(时域或频域)中,函数是连续的。