坐标放样法
- 格式:doc
- 大小:55.50 KB
- 文档页数:4
浅述电站建设中极坐标放样法与前方交会法一、前言在核电建设过程中,为了使各建筑物中的设备、预埋件及管道等位置在施工过程中始终处于准确的受控状态,施工放样尤为重要。
施工放样的方法很多,如极坐标法、前方交会法、距离交会法等等。
测量技术人员必须兼顾效率、成本及精度要求而采用不同的放样方法,本文结合工程实践,就核电站建设常用的极坐标法放样及前方交会法放样法进行探讨。
二、极坐标法放样1、原理极坐标法放样是利用数学中的极坐标原理,以两个控制点的连线作为极轴,以其中一点作为极点建立极坐标系,根据放样点与控制点的坐标,计算出放样点到极点的距离(极距S)及放样点与极点连线方向和极轴间的夹角(极角)。
极距S、极角即为放样数据。
2、作业步骤(1)如上图,在C点架设全站仪,对中整平,后视B点(2)测设角度,(3)在CA方向上测设距离S(4)标定点位A。
3、精度分析:从上述步骤分析,其主要误差来源包括:架设仪器的对中误差、测角误差、测距误差和标定误差。
这里假定控制点的误差对下一级网影响较小,可忽略不计。
(1)对中误差,一般的光学对点器,其对点精度在0.5mm左右,若利用强制观测墩或者采用徕卡天底仪(NL)对点,我们常将其忽略不计。
(2)测角误差对放样点位的影响为。
(3)测距误差在工程建设中一般用全站仪来测设距离,距离测设的精度主要取决于(不考虑地球曲度,大气折光的影响)仪器的测距所能达到的精度和仪器的对中、反射镜对中杆铅直误差三个方面。
①测距仪的测距精度测距仪本身的测距精度,是指各种仪器所标称的精度指标,常用A+B*s表示。
例如:徕卡TCA2003全站仪,其测距精度为±(1mm+1ppm×s).其中1mm为该测距仪的固定误差,1 ppm.·s为比例误差。
当D=100 m 时,所引起的测距误差设为,则有:= ± 1mm+1×10¬¬¬¬¬¬¬¬¬¬¬¬¬ ×100000= ± 1.1mm②对中杆倾斜引起的距离误差对中杆的铅直是以圆气泡居中为标准的,实际工作中,人持对中杆进行放样,要使对中杆铅直是非常困难的,因为圆气泡总有偏差。
全站仪坐标放样方法全站仪是一种用于进行测量和放样的高精度仪器,它主要用于工程测量和建筑施工中。
全站仪的坐标放样方法是一种重要的测绘技术,它可以帮助工程师和施工人员准确地确定和标记地面上的特定位置。
在进行全站仪坐标放样之前,首先需要确定一个基准点。
基准点应该是一个固定且容易识别的地点,例如建筑物的角点或其他固定结构。
全站仪的放样测量将以基准点为起点,后续的测量将根据该起点进行。
在进行放样测量时,全站仪需要被正确设置和校准。
这包括调整仪器的水平、垂直和平面方向,以确保测量的准确性。
在准备好仪器之后,可以开始实际的坐标放样工作。
全站仪的坐标放样方法往往涉及到测量和记录水平角、垂直角和斜距,并根据这些数据计算目标点的坐标。
测量时,需要保持仪器稳定,并在目标点上通过视线准确地对准。
可以使用全站仪的观测功能来测量和记录所需的数据。
一种常用的全站仪坐标放样方法是使用三角测量原理。
首先,在已知的基准点设置一个测量棒,并记录其坐标。
然后,在目标点设置另一个测量棒,并测量其水平角、垂直角和斜距。
最后,通过计算和处理这些数据,可以确定目标点的准确坐标。
在进行全站仪坐标放样时,需要注意一些因素以确保测量的准确性。
例如,需要注意避免测量时的振动和抖动,以免影响结果的精度。
此外,还应考虑天气和环境条件对测量的影响,如大风、雨水或能见度不好等。
总之,全站仪坐标放样方法是一种用于确定地面上特定位置的测绘技术。
通过正确设置和校准全站仪,并使用三角测量原理,可以进行准确的坐标测量和放样工作。
这种方法在工程测量和建筑施工中具有重要的应用价值,可以提高工作效率和准确度。
直角坐标法放样步骤
嘿,你问直角坐标法放样步骤啊?那咱就来聊聊。
要进行直角坐标法放样呢,首先得有个准确的设计图纸。
这就像你出门得有个地图一样,知道自己要去哪儿。
图纸上要有各个点的坐标,这样才能进行放样。
把图纸看清楚了,心里有个底。
然后呢,要在现场找到一个已知的控制点。
这个控制点就像是一个固定的参考点,就像你在大海里航行要有个灯塔一样。
可以用测量仪器找到这个控制点的位置,确定好它的坐标。
接着,根据设计图纸上的坐标,计算出要放样的点相对于控制点的位置关系。
这就像是做数学题一样,算清楚距离和角度啥的。
比如说要放样的点在控制点的东边多远,北边多远。
算好位置关系后,就可以开始在现场进行放样了。
可以用测量仪器,比如全站仪啥的,从控制点出发,按照计算好的距离和角度,找到要放样的点的位置。
这就像你拿着指南
针和尺子在地上找东西一样。
在找到位置后,要做好标记。
可以用木桩啊、旗子啊啥的,把点标记出来,这样就不会搞错了。
标记要明显一点,让人一眼就能看到。
比如说我有个朋友,他们在工地上进行直角坐标法放样。
他们先仔细看了设计图纸,找到了控制点。
然后认真计算了要放样的点的位置关系。
接着用全站仪在现场进行放样,一步一步地找,可认真了。
最后把点标记好,确保施工的时候不会弄错。
所以啊,直角坐标法放样虽然有点复杂,但是只要按照步骤来,就能准确地找到要放样的点。
GPS测量仪器坐标放样使用方法GPS(全球定位系统)是一种利用卫星信号进行地理定位的技术,广泛应用于测量、导航、地图制作等领域。
GPS测量仪器是一种专门用于测量和记录位置信息的设备,其在工程施工中起到了重要的作用。
本文将介绍GPS测量仪器的坐标放样使用方法,帮助读者更好地使用该设备进行工作。
1. 选择合适的GPS测量仪器在进行坐标放样之前,首先应该确保所选的GPS测量仪器符合工作要求。
根据具体测量任务的需求,选择适合的仪器型号和参数。
一般来说,仪器应具备较高的测量精度、稳定性和可靠性。
2. 设置基准点在进行坐标放样之前,需要先设置基准点。
基准点是已知坐标的点,用于作为测量起点和参考点。
通常,基准点的坐标可以通过其他测量方法(如传统测量法、全站仪等)获取,或者从地图或GPS导航设备上获取。
3. 打开GPS测量仪器根据GPS测量仪器的操作说明,正确打开设备。
通常,设备背面会有一个开关或按键,按下该开关或按键,设备会进入工作状态。
此时,GPS测量仪器会开始搜索卫星信号,并显示当前位置的坐标信息。
4. 搜索卫星信号GPS测量仪器需要通过卫星信号来定位和测量位置信息。
在使用GPS测量仪器进行坐标放样之前,需要等待仪器搜索到足够数量的卫星信号。
一般来说,至少需要搜索到三颗卫星信号才能进行有效的定位。
在仪器上方可能有一个天线,保持天线与卫星视线的畅通,可以提高卫星信号的接收质量。
5. 记录当前位置坐标当GPS测量仪器搜索到足够数量的卫星信号后,仪器会自动计算并显示当前位置的坐标信息。
将当前位置的坐标信息记录下来,作为测量数据的一部分。
一般来说,GPS测量仪器会提供数据记录的功能,可以将测量数据保存到存储设备或导出到计算机进行后续处理。
6. 移动并记录其他位置坐标在记录了基准点和当前位置坐标后,可以根据需要移动到其他位置,并记录相应的坐标。
移动的过程中,GPS测量仪器会不断更新当前位置的坐标信息。
根据测量任务和要求,在到达目标位置后,需要等待一段时间,确保仪器稳定并获取到准确的坐标信息,然后将该位置的坐标记录下来。
极坐标法放样原理
极坐标法是一种用于放样的方法,它将二维空间中的点转换为极坐标下的坐标表示。
该方法主要基于极坐标系的一些特性,通过将直角坐标系的点转换为极坐标系的点来进行放样。
在极坐标法中,点的位置由两个参数确定:极径和极角。
极径表示点到原点的距离,而极角表示点与正向 x 轴的夹角。
通过将直角坐标系中的点转换为极坐标系中的点,可以将点的位置描述为极径和极角的组合。
极坐标法放样的步骤如下:
1. 设置原点和极径上的单位线段长度。
原点通常选择为放样图形的中心,而极径上的单位线段长度可以根据需要进行设置。
2. 选择需要放样的点,计算每个点相对于原点的位置。
可以通过直角坐标系下的坐标转换公式来计算点的极径和极角。
3. 根据计算得到的极径和极角,在极坐标系中确定每个点的位置。
4. 使用放样工具或手工操作,在极坐标系中以计算得到的位置放样点。
通过极坐标法进行放样的好处是可以更好地表达圆形和径向对称的图形,因为极坐标法能够将这些图形表示为恒定的极径和变化的极角。
然而,极坐标法也有其局限性。
当图形具有复杂的形状或非径向对称性时,使用极坐标法可能会导致放样结果不准确或不完整。
此时,可能需要采用其他的放样方法来获得更好的效果。
全站仪坐标法放样步骤包括:
1.将全站仪架设到已知点(基站点),打开仪器,转动望远镜后,打开激光器对
中,进行整平,只上下调动其中两个脚架,将圆水准器调平后再调管水准器精平。
再看对中点是否居中,如有偏差,只移动仪器,再进行调精平,反复直到对中为止。
2.然后进入仪器菜单项,选择放样测量,进入测站设置,输入测站基点坐标后,
进入后视点输入,将仪器十字丝对准后视点棱镜中心后,按确定键。
3.进入菜单项,将棱镜架设到复测点位,整平,望远镜十字丝对准棱镜中心,(看
仪器性能而定)选择坐标测量,打出坐标与现有坐标进行对比,相差不大就可以进行下一步的放样程序。
4.还是进入放样测量中的放样数据,输入我们要测定的未知点坐标进行测定,输
入坐标后按仪器显示角度方位进行调整,将棱镜移动到正确方位进行距离测量。
根据仪器上显示距离棱镜进行适当的前后调整。
5.测定出未知点位后,最好打上木桩,订上钉子,再用混泥土沿木桩四周围护好
以免松动。
以上是全站仪坐标法放样的基本步骤,仅供参考。
在实际操作中,请遵循专业人员的指导。
坐标要已知才能放样呀,如果要计算坐标,可以用CAsio4800编程计算,只要有公式就可以自己编入计算器运用,当然你可直接上网下载如果是公路的我整理的你可以参考CASIO4800程序组1、极坐标法放样Prog:FYLb1 0:A“X0”:B“Y0”:I=0:J=0:Pol((C“XA”-A),(D“YA”-B):J<0=>G“FW- OA”=J+360▲L“L0”=I▲Goto 1:≠> G“FW O-A”=J▲L“L0”=I▲Lb1 1:{EQ}:E“Xi”:Q“Yi”:Pol((E-A),(Q-B)):J<0=>J=J+360:Goto 2:≠> Goto 2Lb1 2:F“FW-OB”=J▲L=I▲0=F-G:O<0=>O“BJ”=O+360▲Goto 3:≠> O “BJ” ▲Lb1 3:P=O-180▲Goto 1注:a、输入:(X0、Y0)、(XA、YA)——测站点坐标、后视点坐标Xi、Yi ——放样点坐标b、输出:FW-OA——测站至后视边方位角、L0——后视边长FW-OB——测站至放样点方位角、L——放样边长BJ——后视边置零,放样点顺时针拨角P——偏角(+为右偏、-为左偏){本值用于计算路线偏角}2、公路竖曲线高程计算程序Prog:SQXLbl A:A“+(-)i1”:B“+(-)i2” W=(B-A)÷100:R:T=Abs(RW)÷2:L=T*2:E=T2÷(2R):K“JD K+”:G“JD H”:C=K-T:D=K+T:Lbl 0:J“Ki+”:J<0=>Goto 1:≠> Goto 2△△Lb1 1:“Out QX1”:H=G-(K-J)A÷100▲Goto 5Lb1 2:J>D=>Goto 4 △W<0=>F=-1△W>0=>F=1△J>K=>Goto 3△H=G-(K-J)A÷100+F(J-C)2÷(2R)▲Goto 5△Lb1 3:H=G+(J-K)B÷100+F(D-J)2÷(2R)▲Goto 5△Lb1 4:“OUT QX2”:H=G+(J-K)B÷100▲Goto 5△Lb1 5:M“DHi”:H=H+M▲注:a、公式:L=|R(i2-i1)| 、T=L÷2、E=T2÷(2R)、h=l2÷(2R)b、功能:已知前后坡度%、竖曲线半径,计算各桩高程。
极坐标放样法
极坐标放样法(Polar Coordinate Method)是一种用于绘制曲线或曲面的放样方法,适用于一些特定的几何形状。
它通过在极坐标系中描述和绘制曲线,将其转化为直角坐标系中的点集。
以下是极坐标放样法的基本步骤:
1. 确定放样中心:确定放样的中心点,通常位于极坐标系的原点。
2. 设置放样参数:根据放样的要求,设置相应的放样参数,比如角度、半径等。
3. 计算极坐标点:根据放样参数,计算出每个角度对应的极坐标点的半径和角度值。
4. 转换为直角坐标:将计算得到的极坐标点转换为直角坐标系中的点。
5. 绘制曲线:连接转换得到的直角坐标点,绘制曲线或曲面。
极坐标放样法常用于制作对称的基本形状,如圆形、花瓣等。
它可以
帮助绘制精确的几何图形,并在建筑、工程、制图等领域得到应用。
需要注意的是,极坐标放样法在绘制复杂曲线时可能比较繁琐,有时需要借助计算机辅助绘图软件或绘图工具来实现。
此外,放样过程中需要准确理解放样参数的含义,并根据实际情况进行调整和优化。
综上所述,极坐标放样法是一种在极坐标系中进行曲线或曲面放样的方法,它可以用于绘制特定几何形状,但在实际应用中需要注意参数设置和转换计算的准确性。
平面坐标放样方法
1. 嘿,你知道吗?极坐标放样法就像是给你一个超级指南针!比如说,在建造一座酷炫的摩天轮时,我们就可以用极坐标放样法精准地确定每个支柱的位置,厉害吧!
2. 哇哦,直角坐标放样法可是非常常用的呢!这就像搭积木一样,按部就班地确定每个点的位置。
就好比建房子,通过直角坐标放样法能让房子稳稳地矗立起来呀!
3. 嘿呀,角度交会放样法就有点像玩拼图游戏啦!比如我们要在广场上布置一个特别的图案,角度交会放样法就能发挥大作用啦,能让图案完美呈现呢!
4. 哈哈,距离交会放样法,这可是个好帮手呀!就像警察叔叔抓坏人,通过各种线索确定坏人的位置。
比如在布置一个大花园的时候,我们能靠它来确定每棵树的精确位置哟!
5. 哇塞,全站仪放样法,这可真是高科技啊!就如同拥有了一双千里眼。
像修一条长长的高速公路,全站仪放样法能确保路线又直又准确呢!
6. 哟呵,GPS 放样法,这简直太厉害了!就像是给你装上了定位导航。
比如在广阔的田野里进行测量工作,GPS 放样法能快速又精确地找到每个点呢!
7. 哎呀呀,后方交会放样法,这可是很巧妙的呀!就好像是找到了解开谜题的关键。
比如说在复杂的地形中要建一个设施,后方交会放样法就能帮我们搞定位置的确定呢!
我的观点结论:平面坐标放样方法真是多种多样,各有各的厉害之处,在不同的场景中都能发挥巨大的作用呀!。
工程施工放样是工程建设中的一项基础工作,其目的是将设计图纸上的建筑物、构筑物的平面位置和高程按照设计要求,以及一定的精度在实地标定出来,为施工提供依据。
本文将介绍几种常用的工程施工放样方法。
一、全站仪坐标法全站仪坐标法是利用全站仪的高精度角度和距离测量功能,将设计图纸上的建筑物的各个控制点坐标,通过测量仪器测设到实地上的方法。
具体步骤如下:1. 在控制点上架设全站仪并对中整平,输入测站点的坐标,量取并输入仪器高,输入后视点坐标,照准后视点进行后视。
2. 瞄准另一控制点,检查方位角或坐标;在另一已知高程点上竖棱镜或尺子检查仪器的视线高。
3. 在各待定测站点上架设脚架和棱镜,量取、记录并输入棱镜高,测量、记录待定点的坐标和高程。
4. 在测站点上按步骤1安置全站仪,照准另一立镜测站点检查坐标和高程。
5. 记录员转动仪器点和拟放样点坐标反算出测站点。
二、极坐标法极坐标法是利用点位之间的边长D和角度Q关系进行测设的方法。
具体步骤如下:1. 在已知点上架设全站仪,测量待放样点与已知点之间的距离和角度。
2. 根据测量得到的距离和角度,计算待放样点的坐标。
3. 在待放样点上设立标志,完成放样。
三、直接坐标法直接坐标法是根据点位设计坐标直接进行点位测设的方法。
具体步骤如下:1. 根据设计图纸,计算出待放样点的坐标。
2. 在实地上架设全站仪,照准待放样点,调整全站仪的坐标,使其与待放样点的坐标一致。
3. 在待放样点上设立标志,完成放样。
四、距离交会法距离交会法是利用点位之间的距离交会进行点位测设的方法。
具体步骤如下:1. 在已知点上架设全站仪,测量待放样点与已知点之间的距离。
2. 在待放样点上设立标志,并测量标志与已知点之间的距离。
3. 根据测量得到的距离,计算待放样点的坐标。
4. 在待放样点上设立标志,完成放样。
五、角度交会法角度交会法是利用点位之间的角度交会进行点位测设的方法。
具体步骤如下:1. 在已知点上架设全站仪,测量待放样点与已知点之间的角度。
极坐标法放样原理极坐标法放样是一种常用的工程制图方法,它通过将平面上的点用极坐标表示,来实现曲线的放样。
在实际工程中,极坐标法放样被广泛应用于机械制图、建筑设计等领域。
下面我们将详细介绍极坐标法放样的原理和应用。
首先,我们来了解一下极坐标的基本概念。
在平面直角坐标系中,我们通常用(x, y)来表示一个点的位置,其中x表示点在x轴上的投影,y表示点在y轴上的投影。
而在极坐标系中,我们用(r, θ)来表示一个点的位置,其中r表示点到原点的距离,θ表示点与x轴的夹角。
通过极坐标系,我们可以更方便地描述曲线的形状和位置。
极坐标法放样的原理是利用极坐标系下的点来描述曲线的形状,然后通过放样的方法将曲线在平面上展开成为直线或者简单的图形,以便于制图和设计。
具体来说,极坐标法放样可以分为以下几个步骤:第一步,确定曲线的极坐标方程。
通过已知的曲线方程或者图形,我们可以求得曲线在极坐标系下的方程,通常是(r=f(θ))的形式。
第二步,选择放样间距。
放样间距是指在曲线上取点的间距,通常选择一个合适的间距可以使放样后的图形更加清晰。
第三步,计算放样点的极坐标。
根据曲线的极坐标方程和放样间距,我们可以计算出曲线上各个点的极坐标。
第四步,绘制放样图形。
将计算得到的极坐标点在平面直角坐标系中绘制出来,连接这些点可以得到曲线的放样图形。
极坐标法放样的原理虽然简单,但在实际应用中有着广泛的用途。
在机械制图中,极坐标法放样可以用于绘制齿轮、螺旋线等曲线图形;在建筑设计中,极坐标法放样可以用于绘制圆形、椭圆形等建筑结构。
通过极坐标法放样,我们可以更加方便地描述和绘制曲线图形,为工程设计和制图提供了有力的工具支持。
总之,极坐标法放样是一种重要的工程制图方法,它通过极坐标系下的点来描述曲线的形状,然后通过放样的方法将曲线在平面上展开成为直线或者简单的图形。
极坐标法放样的原理简单易懂,应用广泛,为工程设计和制图提供了有力的支持。
希望本文对极坐标法放样的原理和应用有所帮助。
全站仪坐标放样的方法
全站仪坐标放样的方法主要包括以下几个步骤:
1. 建立坐标系:确定放样工程的参考坐标系,一般选择平面坐标系或地理坐标系。
2. 建立基准点:在工程现场选择合适的位置建立固定控制点,可以选择建筑物角点、地物标志、铁钉等。
通过全站仪对基准点进行测量,获取其准确的坐标值。
3. 确定放样线路:根据设计图纸确定放样线路,可以通过全站仪在现场进行标记,也可以在图纸上标注。
4. 放样测量:在每个放样点上使用全站仪进行测量,获取坐标值,并记录下来。
放样点可以根据具体情况选取,可以是临时标记点,也可以是永久性目标点。
5. 校验检查:在放样结束后,可以对放样点进行校验检查,将测得的坐标值与设计值进行对比,校验误差是否在允许范围内。
需要注意的是,在全站仪坐标放样过程中,应注意仪器的准确性和操作的规范性,尽量减少误差的产生。
同时,放样的结果也要进行保管和备份,以备后续使用。
直角坐标法放样原理直角坐标法是一种常用的数学工具,用于描述平面上的点的位置。
其原理是通过确定点与坐标轴之间的距离关系来确定点的位置。
在直角坐标系中,平面被分为四个象限,每个象限都有自己的坐标值范围。
直角坐标系由两条相互垂直的坐标轴组成,通常被称为x轴和y轴。
x轴水平方向从左到右,y轴垂直方向从下到上。
原点是坐标系中的交点,它的坐标值为(0, 0)。
在直角坐标系中,每个点都可以用一个有序的数对(x, y)来表示,其中x表示点与y轴的距离,y表示点与x轴的距离。
直角坐标法的放样原理是通过将平面上的一个点的坐标值传递给一个函数,然后根据这个函数的定义来计算出点的位置。
这个函数通常被称为坐标变换函数,它可以将一个点的坐标值从直角坐标系转换到其他坐标系,或者将其他坐标系的坐标值转换到直角坐标系。
在直角坐标法中,可以使用一些基本的几何运算来确定点的位置。
例如,两点之间的距离可以通过勾股定理来计算。
如果已知两点的坐标值(x1, y1)和(x2, y2),则可以使用以下公式来计算它们之间的距离d:d = √((x2 - x1)^2 + (y2 - y1)^2)除了计算距离,直角坐标法还可以用于计算点与直线之间的关系。
例如,可以使用直线的一般方程来确定一个点是否在直线上。
一般方程的形式为Ax + By + C = 0,其中A、B和C是常数。
如果一个点的坐标值(x, y)满足这个方程,则说明这个点在直线上。
直角坐标法还可以用于描述和计算图形的属性。
例如,可以使用直角坐标法来计算图形的面积和周长。
对于一些简单的图形,可以使用基本的几何公式来计算这些属性。
例如,矩形的面积可以通过长和宽的乘积来计算,圆的面积可以通过半径的平方乘以π来计算。
除了基本的几何运算,直角坐标法还可以进行一些更复杂的计算。
例如,可以使用直角坐标法来计算两个图形之间的交点。
这可以通过解方程组来实现,其中方程组描述了两个图形的属性。
通过求解这个方程组,可以确定两个图形的交点的坐标值。
直角坐标法放样原理
直角坐标法放样原理是一种在工程领域广泛应用的测绘方法,它能够精确地确定地表
特定位置的坐标。
该方法基于直角坐标系,通过将地点的位置投射到平面上来获取坐标信息。
直角坐标法放样原理的基本步骤如下:
1. 建立直角坐标系:在实地测量前,需要在测区范围内建立一个合适的直角坐标系,通常通过选取两个相互垂直的轴线来实现。
这些轴线通常被称为X轴和Y轴。
2. 设置控制点:为了能够准确地定位特定的地点,需要在测区内选择一些控制点。
这些控制点通常是一些易于识别和测量的地物特征,例如建筑物的角点、路口的交叉点等。
通过对这些控制点进行测量并记录它们在直角坐标系中的坐标,可以建立一个参考坐标
系。
3. 观测和记录:在实际测量过程中使用测量设备(如全站仪、电子测距仪等)测量每个控制点的水平角度、垂直角度和距离,并将这些数据记录下来。
通过测量设备的仪器误
差校正和数据处理,可以得到更加准确的测量结果。
4. 计算和放样:根据观测数据和控制点的参考坐标,可以利用测量和计算技术计算
出各个点在直角坐标系中的坐标。
通过将这些坐标信息绘制到纸上或计算机软件上,可以
得到测区内各个点的空间位置和坐标。
直角坐标法放样原理是一种利用直角坐标系将实地测量数据投射到平面上的方法。
通
过建立直角坐标系、选择和测量控制点、观测和记录测量数据以及计算和放样,可以得到
地点的精确坐标信息,为工程和测绘活动提供准确的数据基础。
14.放样测量放样测量用于在实地上测设出所要求的点位。
在放样过程中,通过对照准点的角度、距离或坐标测量,仪器将显示出预先输入的放样值与实测值之差以指导放样。
显示值=实测值-放样值放样测量应使用盘左位置进行。
λ14.1距离放样测量根据某参考方向转过的水平角和至测站点的距离来设定所要求的点。
操作过程操作键显示1.按右图所示照准参考方向。
2.在测量模式第二页菜单下按【置零】,在【置零】闪动时再次按下该键,将参考方向设置为零。
【置零】【测量】HZA 99°43′13〃HAR 0°00′00〃P2置零坐标放样记录操作过程操作键显示3.在测量模式第二页菜单下按【放样】,进入放样测量模式。
在菜单模式选取“2.放样测量”完成同样功能。
λ【放样】【放样测量】1.放样数据2.放样观测3.测站设置↓4.方位角4.选取“1.放样数据”后按【】,进入放样数据输入屏幕。
输入放样平距和放样角度,每输完一数据项后按【】。
【】【放样距离角度】H<m>:HA:坐标确定5.按【确定】进入放样观测屏幕。
其中:dH:目标与待放样点的平距差值。
dHA:目标与待放样点的水平角差值。
【确定】【距离放样】dHdHA -119°23′18〃HAR 0°00′00〃改正模式引导测量6.按【引导】进入放样引导屏幕,第二行所显示的角度值为角度实测值与放样值之差值,而箭头方向为仪器照准部应转动的方向。
箭头的含义λ←:从测站上看去,向左移动棱镜。
→:从测站上看去,向右移动棱镜。
恢复放样观测屏幕,按【差值】【引导】λ【距离放样】→ -119°23′18〃HAR 0°00′00〃改正模式差值测量操作过程操作键显示7.旋转仪器照准部至第二行显示的角度值为0°。
当角度实测值与放样值之差在±30〃范围内时,屏幕上显示←→。
【距离放样】←→ 0°00′01〃HAR 119°23′19〃改正模式差值测量8.在望远镜照准方向上安置棱镜并照准。
极坐标法放样原理极坐标法放样是一种常用于工程绘图和设计中的放样方法,通过极坐标坐标系的应用,可以有效地实现曲线和曲面的放样。
本文将介绍极坐标法放样的原理和应用,希望能够帮助读者更好地理解和应用这一方法。
首先,我们来看一下极坐标的基本概念。
在平面直角坐标系中,点的位置可以由横坐标和纵坐标来确定,而在极坐标系中,点的位置则由极径和极角来确定。
极径表示点到极点的距离,而极角表示点与极轴的夹角。
通过极坐标系,我们可以更加直观地描述和分析曲线的形状和特征。
在进行极坐标法放样时,首先需要确定放样曲线的极坐标方程。
通常情况下,我们可以先将曲线的直角坐标方程转换为极坐标方程,然后再进行放样计算。
在确定了曲线的极坐标方程之后,我们就可以根据放样的要求,进行相应的计算和绘图。
极坐标法放样的原理是基于极坐标系下的坐标变换和几何关系。
通过对曲线的极坐标方程进行微小的增量变化,可以得到曲线上各点的坐标信息,从而实现曲线的放样。
在放样过程中,需要考虑曲线的曲率、切线方向等因素,以保证放样的准确性和合理性。
极坐标法放样在工程设计和制图中有着广泛的应用。
例如,在船舶和飞机的外形设计中,常常需要进行曲面的放样,而极坐标法放样可以有效地实现这一过程。
此外,在机械零件的设计和加工中,极坐标法放样也可以帮助工程师们快速准确地完成放样工作。
总之,极坐标法放样是一种重要的放样方法,通过极坐标系的应用,可以实现曲线和曲面的放样。
在实际应用中,我们需要深入理解其原理和方法,灵活运用于工程设计和制图中,从而提高工作效率和质量。
希望本文的介绍能够帮助读者更好地理解和掌握极坐标法放样的相关知识,为工程实践提供帮助。
工程施工放样是工程建设中不可或缺的重要环节,它将设计图纸上的建筑物的平面位置和高程按照一定精度标定在实地,为施工提供依据。
本文主要介绍了几种常见的工程施工放样方法。
一、全站仪坐标法全站仪坐标法是利用全站仪的高精度角度和距离测量功能,将设计图纸上的建筑物的平面位置和高程转换为实地的坐标,再通过全站仪的显示和计算功能,得出放样点的具体位置。
全站仪坐标法的优点是精度高、速度快,能大大提高施工效率。
二、极坐标法极坐标法是利用全站仪测量角度和距离,通过计算得出放样点的坐标。
该方法的优点是操作简单,但精度相对较低,适用于施工精度要求不是很高的工程。
三、直接坐标法直接坐标法是利用全站仪直接测量放样点的坐标,不需要进行复杂的计算。
该方法的优点是直观、简单,但需要精确的测量控制点坐标,对施工人员的要求较高。
四、GPS RTK法GPS RTK法是利用GPS信号进行实时差分定位,将设计图纸上的建筑物的平面位置和高程转换为实地的坐标,再通过GPS接收机显示和计算功能,得出放样点的具体位置。
GPS RTK法的优点是精度高、速度快,不受地形地貌限制,但设备成本较高。
五、交会法交会法是利用全站仪测量两个已知控制点和放样点之间的角度和距离,通过计算得出放样点的具体位置。
该方法的优点是适用范围广,但精度相对较低,需要精确的控制点坐标。
六、数字放样法数字放样法是利用计算机和全站仪配合,将设计图纸上的建筑物信息输入计算机,通过计算机软件进行处理,生成放样数据,再通过全站仪进行实地放样。
该方法的优点是精度高、自动化程度高,但需要专业的计算机软件和设备。
综上所述,工程施工放样方法多种多样,施工人员应根据实际工程的需要,选择合适的放样方法。
同时,为了保证放样的精度,还需要对施工人员进行专业的培训,确保他们掌握正确的操作方法。
此外,施工过程中还要注意对放样设备的维护和检查,确保设备的精度和稳定性。
全站仪坐标放样(一)实验学时:2学时实验类型:验证实验要求:必做一、实验目的(一)掌握坐标反算。
(二)掌握极坐标法测设点位。
二、实验内容(一)全站仪对中、整平、建站。
(二)使用全站仪采用极坐标法测设点位。
三、实验原理、方法和手段(一)原理A,B为平面控制点,P为待测的点位,其坐标均为已知,用极坐标法测设P点。
以A 点位测站,用极坐标反算AB和AP的方位角αAB和αAP、水平角以及AP的水平距离D AP。
(二)方法、手段1.方法极坐标放样法。
2.手段利用全站仪根据坐标反算计算出两点坐标的放样数据—角度、距离进行放样。
教师现场指导、学生动手练习。
四、实验组织运行要求(一)实验要求1、以学生自主训练为主的开放模式组织教学。
以专业为对象,班级为单位分小组进行实验,由学院统一安排。
2、实验开始前,以小组为单位到测量实验室领取仪器和工具,并做好仪器使用登记工作。
领到仪器后,到指定实验地点集中,待实验指导教师作全面讲解后,方可开始实验。
3、对实验规定的各项内容,小组内每人均应轮流操作。
实验结束后,实验报告应独立完成。
4、实验应在规定时间内进行,不得无故缺席、迟到或早退;实验应在指定地点进行,不得擅自变更地点。
5、必须遵守本实验指导书所列的“测量仪器工具的借用规则”或“测量记录与计算的规则”。
6、应认真听取教师的指导,实验的具体操作应按实验指导书的要求、步骤进行。
7、实验中出现仪器故障、工具损坏和丢失等情况时,必须及时向指导教师报告,不可随意自行处理。
8、实验结束时,应把观测记录交实验指导教师审阅,经教师认可后方可收拾和清理仪器、工具。
最后,将仪器、工具归还实验室。
(二)测量仪器借用规则测量仪器精密、贵重,对测量仪器的正确使用、精心爱护和科学保养,是测量工作人员必须具备的素质和应该掌握的技能,也是保证测量成果质量、提高工作效率和延长仪器使用寿命的必要条件。
测量仪器、工具的借用必须遵守以下规则:1、每次实验前,以小组为单位。