优化设计黄金分割法实验报告
- 格式:doc
- 大小:136.00 KB
- 文档页数:6
一、实验目的本次实验旨在通过计算机编程,加深对机械优化设计方法的理解,掌握常用的优化算法,并能够利用计算机解决实际问题。
二、实验内容1. 黄金分割法(1)实验原理黄金分割法是一种常用的优化算法,适用于一元函数的极值求解。
其基本原理是:在给定初始区间内,通过迭代计算,逐步缩小搜索区间,直到满足收敛条件。
(2)实验步骤① 设计实验程序,实现黄金分割法的基本算法。
② 编写函数,用于计算一元函数的值。
③ 设置初始区间和收敛精度。
④ 迭代计算,更新搜索区间。
⑤ 判断是否满足收敛条件,若满足则输出结果,否则继续迭代。
(3)实验结果通过编程实现黄金分割法,求解函数f(x) = x^3 - 6x^2 + 9x + 1在区间[0, 10]内的极小值。
实验结果显示,该函数在区间[0, 10]内的极小值为1,且收敛精度达到0.001。
2. 牛顿法(1)实验原理牛顿法是一种求解非线性方程组的优化算法,其基本原理是:利用函数的导数信息,逐步逼近函数的极值点。
(2)实验步骤① 设计实验程序,实现牛顿法的基本算法。
② 编写函数,用于计算一元函数及其导数。
③ 设置初始值和收敛精度。
④ 迭代计算,更新函数的近似值。
⑤ 判断是否满足收敛条件,若满足则输出结果,否则继续迭代。
(3)实验结果通过编程实现牛顿法,求解函数f(x) = x^3 - 6x^2 + 9x + 1在区间[0, 10]内的极小值。
实验结果显示,该函数在区间[0, 10]内的极小值为1,且收敛精度达到0.001。
3. 拉格朗日乘数法(1)实验原理拉格朗日乘数法是一种求解约束优化问题的优化算法,其基本原理是:在约束条件下,构造拉格朗日函数,并通过求解拉格朗日函数的驻点来求解优化问题。
(2)实验步骤① 设计实验程序,实现拉格朗日乘数法的基本算法。
② 编写函数,用于计算目标函数、约束函数及其导数。
③ 设置初始值和收敛精度。
④ 迭代计算,更新拉格朗日乘数和约束变量的近似值。
机械优化设计黄金分割法实验报告1、黄金分割法基本思路:黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。
因此,这种方法的适应面非常广。
黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点al,a2,并计算其函数值。
al,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。
然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。
2黄金分割法的基本原理一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。
一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。
该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。
rl=a+O382(Js-a)r2=a+0,618(b-a)如图fi(r2)>f(rl)所以新区间为[迈以为新区间,继续求新的试点黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点**的一种方法。
它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数⑹,即只在单峰区间内才能进行一维寻优,其收敛效率较低。
其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。
具体步骤是:在区间[a,b]内取点:al,a2把[a,b]分为三段。
如果f(a1)>f(a2),令a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)<f(a2),令b=a2,a2=a1,a1=b-r*(b-a),如果|(b-a)/b|和|(y1-y2)/y2|都大于收敛精度e重新开始。
因为[a,b]为单峰区间,这样每次可将搜索区间缩小0.618倍或0.382倍,处理后的区间都将包含极小点的区间缩小,然后在保留下来的区间上作同样的处理,如此迭代下去,将使搜索区[a,b]逐步缩小,直到满足预先给定的精度时,即获得一维优化问题的近似最优解。
最优化课程设计--黄⾦分割法及其算法实现(3机械优化设计报告姓名:刘洋学号:S12080203054院系:机械⼯程学院专业:机械设计及理论2012年 12⽉ 4⽇摘要最优化理论和⽅法⽇益受到重视,已经渗透到⽣产、管理、商业、军事、决策等各个领域,⽽最优化模型与⽅法⼴泛应⽤于⼯业、农业、交通运输、商业、国防、建筑、同学、政府机关等各个部门及各个领域。
伴随着计算机技术的⾼速发展,最优化理论与⽅法的迅速进步为解决实际最优化问题的软件也在飞速发展。
其中,MATLAB软件已经成为最优化领域应⽤最⼴的软件之⼀。
有了MATLAB 这个强⼤的计算平台,既可以利⽤MATLAB优化⼯具箱(OptimizationToolbox)中的函数,⼜可以通过算法变成实现相应的最优化计算。
关键词:优化、黄⾦分割法、最速下降法、MATLAB、算法AbstractOptimization theory and methods and more attention, have penetrated into the production, management, business, military, decision-making and other fields, and optimization models and methods widely used in industry, agriculture, transportation, commerce, defense, construction, students, government various departments and agencies and other fields. With the rapid development of computer technology,optimization theory and methods for the rapid progress of the optimization problem to solve practical software is also developing rapidly. Which, MATLAB software has become the most optimization software is one of the most widely used. With this powerful computing platform MATLAB, either using MATLAB optimization toolbox (OptimizationToolbox) in the function, but also can achieve the appropriate algorithm to optimize into the calculation.Key words: Optimization、Golden section method、steepest descent method、MATLAB、algorithm⽬录摘要 (2)第⼀章绪论 (5)第⼆章黄⾦分割法的基本思想与原理 (6)2.1 黄⾦分割法的基本思路 (6)2.2 算法流程图 (7)2.3 ⽤matlab编写源程序 (7)2.4 黄⾦分割法应⽤举例 (8)第三章最速下降法的基本思想与原理 (9)3.1 最速下降法的基本思路 (9)3.2 算法流程图 (11)3.3 ⽤matlab编写源程序 (11)3.4 最速下降法应⽤举例 (13)第四章惩罚函数法的基本思想与原理 (13)4.1 惩罚函数法的基本思路 (13)4.2 算法流程图 (14)4.3 ⽤matlab编写源程序 (14)4.4 最速下降法应⽤举例 (16)第五章总结 (17)参考⽂献 (18)第1章绪论在⼈类活动中,要办好⼀件事(指规划、设计等),都期望得到最满意、最好的结果或效果。
最优化⽅法三分法+黄⾦分割法+⽜顿法最优化_三等分法+黄⾦分割法+⽜顿法⼀、实验⽬的1. 掌握⼀维优化⽅法的集中算法;2. 编写三分法算法3. 编写黄⾦分割法算法4. 编写⽜顿法算法⼆、系统设计三分法1.编程思路:三分法⽤于求解单峰函数的最值。
对于单峰函数,在区间内⽤两个mid将区间分成三份,这样的查找算法称为三分查找,也就是三分法。
在区间[a,b]内部取n=2个内等分点,区间被分为n+1=3等分,区间长度缩短率=1 3 .各分点的坐标为x k=a+b−an+1⋅k (k=1,2) ,然后计算出x1,x2,⋯;y1,y2,⋯;找出y min=min{y k,k=1,2} ,新区间(a,b)⇐(x m−1,x m+1) .coding中,建⽴left,mid1,mid2,right四个变量⽤于计算,⽤新的结果赋值给旧区间即可。
2.算法描述function [left]=gridpoint(left,right,f)epsilon=1e-5; %给定误差范围while((left+epsilon)<right) %检查left,right区间精度margin=(right-left)/3; %将区间三等分,每⼩段长度=marginm1=left+margin; %left-m1-m2-right,三等分需要两个点m2=m1+margin; %m2=left+margin+marginif(f(m1)<=f(m2))right=m2; %离极值点越近,函数值越⼩(也有可能越⼤,视函数⽽定)。
else %当f(m1)>f(m2),m2离极值点更近。
缩⼩区间范围,逼近极值点left=m1; %所以令left=m1.endend %这是matlab的.m⽂件,不⽤写return.黄⾦分割法1.编程思路三分法进化版,区间长度缩短率≈0.618.在区间[a,b]上取两个内试探点,p i,q i要求满⾜下⾯两个条件:1.[a i,q i]与[p i,b i]的长度相同,即b i−p i=q i−a i;2.区间长度的缩短率相同,即b i+1−a i+1=t(b i−a i)]2.算法描述⾃⼰编写的:function [s,func_s,E]=my_golds(func,left,right,delta)tic%输⼊: func:⽬标函数,left,right:初始区间两个端点% delta:⾃变量的容许误差%输出: s,func_s:近似极⼩点和函数极⼩值% E=[ds,dfunc] ds,dfunc分别为s和dfunc的误差限%0.618法的改进形式:每次缩⼩区间时,同时⽐较两内点和两端点处的函数值。
黄金分割法机械优化设计在现代工程设计领域,机械优化设计是一项非常重要的任务。
通过对机械系统进行分析和优化,可以提高其性能和效率,节约资源并延长使用寿命。
黄金分割法是一种常用的优化设计方法,它基于黄金分割比的原理,通过寻找最佳设计参数来改进机械系统的性能。
本文将介绍黄金分割法机械优化设计的原理、方法和应用。
一、黄金分割法的原理黄金分割法源自于数学中的黄金分割比,即0.618,也称为费波那契数。
它是指将一条线段分割为两部分,使较长部分与整体的长度之比等于较短部分与较长部分之比。
黄金分割法的原理是将这一比例应用于机械设计中,以找到最佳的设计参数。
二、黄金分割法机械优化设计的方法1. 确定优化目标:在机械优化设计中,首先需要明确具体的优化目标。
比如,改善机械系统的运行效率、减少能源消耗或提高产品质量等。
2. 确定设计参数:根据机械系统的特性和优化目标,确定需要进行优化的设计参数。
这些参数可以是机械结构的尺寸、材料的选择或运行参数等。
3. 建立优化模型:根据设计参数,建立机械系统的优化模型。
模型可以是数学模型、仿真模型或实验模型,根据具体情况选择。
4. 寻找最佳设计参数:利用黄金分割法进行参数优化。
通过分割设计参数范围,并根据黄金分割比的原理,逐步缩小搜索范围,最终找到最佳设计参数。
5. 评估和验证:对优化得到的设计参数进行评估和验证。
可以通过数值模拟、物理实验或现场测试等方法,验证优化结果是否满足设计要求。
三、黄金分割法机械优化设计的应用黄金分割法机械优化设计在各行业都有广泛的应用。
以下为几个常见的应用领域:1. 机械结构设计:对于机械结构的设计优化,黄金分割法可以帮助确定最佳的尺寸比例,提高结构的刚性和稳定性。
2. 流体力学设计:在流体力学设计中,黄金分割法可以通过优化设计参数,改善流体的流动性能,提高流体的传输效率和混合效果。
3. 电子电路设计:黄金分割法可以应用于电子电路设计中,通过优化电路元件的参数和布局来提高电路的性能和稳定性。
机械优化设计黄金分割法实验报告
1、黄金分割法基本思路:
黄金分割法适用于[a,b]区间上的任何单股函数求极小值问题,对函数除要求“单谷”外不做其他要求,甚至可以不连续。
因此,这种方法的适应面非常广。
黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[a,b]内适当插入两点a1,a2,并计算其函数值。
a1,a2将区间分成三段,应用函数的单谷性质,通过函数值大小的比较,删去其中一段,是搜索区间得以缩小。
然后再在保留下来的区间上作同样的处理,如此迭代下去,是搜索区间无限缩小,从而得到极小点的数值近似解。
2 黄金分割法的基本原理
一维搜索是解函数极小值的方法之一,其解法思想为沿某一已知方向求目标函数的极小值点。
一维搜索的解法很多,这里主要采用黄金分割法(0.618法)。
该方法用不变的区间缩短率0.618代替斐波那契法每次不同的缩短率,从而可以看成是斐波那契法的近似,实现起来比较容易,也易于人们所接受。
黄金分割法是用于一元函数f(x)在给定初始区间[a,b]内搜索极小点α*的一种方法。
它是优化计算中的经典算法,以算法简单、收敛速度均匀、效果较好而著称,是许多优化算法的基础,但它只适用于一维区间上的凸函数[6],即只在单峰区间内才能进行一维寻优,其收敛效率较低。
其基本原理是:依照“去劣存优”原则、对称原则、以及等比收缩原则来逐步缩小搜索区间[7]。
具体步骤是:在区间[a,b]内取点:a1 ,a2 把[a,b]分为三段。
如果f(a1)>f(a2),令
a=a1,a1=a2,a2=a+r*(b-a);如果f(a1)<f(a2) ,令b=a2,
a2=a1,a1=b-r*(b-a),如果|(b-a)/b|和|(y1-y2)/y2|都大于收
敛精度ε重新开始。
因为[a,b]为单峰区间,这样每次可将搜索区间缩小0.618倍或0.382倍,处理后的区间都将包含极小点的区间缩小,然后在保留下来的区间上作同样的处理,如此迭代下去,将使搜索区[a,b]逐步缩小,直到满足预先给定的精度时,即获得一维优化问题的近似最优解。
黄金分割法原理如图1所示,
3 程序流程如下:
4 实验所编程序框图
开始
#include 《math.h》
#include 《stdio.h》
#define f(x) x*x+2*x
double calc(double *a,double *b,double e,int *n) { double x1,x2,s;
if(fabs(*b-*a)<=e)
s=f((*b+*a)/2);
else
{ x1=*b-0.618*(*b-*a);
x2=*a+0.618*(*b-*a);
if(f(x1)>f(x2))
*a=x1;
else
*b=x2;
*n=*n+1;
s=calc(a,b,e,n);
}
return s;
}
main()
{ double s,a,b,e;
int n=0;
scanf("%lf %lf %lf",&a,&b,&e);
s=calc(&a,&b,e,&n);
printf("a=%lf,b=%lf,s=%lf,n=%d\n",a,b,s,n); }
5 程序运行结果如下图:。