高中数学导读答案
- 格式:doc
- 大小:103.14 KB
- 文档页数:18
§5 正弦函数的性质与图像5.1 正弦函数的图像1.问题导航(1)用“五点法”作正弦函数图像的关键是什么?(2)利用“五点法”作y =sin x 的图像时,x 依次取-π,-π2,0,π2,π可以吗?(3)作正弦函数图像时应留意哪些问题? 2.例题导读P 27例1.通过本例学习,学会用五点法画函数y =a sin x +b 在[0,2π]上的简图. 试一试:教材P 28练习题你会吗?1.正弦函数的图像与五点法(1)图像:正弦函数y =sin x 的图像叫作正弦曲线,如图所示.(2)五点法:在平面直角坐标系中经常描出五个关键点(它们是正弦曲线与x 轴的交点和函数取最大值、最小值时的点):(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0),用光滑的曲线顺次将它们连接起来,得到函数y =sin x 在[0,2π]上的简图,这种画正弦曲线的方法为“五点法”.(3)利用五点法作函数y =A sin x (A >0)的图像时,选取的五个关键点依次是:(0,0),⎝⎛⎭⎫π2,A ,(π,0),⎝⎛⎭⎫32π,-A ,(2π,0). 2.正弦曲线的简洁变换函数y =sin x 与y =sin x +k 图像间的关系.当k >0时,把y =sin x 的图像向上平移k 个单位长度得到函数y =sin x +k 的图像; 当k <0时,把y =sin x 的图像向下平移|k |个单位长度得到函数y =sin x +k 的图像.1.推断正误.(正确的打“√”,错误的打“×”) (1)函数y =sin x 的图像与y 轴只有一个交点.( )(2)函数y =sin x 的图像介于直线y =1与y =-1之间.( )(3)用五点法作函数y =-2sin x 在[0,2π]上的图像时,应选取的五个点是(0,0),⎝⎛⎭⎫π2,-2,(π,0),⎝⎛⎭⎫32π,2,(2π,0).( )(4)将函数y =sin x ,x ∈[-π,π]位于x 轴上方的图像保持不变,把x 轴下方的图像沿x 轴翻折到x 轴上方即可得到函数y =|sin x |,x ∈[-π,π]的图像.( )解析:(1)正确.观看正弦函数的图像知y =sin x 的图像与y 轴只有一个交点. (2)正确.观看正弦曲线可知正弦函数的图像介于直线y =1与y =-1之间.(3)正确.在函数y =-2sin x ,x ∈[0,2π]的图像上起关键作用的五个点是(0,0),⎝ ⎛⎭⎪⎫π2,-2,(π,0),⎝⎛⎭⎫32π,2,(2π,0).(4)正确.当x ∈[-π,π]时,y =|sin x |=⎩⎪⎨⎪⎧sin x ,sin x ≥0,-sin x ,sin x <0,于是,将函数y =sin x ,x ∈[-π,π]位于x轴上方的图像保持不变,把x 轴下方的图像翻折到x 轴上方即可得函数y =|sin x |,x ∈[-π,π]的图像.答案:(1)√ (2)√ (3)√ (4)√2.用五点法画y =sin x ,x ∈[0,2π]的图像时,下列点不是关键点的是( ) A.⎝⎛⎭⎫π6,12 B.⎝⎛⎭⎫π2,1 C .(π,0) D .(2π,0)解析:选A.用五点法画y =sin x ,x ∈[0,2π]的图像,五个关键点是(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝⎛⎭⎫32π,-1,(2π,0).3.用五点法画y =sin x ,x ∈[0,2π]的简图时,所描的五个点的横坐标的和是________.解析:0+π2+π+3π2+2π=5π.答案:5π4.(1)正弦曲线在(0,2π]内最高点坐标为________,最低点坐标为________.(2)在同一坐标系中函数y =sin x ,x ∈(0,2π]与y =sin x ,x ∈(2π,4π]的图像外形________,位置________.(填“相同”或“不同”)解析:(1)由正弦曲线知,正弦曲线在(0,2π]内最高点为⎝ ⎛⎭⎪⎫π2,1,最低点为⎝ ⎛⎭⎪⎫3π2,-1.(2)在同一坐标系中函数y =sin x ,x ∈(0,2π]与y =sin x ,x ∈(2π,4π]的图像,外形相同,位置不同.答案:(1)⎝⎛⎭⎫π2,1 ⎝⎛⎭⎫3π2,-1(2)相同 不同1.y =sin x ,x ∈[0,2π]与y =sin x ,x ∈R 的图像间的关系(1)函数y =sin x ,x ∈[0,2π]的图像是函数y =sin x ,x ∈R 的图像的一部分.(2)由于终边相同的角有相同的三角函数值,所以函数y =sin x ,x ∈[2k π,2(k +1)π],k ∈Z 且k ≠0的图像与函数y =sin x ,x ∈[0,2π]的图像外形完全全都,因此将y =sin x ,x ∈[0,2π]的图像向左、向右平行移动(每次移动2π个单位长度)就可得到函数y =sin x ,x ∈R 的图像.2.“几何法”和“五点法”画正弦函数图像的优缺点(1)“几何法”的实质是利用正弦线进行的尺规作图,这样作图较精确,但较为烦琐.(2)“五点法”的实质是在函数y =sin x 的一个周期内,选取5个分点,也是函数图像上的5个关键点:最高点、最低点及平衡点,这五个点大致确定了函数一个周期内图像的外形.(3)“五点法”是画三角函数图像的基本方法,在要求精确度不高的状况下常用此法,要切实把握好.另外与“五点法”作图有关的问题经常消灭在高考试题中.3.关于“五点法”画正弦函数图像的要点 (1)应用的前提条件是精确度要求不是太高. (2)五个点必需是确定的五点.(3)用光滑的曲线顺次连接时,要留意线的走向,一般在最高(低)点的四周要平滑,不要消灭“拐角”现象.(4)“五点法”作出的是一个周期上的正弦函数图像,要得到整个正弦函数图像,还要“平移”.用五点法作正弦型函数的图像用五点法画函数y =2sin x -1,x ∈[0,2π]的简图. (链接教材P 27例1) [解] 步骤:①列表:x 0 π2 π 3π2 2π sin x 0 1 0 -1 0 y-11-1-3-1②描点:在平面直角坐标系中描出下列五个点:(0,-1),⎝ ⎛⎭⎪⎫π2,1,(π,-1),⎝ ⎛⎭⎪⎫3π2,-3,(2π,-1).③连线:用光滑曲线将描出的五个点连接起来,得函数y =2sin x -1,x ∈[0,2π]的简图,如图所示.方法归纳作形如函数y =a sin x +b ,x ∈[0,2π]的图像的步骤1.(1)函数f (x )=a sin x +b ,(x ∈[0,2π])的图像如图所示,则f (x )的解析式为( )A .f (x )=12sin x +1,x ∈[0,2π]B .f (x )=sin x +12,x ∈[0,2π]C .f (x )=32sin x +1,x ∈[0,2π]D .f (x )=32sin x +12,x ∈[0,2π](2)用五点法作出下列函数的简图.①y =2sin x ,x ∈[0,2π]; ②y =2-sin x ,x ∈[0,2π].解:(1)选A.将图像中的特殊点代入f (x )=a sin x +b ,x ∈[0,2π],不妨将(0,1)与⎝ ⎛⎭⎪⎫π2,1.5代入得⎩⎨⎧a sin 0+b =1,a sin π2+b =1.5,解得b =1,a =0.5,故f (x )=12sin x +1,x ∈[0,2π]. (2)①列表:x 0 π2 π 3π2 2π y =sin x 0 1 0 -1 0 y =2sin x2-2描点并将它们用光滑的曲线连接起来,如图所示.②列表:x 0 π2 π 3π2 2π y =sin x 0 1 0 -1 0 y =2-sin x21232描点并将它们用光滑的曲线连接,如图:利用正弦函数的图像求函数的定义域求函数f (x )=lg (sin x )+16-x 2的定义域. (链接教材P 30习题1-5 A 组T 4)[解] 由题意,x 满足不等式组⎩⎪⎨⎪⎧sin x >0,16-x 2≥0,即⎩⎪⎨⎪⎧-4≤x ≤4,sin x >0,作出y =sin x 的图像,如图所示.结合图像可得:该函数的定义域为[-4,-π)∪(0,π). 方法归纳一些三角函数的定义域可以借助函数图像直观地观看得到,同时要留意区间端点的取舍.有时利用图像先写出在一个周期区间上的解集,再推广到一般状况.2.求函数y =log 21sin x-1的定义域.解:为使函数有意义,需⎩⎪⎨⎪⎧log 21sin x -1≥0,sin x >0⇔0<sin x ≤12.依据正弦曲线得,函数定义域为⎝ ⎛⎦⎥⎤2k π,2k π+π6∪⎣⎢⎡⎭⎪⎫2k π+5π6,2k π+π,k ∈Z .利用正弦函数的图像确定方程解的个数在同一坐标系中,作函数y =sin x 和y =lg x 的图像,依据图像推断出方程sin x =lg x 的解的个数. (链接教材P 30习题1-5 A 组T 1(1))[解] 建立坐标系xOy ,先用五点法画出函数y =sin x ,x ∈[0,2π]的图像,再依次向右连续平移2π个单位,得到y =sin x 的图像.作出y =lg x 的图像,如图所示.由图像可知方程sin x =lg x 的解有3个.若本例中的函数y =lg x 换为y =x 2,则结果如何?解:在同始终角坐标系中画出函数y =x 2和y =sin x 的图像,如图所示.由图知函数y =x 2和y =sin x 和图像有两个交点,则方程x 2-sin x =0有两个根. 方法归纳方程根(或个数)的两种推断方法(1)代数法:直接求出方程的根,得到根的个数.(2)几何法:①方程两边直接作差构造一个函数,作出函数的图像,利用对应函数的图像,观看与x 轴的交点个数,有几个交点原方程就有几个根.②转化为两个函数,分别作这两个函数的图像,观看交点个数,有几个交点原方程就有几个根.3.(1)函数y =2sin x 与函数y =x 的图像的交点有( ) A .2个 B .3个 C .4个 D .5个 (2)争辩方程10sin x =x (x ∈R )根的个数.解:(1)选B.在同始终角坐标系中作出函数y =2sin x 与y =x 的图像,由图像可以看出有3个交点.(2)如图所示,当x ≥4π时,x 10≥4π10>1≥sin x ;当x =52π时,sin x =sin 52π=1,x 10=5π20,1>5π20,从而x >0时,有3个交点,由对称性知x <0时,有3个交点,加上x =0时的交点为原点,共有7个交点.即方程有7个根.思想方法数形结合思想的应用求满足下列条件的角的范围.(1)sin x ≥12;(2)sin x ≤-22.⎝⎛⎭⎫0,12作x 轴[解] (1)利用“五点法”作出y =sin x 的简图,过点⎝ ⎛⎭⎪⎫5π6,12两的平行线,在[0,2π]上,直线y =12与正弦曲线交于⎝⎛⎭⎫π6,12,点.结合图形可知,在[0,2π]内,满足y ≥12时x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪π6≤x ≤5π6.因此,当x ∈R 时,若y ≥12,则x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π6≤x ≤2k π+56π,k ∈Z .(2)同理,满足sin x ≤-22的角的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪5π4+2k π≤x ≤74π+2k π,k ∈Z . [感悟提高] 形如sin x >a (<a )的不等式,求角x 的范围,一般接受数形结合的思想来解题,具体步骤: (1)画出y =sin x 的图像,画直线y =a .(2)若解sin x >a ,则观看y =sin x 在直线y =a 上方的图像.这部分图像对应的x 的范围,就是所求的范围. 若解sin x <a ,则观看y =sin x 在直线y =a 下方的图像.这部分图像对应的x 的范围,就是所求的范围.1.函数y =1-sin x ,x ∈[0,2π]的大致图像是( )解析:选B.利用五点法画图,函数y =1-sin x ,x ∈[0,2π]的图像肯定过点(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,1),⎝⎛⎭⎫32π,2,(2π,1),故B 项正确.2.已知点M ⎝⎛⎭⎫π4,b 在函数f (x )=2sin x +1的图像上,则b =________.解析:b =f ⎝ ⎛⎭⎪⎫π4=2sin π4+1=2.答案:23.若函数f (x )=2sin x -1-a 在⎣⎡⎦⎤π3,π上有两个零点,则实数a 的取值范围是________.解析:令f (x )=0得2sin x =1+a .作出y =2sin x 在x ∈⎣⎢⎡⎦⎥⎤π3,π上的图像,如图所示.要使函数f (x )在⎣⎢⎡⎦⎥⎤π3,π上有两个零点,需满足3≤1+a <2,所以3-1≤a <1.答案:[3-1,1), [同学用书单独成册])[A.基础达标]1.关于正弦函数y =sin x 的图像,下列说法错误的是( ) A .关于原点对称 B .有最大值1C .与y 轴有一个交点D .关于y 轴对称解析:选D.正弦函数y =sin x 的图像如图所示.依据y =sin x ,x ∈R 的图像可知A ,B ,C 均正确,D 错误. 2.函数y =sin x 的图像与函数y =-sin x 的图像关于( ) A .x 轴对称 B .y 轴对称 C .原点对称D .直线y =x 对称解析:选A.在同始终角坐标系中画出函数y =sin x 与函数y =-sin x 在[0,2π]上的图像,可知两函数的图像关于x 轴对称.3.下列函数图像相同的是( ) A .y =sin x 与y =sin(x +π)B .y =sin ⎝⎛⎭⎫x -π2与y =sin ⎝⎛⎭⎫π2-xC .y =sin x 与y =sin(-x )D .y =sin(2π+x )与y =sin x解析:选D.对A ,由于y =sin(x +π)=-sin x ,故排解A ;对B ,由于y =sin ⎝ ⎛⎭⎪⎫π2-x =-sin ⎝ ⎛⎭⎪⎫x -π2,故排解B ;对C ,由于y =sin(-x )=-sin x ,故排解C ;对D ,由于y =sin(2π+x )=sin x ,故选D.4.函数y =-sin x ,x ∈⎣⎡⎦⎤-π2,3π2的简图是( )解析:选D .当x =-π2时,y =-sin ⎝ ⎛⎭⎪⎫-π2=1,故排解A 、B 、C ,选D .5.函数y =x sin x 的部分图像是( )解析:选A .函数y =x sin x 的定义域为R ,令f (x )=x sin x ,则f (-x )=(-x )sin(-x )=x sin x =f (x ),知f (x )为偶函数,排解B 、D ;当x ∈⎝ ⎛⎭⎪⎫0,π2时,f (x )>0,故排解C ,故选A.6.在[0,2π]上,满足sin x ≥22的x 的取值范围为________.解析:在同始终角坐标系内作出y =sin x 和y =22的图像如图,观看图像并求出交点横坐标,可得到x的取值范围为⎣⎢⎡⎦⎥⎤π4,34π.答案:⎣⎡⎦⎤π4,34π7.函数y =sin x 的图像和y =x2π的图像交点个数是________. 解析:在同始终角坐标系内作出两个函数的图像如图所示:由图可知交点个数是3.答案:38.已知sin x =m -1且x ∈R ,则m 的取值范围是________. 解析:由y =sin x ,x ∈R 的图像知,-1≤sin x ≤1, 即-1≤m -1≤1,所以0≤m ≤2. 答案:0≤m ≤29.用“五点法”画出函数y =3-sin x (x ∈[0,2π])的图像. 解:(1)列表,如表所示:x 0 π2 π 32π 2π y =sin x 0 1 0 -1 0 y =3-sin x32343(2)描点,连线,如图所示.10.若函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图像与直线y =k 有且只有两个不同的交点,求k 的取值范围.解:f (x )=⎩⎪⎨⎪⎧3sin x ,0≤x ≤π,-sin x ,π<x ≤2π,作出函数的图像如图:由图可知当1<k <3时函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图像与直线y =k 有且只有两个不同的交点. [B.力量提升]1.若y =sin x ,x ∈⎣⎡⎦⎤π4,2π3,则函数的值域为( )A.⎝⎛⎭⎫22,1B.⎣⎡⎦⎤22,1 C .(1,2] D .[1,2]解析:选B.画出函数y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π4,2π3的图像如图所示,可知y ∈⎣⎡⎦⎤22,1.2.设a >0,对于函数f (x )=sin x +asin x(0<x <π),下列结论正确的是( ) A .有最大值而无最小值 B .有最小值而无最大值 C .有最大值且有最小值 D .既无最大值也无最小值解析:选B.f (x )=sin x +a sin x =1+asin x.由于0<x <π,所以0<sin x ≤1.所以1sin x≥1.所以1+asin x ≥a +1.所以f (x )有最小值而无最大值. 故选B.3.已知f (sin x )=x 且x ∈⎣⎡⎦⎤0,π2,则f ⎝⎛⎭⎫12=________.解析:由于x ∈⎣⎢⎡⎦⎥⎤0,π2,所以sin x =12时,x =π6,所以f ⎝⎛⎭⎫12=f ⎝ ⎛⎭⎪⎫sin π6=π6.答案:π64.若x 是三角形的最小角,则y =sin x 的值域是________. 解析:不妨设△ABC 中,0<A ≤B ≤C , 得0<A ≤B ,且0<A ≤C ,所以0<3A ≤A +B +C ,而A +B +C =π, 所以0<3A ≤π,即0<A ≤π3.若x 为三角形中的最小角,则0<x ≤π3,由y =sin x 图像知y ∈⎝⎛⎦⎤0,32.答案:⎝⎛⎦⎤0,325.用“五点法”作出函数y =1-2sin x ,x ∈[-π,π]的简图,并回答下列问题: (1)观看函数图像,写出满足下列条件的x 的区间. ①y >1;②y <1.(2)若直线y =a 与y =1-2sin x ,x ∈[-π,π]有两个交点,求a 的取值范围. 解:列表如下:x -π -π2 0 π2 π sin x 0 -1 0 1 0 1-2sin x131-11描点连线得:(1)由图像可知图像在y =1上方部分时y >1,在y =1下方部分时y <1, 所以当x ∈(-π,0)时,y >1;当x ∈(0,π)时,y <1.(2)如图所示,当直线y =a 与y =1-2sin x 有两个交点时,1<a <3或-1<a <1. 所以a 的取值范围是{a |1<a <3或-1<a <1}.6.(选做题)已知函数y =f (x )为奇函数,且是⎝⎛⎭⎫-12,12上的减函数,f (1-sin α)+f (1-sin 2α)<0,求α的取值范围.解:由题意可知f (1-sin α)<-f (1-sin 2α). 由于f (x )是奇函数,所以-f (1-sin 2α)=f (sin 2α-1),所以f (1-sin α)<f (sin 2α-1).又由f (x )是⎝⎛⎭⎫-12,12上的减函数, 所以⎩⎨⎧-12<1-sin α<12,-12<sin 2α-1<12,1-sin α>sin 2α-1,所以⎩⎨⎧12<sin α<32,12<sin 2α<32,sin 2α+sin α-2<0,解得22<sin α<1, 所以2k π+π4<α<2k π+π2(k ∈Z )或2k π+π2<α<2k π+3π4(k ∈Z ),所以α的取值范围为⎝⎛⎭⎪⎫2k π+π4,2k π+π2∪⎝ ⎛⎭⎪⎫2k π+π2,2k π+3π4(k ∈Z ).。
[0773]《高中数学课程标准导读》第1次[论述题]0773高中数学课程标准导读第1次作业1.简述数学在现代社会发展中的地位和作用。
2.试述教育部对于新课程建设的要求以及新课程建设的主要目标。
3.试述基础教育课程改革的具体目标是什么。
4.试述高中数学新课程的框架和内容结构的特点。
5.对第3讲3.1节中两个有关函数概念教学的案例进行对比分析,通过分析说明自己对于《高中数学课程标准》有关教学理念的理解。
参考答案:第1次作业答案第2次[论述题]0773高中数学课程标准导读第2次作业6.选择高中数学课程中的某一具体内容,以此内容完成一项探究性教学设计,并对你的教学设计进行简单的点评分析。
7.以实际的教学案例分析说明高中数学新课程的教学观。
8.你能否发现欧拉多面体定理是三角形内角和定理的自然推广,详细说明这样的推广方法,并由此了解初等数学与高等数学之间并不存在绝对的界限。
9.问:三角形边长定理与勾股定理有什么关系?从这样的关系中你了解到数学知识之间存在怎样的密切关系?10.从若干方面论述教师知识结构对于高中数学课程标准的适应性问题。
参考答案:第2次作业答案第3次[论述题]0773高中数学课程标准导读第3次作业11.用教学实例说明直观几何在中学几何课程中的地位和作用。
12.你能否理解代数中的模式直观,以实例说明。
13.试述数学文化的含义。
14.下面列举5个长期困扰中小学学生和教师的数学问题,请选择其中1-2个加以分析研究,讨论如何在数学课程中更加恰当地解决此类问题,以教师教学中的探究引导学生进行数学问题的探究与思考。
1)为什么1.2+1.3=2.5而1/2+1/3≠2/5 ?2)为什么"负负得正”?3)为什么0.999……<1不正确?4)算术运算中为什么"先做乘除而后做加减”?5)虚数单位i=√-1还是i=±√-1?15.试列举两位在近代数学发展过程中发挥重要作用的数学家,并简述他们对人类数学发展的主要贡献。
第18讲 函数的零点与方程的解模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.理解函数零点的概念,了解函数的零点、方程的解与图象交点三者之间的联系;2.会求函数的零点;3.掌握函数零点存在定理并会判断函数零点的个数.知识点 1 函数的零点1、函数零点的概念:对于一般函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点.即函数的零点就是使函数值为零的自变量的值.【要点辨析】(1)函数的零点是一个实数,当函数的自变量取这个实数时,其函数值等于零;(2)函数的零点也就是函数()=y f x 的图象与轴交点的横坐标;(3)函数()=y f x 的零点就是方程()0f x =的实数根.2、函数的零点与方程的解的关系函数()=y f x 的零点就是方程()0f x =的实数解,也就是函数()=y f x 的图象与x 轴的公共点的横坐标.所以方程()0=f x 有实数根函数()=y f x 的图象与x 轴有交点函数()=y f x有零点.x ⇔⇔知识点 2 函数零点存在定理1、函数零点存在定理如果函数()f x 在区间[],a b 上的图象是一条连续不断的曲线,且()()0⋅<f a f b ,那么,函数()=y f x 在区间().a b 内至少有一个零点,即存在().∈c a b ,使得()0=f c ,这个c 也就是方程()0=f x 的解.【要点辨析】(1)定义不能确定零点的个数;(2)不满足定理条件时依然可能有零点;(3)定理中的“连续不断”是必不可少的条件;(4)定理反之是不成立的.2、函数零点存在定理的几何意义在闭区间[],a b 上有连续不断的曲线()=y f x ,且曲线的起始点(,())a f a 与终点(,())b f b 分别在x 轴的两侧,则连续曲线与x 轴至少有一个交点.3、函数零点存在定理的重要推论(1)推论1:函数()f x 在区间[],a b 上的图象是一条连续不断的曲线,()()0⋅<f a f b ,且()f x 具有单调性,则函数()f x 在区间().a b 内只有一个零点.(2)推论2:函数()f x 在区间[],a b 上的图象是一条连续不断的曲线,函数()f x 在区间().a b 内有零点,且函数()f x 具有单调性,则()()0⋅<f a f b .知识点 3 函数零点常用方法技巧1、零点个数的判断方法(1)直接法:直接求零点,令()0=f x ,如果能求出解,则有几个不同的解就有几个零点.(2)定理法:利用零点存在定理,函数的图象在区间[],a b 上是连续不断的曲线,且()()0⋅<f a f b ,结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)图象法:①单个函数图象:利用图象交点的个数,画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数.②两个函数图象:将函数()f x 拆成两个函数()h x 和()g x 的差,根据()()()0=⇔=f x h x g x ,则函数()f x 的零点个数就是函数()=y h x 和()=y g x 的图象的交点个数.(4)性质法:利用函数性质,若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数.2、判断函数零点所在区间的步骤第一步:将区间端点代入函数求函数的值;第二步:将所得函数值相乘,并进行符号判断;第三步:若符号为正切在该区间内是单调函数,则函数在该区间内无零点;若符号为负且函数图象连续,则函数在该区间内至少一个零点。
0773《高中数学课程标准导读》(第三次作业)11.用教学实例说明直观几何在中学几何课程中的地位和作用。
答:几何的直观性是一个有目共睹的事实,由于几何的直观性,使得几何在数学中(即使在数学家正在研究的高深的数学中)具有非常重要的地位。
下面我们引用当代伟大的数学家Michael Atiyah (1929—,英国皇家学会会员,法国科学院、美国科学院、瑞典科学院外籍院士,菲尔兹奖获得者)的话:现代数学与传统数学的差别更多地是在方式上而不是在实质上。
本世纪的数学在很大程度上是在与实质上具有的几何困难作斗争,这些困难是由于研究高维问题而产生的。
集合直观仍然是领悟数学的最有效的渠道,应当在各级学校尽可能广泛地利用几何思想。
现在各国中学几何课程中都加入了直观几何的内容。
学生能够在直观几何课中遇到引人入胜的难题,例如,种种迷人的折纸与拼图游戏,观察和实验是直观几何的主要内容。
学生能够通过生动的、富有想象力的活动,发展自己的空间想象力;通过实实在在的动手操作,了解什么是几何变换;通过折叠、拼合建立关于对称的直观概念。
观察、实验、操作、想象等认知活动在直观几何中以形形色色、丰富多彩的方式表现出来。
中学几何教学中有些“概念、习题”用直观的方法进行讲解、指导,能很好地帮助学生理解知识、掌握知识并顺利地解决具体问题。
我在教学中,对某些“概念”的教学,常常就运用运动的观点做一些小实验来激发学生的求知欲,提高学生学习数学的兴趣,帮助学生对“概念”的加深理解。
如:讲解“三角形3个内角的和等于180°”这一知识时,我开始做了一个小实验:用橡皮筋构成△ABC ,使顶点B 、C 固定,顶点A 可以移动(如图)。
当顶点A 来回运动时就可以得到不同的三角形。
这时,我便问学生:这些三角形的内角和是多少度呢?学生在讨论中发现:当顶点A 越靠近BC ,∠BAC 越接近180°,∠ABC 与∠ACB 越来越小,接近0°,而当顶点A 落到BC 上时,这时∠ABC+∠ACB+∠BAC=180°。
新2023人教A版高中数学选修二课本答案第一章空间解析几何1.1 点、向量和坐标1.1.1 点、向量及其坐标的概念•点是空间中最基本的概念,表示为大写字母,如A、B、C。
•向量是由两个点确定的有向线段,表示为小写字母加箭头,如$\\vec{AB}$、$\\vec{BC}$。
•坐标是用有序数对表示的点的位置,一般用小写字母表示,如A(x1,y1,z1)、B(x2,y2,z2)。
1.1.2 向量的线性运算•向量的加法:$\\vec{AB} + \\vec{BC} = \\vec{AC}$•向量的减法:$\\vec{AB} - \\vec{AC} = \\vec{CB}$•向量的数乘:$k\\vec{AB} = \\vec{BA}$1.1.3 向量的数量积和向量积•向量的数量积:$\\vec{AB} \\cdot \\vec{AC} = AB \\cdot AC \\cdot \\cos{\\theta}$•向量的向量积:$\\vec{AB} \\times \\vec{AC} = \\begin{vmatrix} \\vec{i} & \\vec{j} & \\vec{k} \\\\a_1 & a_2 & a_3 \\\\ b_1 & b_2 & b_3\\end{vmatrix}$1.2 空间中的位置关系和距离1.2.1 点到平面的距离•点A到平面 $\\pi$ 的距离d的公式为:$d = \\frac{{\\left| Ax_0 + By_0 + Cz_0 + D \\right|}}{{\\sqrt{A^2 + B^2 + C^2}}}$1.2.2 直线与平面的位置关系•直线与平面相交:直线与平面有一个交点。
•直线与平面平行:直线的方向向量与平面的法向量垂直。
•直线在平面内:直线上的任意一点均在平面内。
•直线垂直于平面:直线的方向向量与平面的法向量平行。
§1.1.1集合的含义及其表示[自学目标]1.认识并理解集合的含义,知道常用数集及其记法;2.了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.初步掌握集合的两种表示方法—列举法和描述法,并能正确地表示一些简单的集合.[知识要点]1.集合和元素(1)如果a是集合A的元素,就说a属于集合A,记作a A∈;(2)如果a不是集合A的元素,就说a不属于集合A,记作a A∉.2.集合中元素的特性:确定性;无序性;互异性.3.集合的表示方法:列举法;描述法;Venn图.4.集合的分类:有限集;无限集;空集.,整5.常用数集及其记法:自然数集记作N,正整数集记作*N或N+数集记作Z,有理数集记作Q,实数集记作R.[预习自测]例1.下列的研究对象能否构成一个集合?如果能,采用适当的方式表示它.(1)小于5的自然数;(2)某班所有高个子的同学;(3)不等式217x+>的整数解;(4)所有大于0的负数;(5)平面直角坐标系内,第一、三象限的平分线上的所有点.分析:判断某些对象能否构成集合,主要是根据集合的含义,检查是否满足集合元素的确定性.例2.已知集合{}=中的三个元素可构成某一个三角形的三,,M a b c边的长,那么此三角形一定是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形例3.设()()(){}22,,2,,5,a N b N a b A x y x a y a b ∈∈+==-+-=若()3,2A ∈,求,a b 的值.分析: 某元素属于集合A,必具有集合A 中元素的性质p ,反过来,只要元素具有集合A 中元素的性质p ,就一定属于集合A. 例4.已知{}2,,M a b =,{}22,2,N a b =,且M N =,求实数,a b 的值.[课内练习]1.下列说法正确的是()(A )所有著名的作家可以形成一个集合(B )0与{}0的意义相同(C )集合⎭⎬⎫⎩⎨⎧∈==+N n n x x A ,1是有限集(D )方程0122=++x x 的解集只有一个元素2.下列四个集合中,是空集的是()A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .}01|{2=+-x x x3.方程组20{=+=-y x y x 的解构成的集合是()A .)}1,1{(B .}1,1{C .(1,1)D .}1{.4.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B =5.若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B=.[归纳反思]1.本课时的重点内容是集合的含义及其表示方法,难点是元素与集合间的关系以及集合元素的三个重要特性的正确使用;2.根据元素的特征进行分析,运用集合中元素的三个特性解决问题,叫做元素分析法。
西南大学网络与持续教育学院课程考试一试题卷类型:网教专业:数学与应用数学(数学教育)2018年6月课程名称【编号】:高中数学课程标准导读【0773】A卷大作业满分:100分1、试述基础教育课程改革的详细目标是什么。
(30分)答:依据教育部《国家基础教育课程改革指导大纲》基础教育课程改革的详细目标:改变课程过于着重知识教授的偏向,重申形成踊跃主动的学习态度,使获取基础知识与基本技术的过程同时成为学会学习和形成正确价值观的过程。
改变课程构造过于重申学科本位、科目过多和缺少整合的现状,整体设置九年一向的课程门类和课时比率,并设置综合课程,以适应不一样地域和学生发展的需求,表现课程构造的平衡性、综合性和选择性。
改变课程内容"繁、难、偏、旧”和过于着重书籍知识的现状,增强课程内容与学生生活以及现代社会和科技发展的联系,关注学生的学习兴趣和经验,优选终生的基础知识和技术。
改变课程实行过于重申接受学习、照本宣科、机械训练的现状,倡议学生主动参加、乐于研究、勤于着手,培育学生收集和办理信息的能力、获取新知识的能力、剖析和解决问题的能力以及沟通与合作的能力。
改变课程议论过分重申甄别与选拔的功能,发挥议论促进学生发展、教师提升和改良教课实践的功能。
改变课程管理过于集中的状况,推行国家、地方、学校三级课程管理,增强课程对地方、学校及学生的适应性。
2、试述高中数学新课程的框架和内容构造的特点。
(30分)答:与过去的高中数学课程对比,新课标之下的数学课程突出课程内容的基础性与选择性。
《高中数学课程标准》要求,高中教育属于基础教育。
高中数学课程应拥有基础性,它包含两个方面的含义:第一,在义务教育阶段以后,为学生适应现代生活和将来发展供给更高水平的数学基础,使他们获取更高的数学修养;第二,为学生进一步学习供给必需的数学准备。
高中数学课程由必修系列课程和选修系列课程构成,必修系列课程是为了知足全部学生的共同数学需求;选修系列课程是为了知足学生的不一样数学需求,它仍旧是学生发展所需要的基础性数学课程。
2.1.2 离散型随机变量的分布列1.问题导航(1)离散型随机变量的分布列的定义是什么?两点分布和超几何分布的定义是什么? (2)离散型随机变量分布列的性质有什么作用?两点分布与超几何分布的联系和区别是什么?2.例题导读(1)例1是求两点分布列,请试做教材P 49练习1题.(2)例2、例3是求超几何分布,请试做教材P 49练习3、4题.1.离散型随机变量的分布列(1)一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n ,以表格的形式表示如下:这个表格称为离散型随机变量X 的________概率分布列,简称为X 的________分布列. (2)离散型随机变量的分布列的性质: ①________p i ≥0,i =1,2,…,n ; ② i =1np i =1.2.两个特殊分布 (1)两点分布若随机变量X p =P (X =1)为成功概率.(2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -M C n N,k =0,1,2,…,m ,即其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N .如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.1.判断(对的打“√”,错的打“×”)(1)在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.()(2)在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.()(3)在离散型随机变量分布列中,所有概率之和为1.()答案:(1)×(2)×(3)√2.下列表中能成为随机变量ξ的分布列的是()A.B.C.D.答案:C3A.0.28 B.0.88C.0.79 D.0.51答案:C4.若随机变量X服从两点分布,且P(X=0)=0.8,P(X=1)=0.2.令Y=3X-2,则P(Y =-2)=________.答案:0.8离散型随机变量分布列的三点说明(1)离散型随机变量的分布列不仅能清楚地反映其所取的一切可能的值,而且也能看出取每一个值的概率的大小,从而反映出随机变量在随机试验中取值的分布情况,是进一步研究随机试验数量特征的基础.(2)离散型随机变量在某一范围内取值的概率等于它取这个范围内各值的概率之和.(3)离散型随机变量可以用分布列、解析式、图象表示.离散型随机变量的分布列 [学生用书P 32]从装有6个白球、4个黑球和2个黄球的箱中随机取出两个球,规定每取出一个黑球赢2元,而每取出一个白球输1元,取出黄球无输赢,以X 表示赢得的钱数,随机变量X 可以取哪些值呢?求X 的分布列.[解] 从箱中取两个球的情形有以下6种:{2白球},{1白球1黄球},{1白球1黑球},{2黄球},{1黑球1黄球},{2黑球}. 当取到2白球时,随机变量X =-2;当取到1白球1黄球时,随机变量X =-1; 当取到1白球1黑球时,随机变量X =1; 当取到2黄球时,随机变量X =0;当取到1黑球1黄球时,随机变量X =2; 当取到2黑球时,随机变量X =4.所以随机变量X 的可能取值为-2,-1,0,1,2,4.P (X =-2)=C 26C 212=522,P (X =-1)=C 16C 12C 212=211,P (X =0)=C 22C 212=166,P (X =1)=C 16C 14C 212=411,P (X =2)=C 14C 12C 212=433,P (X =4)=C 24C 212=111.所以X 的分布列如下:[解:P (X >0)=P (X =1)+P (X =2)+P (X =4)=411+433+111=1933.∴赢钱的概率为1933.求分布列的一般步骤为:(1)找出随机变量X 的所有可能取值x i (i =1,2,3,…,n );(2)P (X =x i )的确定;(3)列出X 的分布列或概率分布表;(4)检验X 的分布列或概率分布表(用随机变量的分布列的两条性质验算).1求随机变量η=12ξ的分布列.解:由η=12ξ,对于ξ取不同的值-2,-1,0,1,2,3时,η的值分别为-1,-12,0,12,1,32.所以η的分布列为:离散型随机变量的分布列的性质 [学生用书P 32]设随机变量X 的分布列P (X =k5)=ak (k =1,2,3,4,5).(1)求常数a 的值; (2)求P (X ≥35);(3)求P (110<X <710).[解] (1)由P (X =k5)=ak ,k =1,2,3,4,5可知,∑k =15P (X =k5)=∑k =15ak =a +2a +3a +4a +5a =1, 解得a =115.(2)由(1)可知P (X =k 5)=k15(k =1,2,3,4,5),∴P (X ≥35)=P (X =35)+P (X =45)+P (X =1)=315+415+515=45.(3)P (110<X <710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=25.离散型随机变量的分布列的两个性质主要解决以下两类问题:①通过性质建立关系,求得参数的取值或范围,进一步求出概率,得出分布列.②求对立事件的概率或判断某概率是否成立.2.已知离散型随机变量则q 的值为________. 解析:∵14+1-q +q 2=1,∴q 2-q +14=0.∴q =12.答案:12两点分布与超几何分布在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X 的分布列; (2)顾客乙从10张奖券中任意抽取2张, ①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值为Y 元,求Y 的分布列.[解] (1)抽奖一次,只有中奖和不中奖两种情况,故X 的取值只有0和1两种情况.P (X =1)=C 14C 110=410=25,则P (X =0)=1-P (X =1)=1-25=35.因此X 的分布列为(2)①顾客乙中奖可分为互斥的两类事件:所抽取的2张奖券中有1张中奖或2张都中奖.故所求概率P =C 14C 16+C 24C 06C 210=3045=23. ②Y 的所有可能取值为0,10,20,50,60,且P (Y =0)=C 04C 26C 210=1545=13,P (Y =10)=C 13C 16C 210=1845=25,P (Y =20)=C 23C 06C 210=345=115,P (Y =50)=C 11C 16C 210=645=215,P (Y =60)=C 11C 13C 210=345=115.因此随机变量Y 的分布列为1.两点分布的几个特点:(1)两点分布中只有两个对应结果,且两个结果是对立的.(2)由对立事件的概率求法可知,已知P (X =0)(或P (X =1)),便可求出P (X =1)(或P (X =0)).2.解决超几何分布问题的两个关键点:(1)超几何分布是概率分布的一种形式,一定要注意公式中字母的范围及其意义,解决问题时可以直接利用公式求解,但不能机械地记忆.(2)超几何分布中,只要知道M ,N ,n ,就可以利用公式求出X 取不同k 的概率P (X =k ),从而求出X 的分布列.3.(1)篮球运动员在比赛中每次罚球命中得1分,不中得0分.已知某运动员罚球命中的概率为0.7,则他罚球一次得分的分布列为________.解析:用随机变量X 表示“每次罚球所得分值”,根据题意,X 可能的取值为0,1,且取这两个值的概率分别为0.3,0.7,因此所求的分布列为答案:(2)某高二数学兴趣小组有7位同学,其中有4位同学参加过高一数学“南方杯”竞赛.若从该小组中任选3位同学参加高二数学“南方杯”竞赛,求这3位同学中参加过高一数学“南方杯”竞赛的同学数ξ的分布列及P (ξ<2).解:由题意可知,ξ的可能取值为0,1,2,3.则P (ξ=0)=C 04C 33C 37=135,P (ξ=1)=C 14C 23C 37=1235,P (ξ=2)=C 24C 13C 37=1835,P (ξ=3)=C 34C 03C 37=435.所以随机变量ξ的分布列为P (ξ<2)=P (ξ=0)+P (ξ=1)=135+1235=1335.(本题满分12分)(2014·高考天津卷节选)某大学志愿者协会有6名男同学,4名女同学. 在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院. 现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的分布列.[解] (1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以,选出的3名同学是来自互不相同学院的概率为4960.6分 (2)随机变量X 的所有可能值为0,1,2,3.P (X =k )=C k 4·C 3-k6C 310(k =0,1,2,3).9分 所以,随机变量X12分[规范与警示] (1)解答本例的3个关键步骤:①首先确定随机变量X 的取值,是正确作答的关键.②要明确X 取不同值的意义,才能正确求X 所对应值的概率.③解答本题时易文字叙述严重缺失,如第(1)问只写出P (A )=C 13C 27+C 03C 37C 310=4960. (2)解答本类问题一是要正确理解题意,将实际问题转化为数学问题,二是在明确随机变量取每一个值所对应的随机事件外,还必须准确求出每个随机事件的概率.1.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于( )A .0 B.13 C.12D.23解析:选B.设P (ξ=1)=p ,则P (ξ=0)=1-p . 依题意知,p =2(1-p ),解得p =23.故P (ξ=0)=1-p =13.2.设随机变量XA.P (X =1.5)=0 B .P (X >-1)=1 C .P (X <3)=0.5 D .P (X <0)=0解析:选A.由分布列知X =1.5不能取到,故P (X =1.5)=0,正确;而P (X >-1)=0.9,P (X <3)=0.6,P (X <0)=0.1.故A 正确.3.随机变量η则x =________,P (η≤3)=________. 解析:由分布列的性质得0.2+x +0.35+0.1+0.15+0.2=1,解得x =0.故P (η≤3)=P (η=1)+P (η=2)+P (η=3)=0.2+0.35=0.55. 答案:0 0.554.一个口袋里有5个同样大小的球,编号为1,2,3,4,5,从中同时取出3个球,以X 表示取出的球的最小编号,求随机变量X 的概率分布.解:X 所有可能的取值为1,2,3.当X =1时,其余两球可在余下的4个球中任意选取.∴P (X =1)=C 24C 35=35.当X =2时,其余两球在编号为3,4,5的球中任意选取, ∴P (X =1)=C 23C 35=310.当X =3时,取出的球只能是编号为3,4,5的球. ∴P (X =3)=1C 35=110.∴随机变量X 的概率分布为:[A.基础达标]1.(2015·东营高二检测)已知随机变量ξ的分布列为P (ξ=k )=12k ,k =1,2,…,则P (2<ξ≤4)等于( )A.316B.14C.116D.15解析:选A.2<ξ≤4时,ξ=3,4, ∴P (2<ξ≤4)=P (ξ=3)+P (ξ=4)=123+124=316.2.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球的个数X 是一个随机变量,则P (X =4)的值为( )A.27220B.27110C.111D.211解析:选A.由题意取出的3个球必为2个旧球,1个新球.故P (X =4)=C 23C 19C 312=27220.3.抛掷2颗骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( ) A.16 B.13 C.12D.23解析:选A.根据题意,有P (X ≤4)=P (X =2)+P (X =3)+P (X =4).抛掷两颗骰子,按所得的点数共36个基本事件,而X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2),故P (X =2)=136,P (X =3)=236=118,P (X =4)=336=112,所以P (X ≤4)=136+118+112=16.4.某一随机变量X则mn 的最大值为( A .0.8 B .0.2 C .0.08 D .0.6解析:选C.由分布列的性质知m ∈(0,1),2n ∈(0,1),且0.1+m +2n +0.1=1, 即m +2n =0.8.mn =(0.8-2n )×n =0.8n -2n 2=-2(n -0.2)2+0.08, ∴当n =0.2时,mn 有最大值为0.08.5.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以710为概率的事件是( )A .都不是一等品B .恰有一件一等品C .至少有一件一等品D .至多有一件一等品解析:选D.P (都不是一等品)=C 22C 25=110,P (恰有一件一等品)=C 13·C 12C 25=610, P (至少有一件一等品)=1-110=910, P (至多有一件一等品)=1-C 23C 25=710.6.则ξ为奇数的概率为________.解析:P (ξ=1)+P (ξ=3)+P (ξ=5)=215+845+29=815.答案:8157则(1)x =(3)P (1<Y ≤4)=________.解析:(1)由∑6i =1p i =1,得x =0.1. (2)P (Y >3)=P (Y =4)+P (Y =5)+P (Y =6)=0.1+0.15+0.2=0.45. (3)P (1<Y ≤4)=P (Y =2)+P (Y =3)+P (Y =4)=0.1+0.35+0.1=0.55. 答案:(1)0.1 (2)0.45 (3)0.558.某学校从4名男生和2名女生中任选3人作为参加两会的志愿者,设随机变量ξ表示所选3人中男生的人数,则P (ξ≤2)=________.解析:由题意可知ξ的可能取值为1,2,3,且ξ服从超几何分布,即P (ξ=k )=C 3-k 2C k 4C 36,k =1,2,3,故P (ξ≤2)=P (ξ=1)+P (ξ=2)=C 14C 22C 36+C 24C 12C 36=15+35=45. 答案:459试求:(1)2X +1的分布列; (2)|X -1|的分布列.解:由分布列的性质知0.2+0.1+0.1+0.3+m =1, ∴m =0.3.列表为:(1)2X +1(2)|X -1|10.,从中任取1个,观察号码是“小于5”“等于5”“大于5”三类情况之一,求其概率分布列.解:分别用x 1,x 2,x 3表示“小于5”的情况,“等于5”的情况,“大于5”的情况. 设ξ是随机变量,其可能取值分别为x 1、x 2、x 3,则P (ξ=x 1)=510=12,P (ξ=x 2)=110,P (ξ=x 3)=410=25.故ξ的分布列为1.一个盒子里装有相同大小的黑球10个,红球12个,白球4个,从中任取两个,其中白球的个数记为ξ,则下列概率中等于C 122C 14+C 222C 226的是( )A .P (0<ξ≤2)B .P (ξ≤1)C .P (ξ=2)D .P (ξ=1)解析:选B.由已知得ξ的可能取值为0,1,2.P (ξ=0)=C 222C 226,P (ξ=1)=C 122C 14C 226,P (ξ=2)=C 24C 226,故P (ξ≤1)=P (ξ=0)+P (ξ=1)=C 122C 14+C 222C 226.2.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A.⎣⎡⎦⎤0,13B.⎣⎡⎤-13,13 C .[-3,3] D .[0,1]解析:选B.设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质得(a -d )+a +(a +d )=1,故a =13,由⎩⎨⎧13-d ≥013+d ≥0,解得-13≤d ≤13.3.设随机变量ξ的分布列为P (ξ=k )=c k (k +1),k =1,2,3,c 为常数,则P (0.5<ξ<2.5)=________.解析:由概率和为1,得1=c (11×2+12×3+13×4)=34c ,∴c =43,∴P (ξ=1)=23,P (ξ=2)=29,∴P (0.5<ξ<2.5)=P (ξ=1)+P (ξ=2)=89.答案:894.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机取一个检验,其级别为随机变量ξ,则P (13≤ξ≤53)=________.解析:设二级品有k 个,∴一级品有2k 个,三级品有k 2个,总数为7k2个.∴分布列为P (13≤ξ≤53)=P (ξ=1)=47. 答案:475.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数.(1)求ξ的分布列;(2)求“所选3人中女生人数ξ≤1”的概率. 解:(1)ξ可能取的值为0,1,2.P (ξ=k )=C k 2·C 3-k4C 36,k =0,1,2. 所以,ξ的分布列为(2)由(1)知“所选3P (ξ≤1)=P (ξ=0)+P (ξ=1)=45.6.设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量X 表示方程x 2+bx +c =0实根的个数(重根按一个计).(1)求方程x 2+bx +c =0有实根的概率;(2)求X 的分布列.解:(1)由题意知,设基本事件空间为Ω,记“方程x 2+bx +c =0没有实根”为事件A ,“方程x 2+bx +c =0有且仅有一个实根”为事件B ,“方程x 2+bx +c =0有两个相异实根”为事件C ,则Ω={(b ,c )|b ,c =1,2,…,6},A ={(b ,c )|b 2-4c <0,b ,c =1,2,…,6},B ={(b ,c )|b 2-4c =0,b ,c =1,2,…,6},C ={(b ,c )|b 2-4c >0,b ,c =1,2,…,6},∴Ω中的基本事件总数为36,A 中的基本事件总数为17,B 中的基本事件总数为2,C 中的基本事件总数为17.又∵B ,C 是互斥事件,故所求概率P =P (B )+P (C )=236+1736=1936.(2)由题意,X 可能的取值为0,1,2,则 P (X =0)=1736,P (X =1)=118,P (X =2)=1736,故X 的分布列为。
2.4正态分布1.问题导航(1)什么是正态曲线和正态分布(2)正态曲线有什么特点曲线所表示的意义是什么(3)怎样求随机变量在某一区间范围内的概率2.例题导读请试做教材P74练习1题.1.正态曲线函数φμ,σ(x)=12πσe-(x-μ)22σ2,x∈(-∞,+∞),其中实数μ和σ(σ>0)为参数,φμ,σ(x)的图象为__________________正态分布密度曲线,简称正态曲线.2.正态分布一般地,如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=⎠⎛abφμ,σ(x)d x,则称随机变量X服从正态分布.正态分布完全由参数________μ和________σ确定,因此正态分布常记作____________N(μ,σ2),如果随机变量X服从正态分布,则记为________X~N(μ,σ2).3.正态曲线的性质正态曲线φμ,σ(x)=12πσe-(x-μ)22σ2,x∈R有以下性质:(1)曲线位于x轴________上方,与x轴________不相交;(2)曲线是单峰的,它关于直线________x=μ对称;(3)曲线在________x=μ处达到峰值________1σ2π;(4)曲线与x轴之间的面积为________1;(5)当________σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图①;(6)当μ一定时,曲线的形状由σ确定,σ________越小,曲线越“瘦高”,表示总体的分布越集中;σ________越大,曲线越“矮胖”,表示总体的分布越分散,如图②.4.正态总体在三个特殊区间内取值的概率值P(μ-σ<X≤μ+σ)=;P(μ-2σ<X≤μ+2σ)=;P(μ-3σ<X≤μ+3σ)=.1.判断(对的打“√”,错的打“×”)(1)函数φμ,σ(x)中参数μ,σ的意义分别是样本的均值与方差.()(2)正态曲线是单峰的,其与x轴围成的面积是随参数μ,σ的变化而变化的.()(3)正态曲线可以关于y轴对称.()答案:(1)×(2)×(3)√2.设随机变量X~N(μ,σ2),且P(X≤C)=P(X>C),则C=()A.0 B.σC.-μD.μ答案:D3.已知随机变量X服从正态分布N(3,σ2),则P(X<3)=()答案:D4.已知正态分布密度函数为f(x)=12πe-x24π,x∈(-∞,+∞),则该正态分布的均值为________,标准差为________.答案:02π正态分布的再认识(1)参数μ是反映随机变量取值的平均水平的特征数,可以用样本的均值去估计;σ是衡量随机变量总体波动大小的特征数,可以用样本的标准差去估计.μ=0,σ=1的正态分布叫做标准正态分布.(2)正态分布定义中的式子实际是指随机变量X的取值区间在(a,b]上的概率等于总体密度函数在[a,b]上的定积分值.(3)从正态曲线可以看出,对于固定的μ而言,随机变量在(μ-σ,μ+σ)上取值的概率随着σ的减小而增大.这说明σ越小,X取值落在区间(μ-σ,μ+σ)的概率越大,即X集中在μ周围的概率越大.对于固定的μ和σ,随机变量X取值区间越大,所对应的概率就越大,即3σ原则.正态分布密度曲线如图是一个正态曲线,试根据该图象写出其正态分布的概率密度函数的解析式,求出总体随机变量的均值和方差.[解]从正态曲线可知,该正态曲线关于直线x=20对称,最大值为12π,所以μ=20,12πσ=12π,∴σ= 2.于是φμ,σ(x)=12π·e-(x-20)24,x∈(-∞,+∞),总体随机变量的期望是μ=20,方差是σ2=(2)2=2.利用图象求正态密度函数的解析式,应抓住图象的实质,主要有两点:一是对称轴x=μ,另一是最值1σ2π,这两点确定以后,相应参数μ,σ便确定了,代入便可求出相应的解析式.扫一扫进入91导学网正态分布密度曲线1.若一个正态分布的概率密度函数是一个偶函数,且该函数的最大值为142π.求该正态分布的概率密度函数的解析式.解:由于该正态分布的概率密度函数是一个偶函数,所以其图象关于y轴对称,即μ=0.由于12πσ=12π·4,得σ=4,故该正态分布的概率密度函数的解析式是φμ,σ(x)=142πe-x232,x∈(-∞,+∞).求正态分布下的概率设X~N(1,22),试求:(1)P(-1<X≤3);(2)P(3<X≤5).[解]因为X~N(1,22),所以μ=1,σ=2.(1)P (-1<X ≤3)=P (1-2<X ≤1+2) =P (μ-σ<X ≤μ+σ)= 6.(2)因为P (3<X ≤5)=P (-3≤X <-1), 所以P (3<X ≤5)=12[P (-3<X ≤5)-P (-1<X ≤3)] =12[P (1-4<X ≤1+4)-P (1-2<X ≤1+2)] =12[P (μ-2σ<X ≤μ+2σ)-P (μ-σ<X ≤μ+σ)] =124- 6)= 9. [互动探究] 在本例条件下,试求P (X ≥5). 解:因为P (X ≥5)=P (X ≤-3), 所以P (X ≥5)=12[1-P (-3<X ≤5)]=12[1-P (1-4<X ≤1+4)] =12[1-P (μ-2σ<X ≤μ+2σ)] =12(1- 4)= 8.(1)求解本类问题的解题思路是充分利用正态曲线的对称性,把待求区间的概率转化到已知区间的概率.这一转化过程中体现了数形结合思想及转化化归思想的应用.(2)常用结论有①对任意的a ,有P (X <μ-a )=P (X >μ+a ); ②P (X <x 0)=1-P (X ≥x 0);③P (a <X <b )=P (X <b )-P (X ≤a ).2.(1)(2015·高考山东卷)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=%,P (μ-2σ<ξ<μ+2σ)=%.)A .%B .%C .%D .%解析:选B.由正态分布的概率公式知P (-3<ξ<3)= 6,P (-6<ξ<6)= 4,故P (3<ξ<6)=P (-6<ξ<6)-P (-3<ξ<3)2=错误!= 9=%,故选B.(2)设随机变量X ~N (4,σ2),且P (4<X <8)=,则P (X <0)=________.解析:概率密度曲线关于直线x =4对称,在4右边的概率为,在0左边的概率等于在8右边的概率,即-=.答案:(3)设随机变量X~N(2,9),若P(X>c+1)=P(X<c-1).①求c的值;②求P(-4<X<8).解:①由X~N(2,9)可知,密度函数曲线关于直线x=2对称(如图所示),又P(X>c+1)=P(X<c-1),故有2-(c-1)=(c+1)-2,∴c=2.②P(-4<X<8)=P(2-2×3<X<2+2×3)=4.正态分布的实际应用某年级的一次信息技术测验成绩近似服从正态分布N(70,102),如果规定低于60分的学生为不及格学生.(1)成绩不及格的人数占多少(2)成绩在80~90之间的学生占多少[解](1)设学生的得分情况为随机变量X,则X~N(70,102),其中μ=70,σ=10.在60到80之间的学生占的比为P(70-10<X≤70+10)=6=%,∴不及格的学生所占的比为12×(1-6)=7=%.(2)成绩在80到90之间的学生所占的比为12×[P(70-2×10<X≤70+2×10)-P(70-10<X≤70+10)]=12×4-6)=%.正态曲线的应用及求解策略:解答此类题目的关键在于将待求的问题向(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)这三个区间进行转化,然后利用上述区间的概率求出相应概率,在此过程中依然会用到化归思想及数形结合思想.3.(2015·杭州质检)某人从某城市的南郊乘公交车前往北区火车站,由于交通拥挤,所需时间X(单位:分)近似服从正态分布X~N(50,102),求他在(30,60]分内赶到火车站的概率.解:∵X~N(50,102),∴μ=50,σ=10.∴P(30<X≤60)=P(30<X≤50)+P(50<X≤60)=12P(μ-2σ<X≤μ+2σ)+12P(μ-σ<X≤μ+σ)=12× 4+12× 6= 5. 即他在(30,60]分内赶到火车站的概率是 5.数学思想正态分布中的化归与转化思想已知随机变量X 服从正态分布N (3,1),且P (2≤X ≤4)= 6,则P (X >4)=( ) A . 8 B . 7 C . 6 D . 5[解析] 由于X 服从正态分布N (3,1),故正态分布曲线的对称轴为x =3. 所以P (X >4)=P (X <2),故P (X >4)=1-P (2≤X ≤4)2=1- 62= 7.[答案] B[感悟提高] 化归与转化思想是中学数学思想中的重要思想之一,在解决正态分布的应用问题时,化归与转化思想起着不可忽视的作用.本小题考查正态分布的有关知识,求解时应根据P (X >4)+P (X <2)+P (2≤X ≤4)=1将问题转化.1.设有一正态总体,它的概率密度曲线是函数f (x )的图象,且f (x )=φμ,σ(x )=18πe -(x -10)28,则这个正态总体的均值与标准差分别是( ) A .10与8 B .10与2 C .8与10 D .2与10解析:选B.由正态密度函数的定义可知,总体的均值μ=10,方差σ2=4,即σ=2. 2.(2015·高考湖南卷)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( )A .2 386B .2 718C .3 413D .4 772 附:若X ~N (μ,σ2), 则P (μ-σ<X ≤μ+σ)= 6, P (μ-2σ<X ≤μ+2σ)= 4.解析:选C.由P (-1<X ≤1)= 6,得P (0<X ≤1)= 3,则阴影部分的面积为 3,故估计落入阴影部分的点的个数为10 000×错误!=3 413,故选C.3.在某项测量中,测量结果X 服从正态分布N (1,σ2)(σ>0).若X 在(0,1)内取值的概率为,则X 在(0,2)内取值的概率为________.解析:如图,易得P (0<X <1)=P (1<X <2), 故P (0<X <2)=2P (0<X <1)=2×=.答案:4.设X ~N (5,1),求P (6<X ≤7). 解:由已知得P (4<X ≤6)= 6, P (3<X ≤7)= 4.又∵正态曲线关于直线x =5对称, ∴P (3<X ≤4)+P (6<X ≤7)= 4- 6 = 8.由对称性知P (3<X ≤4)=P (6<X ≤7), 所以P (6<X ≤7)=错误!= 9.[A.基础达标]1.设随机变量ξ~N (2,2),则D (12ξ)=( )A .1B .2 D .4解析:选C.∵ξ~N (2,2),∴D (ξ)=2. ∴D (12ξ)=122D (ξ)=14×2=12.2.下列函数是正态密度函数的是( ) A .f (x )=12σπe(x -μ)22σ2,μ,σ(σ>0)都是实数B .f (x )=2π2πe -x 22C .f (x )=122πe -(x -1)24D .f (x )=12πe x 22解析:选B.对于A :函数的系数部分的二次根式包含σ,而且指数部分的符号是正的,故A 错误;对于B :符合正态密度函数的解析式,其中σ=1,μ=0,故B 正确;对于C :从系数部分看σ=2,可是从指数部分看σ=2,故C 不正确;对于D :指数部分缺少一个负号,故D 不正确.3.(2015·高考湖北卷)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示,下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≥t )≥P (Y ≥t )D .对任意正数t ,P (X ≤t )≥P (Y ≤t )解析:选D.由图象知,μ1<μ2,σ1<σ2,P (Y ≥μ2)=12,P (Y ≥μ1)>12,故P (Y ≥μ2)<P (Y ≥μ1),故A 错;因为σ1<σ2,所以P (X ≤σ2)>P (X ≤σ1),故B 错; 对任意正数t ,P (X ≥t )<P (Y ≥t ),故C 错;对任意正数t ,P (X ≤t )≥P (Y ≤t )是正确的,故选D.4.已知随机变量ξ服从正态分布N (2,σ2),且P (ξ<4)=,则P (0<ξ<2)=( ) A . B . C . D .解析:选C.如图,正态分布的密度函数图象关于直线x =2对称,所以P (ξ<2)=,并且P (0<ξ<2)=P (2<ξ<4),则P (0<ξ<2)=P (ξ<4)-P (ξ<2)=-=.5.设随机变量ξ服从正态分布N (μ,σ2),函数f (x )=x 2+4x +ξ没有零点的概率是12,则μ=( )A .1B .4C .2D .不能确定解析:选B.根据题意,函数f (x )=x 2+4x +ξ没有零点时,Δ=16-4ξ<0,即ξ>4,根据正态分布密度曲线的对称性,当函数f (x )=x 2+4x +ξ没有零点的概率是12时,μ=4.6.如果ξ~N (μ,σ2),且P (ξ>3)=P (ξ<1)成立,则μ=________.解析:∵ξ~N (μ,σ2),故概率密度函数关于直线x =μ对称,又P (ξ<1)=P (ξ>3),从而μ=1+32=2,即μ的值为2.答案:27.在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0).若ξ在(0,1)内取值的概率为,则ξ在(2,+∞)上取值的概率为________.解析:由正态分布的特征易得P (ξ>2)=12×[1-2P (0<ξ<1)]=12×(1-=.答案:8.为了了解某地区高三男生的身体发育状况,抽查了该地区1 000名年龄在岁至19岁的高三男生的体重情况,抽查结果表明他们的体重X(kg)服从正态分布N(μ,22),且正态分布密度曲线如图所示,若体重大于kg小于等于kg属于正常情况,则这1 000名男生中属于正常情况的人数约为________.解析:依题意可知,μ=,σ=2,故P<X≤=P(μ-σ<X≤μ+σ)=6,从而属于正常情况的人数为1 000× 6≈683.答案:6839.(2015·苏州高二检测)某个工厂的工人月收入服从正态分布N(2 500,202),该工厂共有1 200名工人,试估计月收入在2 440元以下和2 560元以上的工人大约有多少人解:设该工厂工人的月收入为ξ,则ξ~N(2 500,202),所以μ=2 500,σ=20,所以月收入在区间(2 500-3×20,2 500+3×20)内取值的概率是4,该区间即(2 440,2 560).因此月收入在2 440元以下和2 560元以上的工人大约有1 200×(1-4)=1 200× 6≈3(人).10.(2015·漳州高二检测)某城市从南郊某地乘公共汽车前往北区火车站有两条路线可走,第一条路线穿过市区,路线较短,但交通拥挤,所需时间(单位为分)服从正态分布N(50,102);第二条路线沿环城公路走,路程较长,但交通阻塞少,所需时间服从正态分布N(60,42).(1)若只有70分钟可用,问应走哪条路线(2)若只有65分钟可用,又应走哪条路线解:由已知X~N(50,102),Y~N(60,42).由正态分布的2σ区间性质P(μ-2σ<ξ≤μ+2σ)=4.然后解决问题的关键是:根据上述性质得到如下结果:对X:μ=50;σ=10,2σ区间为(30,70),对Y:μ=60;σ=4,2σ区间为(52,68),要尽量保证用时在X?(30,70),Y?(52,68)才能保证有95%以上的概率准时到达.(1)时间只有70分钟可用,应该走第二条路线.(2)时间只有65分钟可用,两种方案都能保证有95%以上的概率准时到达,但是走市区平均用时比路线二少了10分钟,应该走第一条路线.[B.能力提升]1.设随机变量X~N(μ,σ2),则随着σ的增大,P(|X-μ|<3σ)将会()A.单调增加 B.单调减少C.保持不变D.增减不定解析:选C.对于服从正态分布的随机变量X,不论μ,σ怎么变化,P(|X-μ|<3σ)总等于4.2.设正态总体落在区间(-∞,-1)和区间(3,+∞)的概率相等,落在区间(-2,4)内的概率为%,则该正态总体对应的正态曲线的最高点的坐标为()A.(1,12π) B.(1,2)C.(12π,1) D.(1,1)解析:选A.正态总体落在区间(-∞,-1)和(3,+∞)的概率相等,说明正态曲线关于x=1对称,所以μ=1.又在区间(-2,4)内的概率为%, ∴1-3σ=-2,1+3σ=4,∴σ=1.∴f (x )=12πe -(x -1)22,x ∈R ,∴最高点的坐标为⎝⎛⎭⎪⎫1,12π. 3.设随机变量ξ服从正态分布N (0,1),则下列结论正确的是________. ①P (|ξ|<a )=P (ξ<a )+P (ξ>-a )(a >0); ②P (|ξ|<a )=2P (ξ<a )-1(a >0); ③P (|ξ|<a )=1-2P (ξ<a )(a >0); ④P (|ξ|<a )=1-P (|ξ|>a )(a >0).解析:因为P (|ξ|<a )=P (-a <ξ<a ),所以①不正确;因为P (|ξ|<a )=P (-a <ξ<a )=P (ξ<a )-P (ξ<-a )=P (ξ<a )-P (ξ>a )=P (ξ<a )-(1-P (ξ<a ))=2P (ξ<a )-1,所以②正确,③不正确;因为P (|ξ|<a )+P (|ξ|>a )=1,所以P (|ξ|<a )=1-P (|ξ|>a )(a >0),所以④正确. 答案:②④4.设随机变量X ~N (1,22),则Y =3X -1服从的总体分布可记为________. 解析:因为X ~N (1,22),所以μ=1,σ=2. 又Y =3X -1,所以E (Y )=3E (X )-1=3μ-1=2, D (Y )=9D (X )=62, 所以Y ~N (2,62). 答案:Y ~N (2,62) 5.(2014·高考课标全国卷Ⅰ)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x 和样本方差s 2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2.①利用该正态分布,求P <Z <;②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间,的产品件数,利用①的结果,求E (X ).附:150≈.若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)= 6,P (μ-2σ<Z <μ+2σ)= 4.解:(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x=170×+180×+190×+200×+210×+220×+230×=200,s2=(-30)2×+(-20)2×+(-10)2×+0×+102×+202×+302×=150.(2)①由(1)知,Z~N(200,150),从而P<Z<=P(200-<Z<200+=6.②由①知,一件产品的质量指标值位于区间,的概率为6,依题意知X~B(100,6),所以E(X)=100× 6=.6.请仔细阅读下面这段文字,然后解决后面的问题.在实际生活中,常用统计中假设检验的思想检验产品是否合格,方法是:(1)提出统计假设:某种指标服从正态分布N(μ,σ2);(2)确定一次试验中的取值a;(3)作出统计推断:若a∈(μ-3σ,μ+3σ),则接受假设,若a?(μ-3σ,μ+3σ),则拒绝假设.问题:某砖瓦厂生产的砖的“抗断强度”ξ服从正态分布N(30,,质检人员从该厂某一天生产的1 000块砖中随机抽查一块,测得它的抗断强度为kg/cm2,你认为该厂这天生产的这批砖是否合格为什么解:由于在一次试验中ξ落在区间(μ-3σ,μ+3σ)上的概率为,故ξ几乎必然落在上述区间内.把μ=30,σ=代入,得区间(μ-3σ,μ+3σ)=,,而?,,∴据此认为这批砖不合格.。
3.2 平面对量基本定理, )1.问题导航(1)平面对量基本定理与向量的线性运算有何关系? (2)在平面对量基本定理中为何要求向量e 1,e 2不共线?(3)对于同一向量a ,若基底不同,则表示这一向量a 的实数λ1,λ2的值是否相同? 2.例题导读P 86例4.通过本例学习,学会应用平面对量基本定理解决实际问题. 试一试:教材P 87习题2-3 A 组T 7你会吗?P 86例5.通过本例学习,学会用已知向量表示其他向量. 试一试:教材P 87习题2-3 A 组T 5,T 6你会吗?1.平面对量基本定理(1)定理:假如e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,存在唯一一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:我们把不共线的向量e 1,e 2叫作表示这一平面内全部向量的一组基底. 2.三点共线的充要条件平面上三点A 、B 、C 共线的充要条件是:存在实数α、β,使得OA →=αOB →+βOC →.其中α+β=1,O 为平面内任意一点.1.推断正误.(正确的打“√”,错误的打“×”)(1)一个平面内只有一对不共线的向量可作为表示该平面内全部向量的基底.( ) (2)若e 1,e 2是同一平面内两个不共线向量,则λ1e 1+λ2e 2(λ1,λ2为实数)可以表示该平面内全部向量.( ) (3)若a e 1+b e 2=c e 1+d e 2(a ,b ,c ,d ∈R ),则a =c ,b =d .( )解析:(1)错误.依据基底的概念可知,平面内不共线的向量都可以作为该平面内向量的基底. (2)正确.依据平面对量基本定理知对平面内任意向量都可以由向量e 1,e 2线性表示. (3)错误.当e 1与e 2共线时,结论不肯定成立. 答案:(1)× (2)√ (3)×2.已知平行四边形ABCD ,下列各组向量中,是该平面内全部向量基底的是( ) A.AB →,DC → B.AD →,BC → C.AD →,CB → D .AB →,BC →解析:选D.由于AB →,BC →不共线,故是一组基底.3.已知向量a 与b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y =________.解析:由原式可得⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.答案:34.已知向量a 与b 不共线,且AB →=a +4b ,BC →=-a +9b ,CD →=3a -b ,则共线的三点为________.解析:BD →=BC →+CD →=-a +9b +3a -b =2a +8b ,由于AB →=a +4b ,所以AB →=12BD →,所以A ,B ,D 三点共线.答案:A ,B ,D1.定理的实质平面对量基本定理的实质是向量的分解,即平面内任意向量都可以沿两个不共线的方向分解成两个向量和的形式.2.分解的唯一性平面对量基本定理中,平面内任意两个不共线的向量都可以作为基底,一旦选定一组基底,则给定向量沿着基底的分解是唯一的.3.体现的数学思想平面对量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择恰当的基底,将问题涉及的向量用基底化归,使问题得以解决.对基底的理解设e 1,e 2是同一平面内不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中不能作为平面内全部向量的一组基底的是________.(写出满足条件的序号)[解析] 由基底的定义可将此问题转化为推断各组中的两个向量是否共线的问题.若不共线,则它们可作为一组基底;若共线,则它们不能作为一组基底.①中,设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧λ=1,1=0,无解,所以e 1+e 2与e 1不共线,即e 1与e 1+e 2可作为一组基底;②中,设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎪⎨⎪⎧1+2λ=0,-(2+λ)=0,无解,所以e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1可作为一组基底;③中,由于e 1-2e 2=-12(4e 2-2e 1),所以e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底;④中,设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,所以⎩⎪⎨⎪⎧1+λ=0,1-λ=0,无解,所以e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2可作为一组基底.[答案] ③ 方法归纳同一平面内的两个向量能不能作为基底,关键是看它们共不共线,在同一平面内,只要两个向量不共线,就可以作为一组基底.1.(1)设O 是平行四边形ABCD 两对角线AC 与BD 的交点,下列向量组可作为表示这个平行四边形所在平面的全部向量的基底的是( )①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →. A .①② B .④ C .①③ D .①④(2)设a ,b 不共线,c =2a -b ,d =3a -2b ,试推断c ,d 能否作为基底.解:(1)选C.推断两个向量能否作基底,只需看两个向量是否共线,由图可知AD →与AB →不共线,CA →与DC →不共线,故①③可作为基底.(2)假设存在唯一实数λ,使得c =λd ,则2a -b =λ(3a -2b ),即(2-3λ)a +(2λ-1)b =0. 由于a ,b 不共线,所以⎩⎪⎨⎪⎧2-3λ=0,2λ-1=0⇒⎩⎨⎧λ=23,λ=12.所以这样的λ是不存在的,从而c ,d 不共线. 所以c ,d 能作为基底.用基底表示向量点,设OA →=a ,(1)如图,梯形ABCD 中AB ∥CD ,AB =2CD ,点O 为空间任意一OB →=b ,OC →=c ,则向量OD →用a ,b ,c 表示为( )A .a -b +2cB .a -b -2cC .-12a +12b +cD.12a -12b +c (2)如图所示,D 是BC 边的一个四等分点.试用基底AB →,AC →表示AD →,则AD →=________. (链接教材P 86例5)[解析] (1)由于AB ∥CD ,AB =2CD ,所以CD →=12BA →,OD →=OA →+AC →+CD → =OA →+OC →-OA →+12BA →=OC →+12(OA →-OB →)=12a -12b +c .(2)由于D 是BC 边的四等分点,所以BD →=14BC →=14(AC →-AB →),所以AD →=AB →+BD →=AB →+14(AC →-AB →)=34AB →+14AC →. [答案] (1)D (2)34AB →+14AC →若本例(2)中的条件不变,用基底AB →,AC →表示CD →.解:由于D 是BC 边的四等分点,所以CD →=34CB →=34(AB →-AC →)=34AB →-34AC →.即CD →=34AB →-34AC →.方法归纳(1)依据平面对量基本定理,任何一组基底都可以表示任意向量.用基底表示向量,实质上主要是利用三角形法则或平行四边形法则,进行向量的加减法运算.(2)要留意适当选择向量所在的三角形或平行四边形,利用已知向量表示未知向量,或找到已知向量与未知向量的关系,用方程的观点求出未知向量.2.(1)已知AM 为△ABC 的BC 边上的中线,若AB →=a ,AC →=b ,则AM →=( ) A.12(a -b ) B .-12(a -b ) C .-12(a +b ) D .12(a +b )(2)假如3e 1+4e 2=a ,2e 1+3e 2=b ,其中a ,b 为已知向量,则e 1=________,e 2=________(用a ,b 表示).(3)已知梯形ABCD 中,AB ∥DC ,且AB =2CD ,E 、F 分别是DC 、AB 的中点,设AD →=a ,AB →=b ,试以a 、b 为基底表示DC →、BC →、EF →.解:(1)选D.由于BC →=AC →-AB →=b -a , BM →=12BC →=12(b -a ),所以AM →=AB →+BM →=a +12(b -a )=12(a +b ).(2)由⎩⎪⎨⎪⎧a =3e 1+4e 2,b =2e 1+3e 2,解得e 1=3a -4b ,e 2=3b -2a .故填3a -4b 和3b -2a . (3)如图,连接FD ,由于DC ∥AB ,AB =2CD ,E 、F 分别是DC 、AB 的中点, 所以DC 綊FB ,所以四边形DCBF 为平行四边形. 所以DC →=FB →=12AB →=12b ,BC →=FD →=AD →-AF →=AD →-12AB →=a -12b ,EF →=DF →-DE →=-FD →-DE →=-BC →-12DC →=-⎝⎛⎭⎫a -12b -12×12b =14b -a .平面对量基本定理的应用且AB →=a ,AC →=如图,已知点G 是△ABC 的重心,若PQ 过△ABC 的重心G ,b ,AP →=m a ,AQ →=n b (m >0,n >0),试问m ,n 的倒数和是否为定值?若是,求出这个定值;若不是,说明理由.[解] 由于AB →=a ,AC →=b ,AD →=12(a +b ),所以AG →=23AD →=13(a +b ),由于P 、G 、Q 三点共线,则PG →∥GQ →⇔PG →=λGQ →(λ为正实数),由于PG →=AG →-AP →=13(a +b )-m a=⎝⎛⎭⎫13-m a +13b , GQ →=AQ →-AG →=n b -13(a +b )=-13a +⎝⎛⎭⎫n -13b , 所以⎝⎛⎭⎫13-m a +13b =λ⎣⎡⎦⎤-13a +⎝⎛⎭⎫n -13b , 可得⎝⎛⎭⎫13-m +13λa +⎝⎛⎭⎫13-λn +13λb =0, 由于a ,b 不共线, 则必有13-m +13λ=13-λn +13λ=0,消去λ,整理得3mn =m +n , 所以1m +1n =3为定值.方法归纳用向量解决平面几何问题的一般步骤 (1)选取不共线的两个平面对量作为基底.(2)将相关的向量用基底向量表示,将几何问题转化为向量问题. (3)利用向量学问进行向量运算,得出向量问题的解. (4)再将向量问题的解转化为平面几何问题的解.3.(1)如图,在矩形OACB 中,E 和F 分别是边AC 和BC 上的点,满足AC =3AE ,BC =3BF ,若OC →=λOE →+μOF →,其中λ,μ∈R ,求λ,μ的值.(2)已知,在△AOB 中,点P 在直线AB 上,且满足OP →=2tP A →+tOB →(t ∈R ),求|P A →||PB →|的值.解:(1)在矩形OACB 中,OC →=OA →+OB →, OC →=λOE →+μOF →=λ(OA →+AE →)+μ(OB →+BF →)=λ(OA →+13OB →)+μ⎝⎛⎭⎫OB →+13OA → =3λ+μ3OA →+3μ+λ3OB →, 所以3λ+μ3=1,3μ+λ3=1,所以λ=μ=34.(2)P A →=OA →-OP →,所以OP →=2t (OA →-OP →)+tOB →,即(1+2t )OP →=2tOA →+tOB →,得OP →=2t 1+2t OA →+t 1+2tOB →.而P ,A ,B 三点共线,所以存在实数λ使得AP →=λAB →,即OP →=(1-λ)OA →+λOB →,所以2t 1+2t +t 1+2t =1,解得t =1,所以OP →=2P A →+OB →,得OP →-OB →=2P A →,即BP →=2P A →,有|P A →||PB →|=12.易错警示对平面对量基本定理理解不精确 致误如图,在△ABC 中,点M 是边BC 的中点,点N 在边AC 上,且AN =2NC .AM 与BN 相交于点P ,则AP ∶PM =( )A .1∶4B .4∶1C .4∶5D .5∶4[解析] 设BM →=e 1,CN →=e 2, 则AM →=AC →+CM →=-3e 2-e 1, BN →=BC →+CN →=2e 1+e 2.由于A ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ,使得AP →=λAM →=-λe 1-3λe 2, BP →=μBN →=2μe 1+μe 2. 故BA →=BP →-AP →=(λ+2μ)e 1+(3λ+μ)e 2, 而BA →=BC →+CA →=2e 1+3e 2,由平面对量基本定理,得⎩⎪⎨⎪⎧λ+2μ=2,3λ+μ=3,解得⎩⎨⎧λ=45,μ=35.所以AP →=45AM →,所以AP ∶PM =4∶1.[答案] B[错因与防范] (1)解答本题,经常由于对平面对量基本定理理解不精确 ,而导致不能正确地表示出BA →,进而得出AP ∶PM 的错误结果.(2)为避开可能消灭上述错误,应留意以下两点:①充分挖掘题目中的有利条件,利用等量关系列出方程(组),如本例中由AM 与BN 相交,得到相应三点共线,即A ,P ,M 与B ,P ,N 分别共线.由共线定理得两个方程,然后求解.②用基底表示向量也是用向量解决问题的基础.应依据条件机敏应用,通常以与待求向量亲密相关的两个不共线向量作为基底.4.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.解析:由题意DE →=BE →-BD →=23BC →-12BA →=23(AC →-AB →)+12AB →=-16AB →+23AC →,于是λ1=-16,λ2=23,故λ1+λ2=12.答案:121.已知向量a =e 1-2e 2,b =2e 1+e 2,其中e 1,e 2不共线,则a +b 与c =6e 1-2e 2的关系是( ) A .不共线 B .共线 C .相等 D .不确定 解析:选B.由于a +b =3e 1-e 2,所以c =2(a +b ). 所以a +b 与c 共线.2.如图,在△ABC 中,已知D 是AB 边上的一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.解析:CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →,故λ=23.答案:233.如图,设点P ,Q 是线段AB 的三等分点,若OA →=a ,OB →=b ,则OP →=________,OQ=________(用a ,b 表示).解析:OP →=AP →-AO →=13AB →+OA →=13(OB →-OA →)+OA →=13OB →+23OA →=13b +23a , OQ →=AQ →-AO →=23AB →+OA →=23()OB →-OA →+OA →=23OB →+13OA →=13a +23b . 答案:13b +23a 13a +23b, [同学用书单独成册])[A.基础达标]1.设e 1,e 2是平面内全部向量的一组基底,则下列四组向量中,不能作为基底的是( ) A .2e 1+e 2和2e 1-e 2 B .3e 1-2e 2和4e 2-6e 1 C .e 1+2e 2和e 2+2e 1 D .e 2和e 1+e 2解析:选B.由于B 中4e 2-6e 1=-2(3e 1-2e 2),所以3e 1-2e 2和4e 2-6e 1共线不能作为基底.2.四边形OABC 中,CB →=12OA →,若OA →=a ,OC →=b ,则AB →=( )A .a -12b B.a2-bC .b +a2 D .b -12a解析:选D.AB →=AO →+OC →+CB →=-a +b +12a =b -12a ,故选D.3.已知e 1,e 2不共线,a =λ1e 1+e 2,b =4e 1+2e 2,并且a ,b 共线,则下列各式正确的是( ) A .λ1=1 B .λ1=2 C .λ1=3 D .λ1=4 解析:选B.b =4e 1+2e 2=2(2e 1+e 2),由于a ,b 共线,所以λ1=2.4.若P 为△OAB 的边AB 上一点,且△OAP 的面积与△OAB 的面积之比为1∶3,则有( ) A.OP →=OA →+2OB → B.OP →=2OA →+OB → C.OP →=23OA →+13OB →D.OP →=13OA →+23OB →解析:选C.由于△OAP 的面积与△OAB 的面积之比为1∶3,所以AP →=13AB →,所以OP →-OA →=13(OB →-OA →),所以OP →=23OA →+13OB →.5.已知|OA →|=2,|OB →|=3,∠AOB =120°,点C 在∠AOB 内,∠AOC =30°,设OC →=mOA →+nOB →(m ,n ∈R ),则mn =( )A.32B . 3C.233D .32解析:选B.如图,过点C 作CM ∥OB ,CN ∥OA ,则OC →=OM →+ON →,设|ON →|=x , 则|OM →|=2x ,OC →=2x ·OA →|OA →|+x ·OB →|OB →|=xOA →+33xOB →,所以m =x ,n =3x 3,所以m n =x3x3= 3.6.如图,在平行四边形ABCD 中,AB →=a ,AD →=b ,M 是DC 的中点,以a ,b 为基底表示向量AM →=________.解析:AM →=AD →+DM →=AD →+12DC →=AD →+12AB →=b +12a .答案:b +12a7.设a ,b 是两个不共线向量,已知AB →=2a +k b ,CB →=a +b ,CD →=2a -b ,若A 、B 、D 三点共线,则k =________.解析:由于CB →=a +b ,CD →=2a -b ,所以BD →=CD →-CB →=(2a -b )-(a +b )=a -2b .由于A 、B 、D 三点共线,所以AB →=λBD →,所以2a +k b =λ(a -2b )=λa -2λb . 又a ,b 是两个不共线向量,所以⎩⎪⎨⎪⎧λ=2,k =-2λ,所以k =-4. 答案:-4 8.如图,A ,B ,C 是圆O 上的三点,CO 的延长线与线段BA 的延长线交于圆O 外一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.解析:由点D 是圆O 外一点,可设BD →=λBA →(λ>1),则OD →=OB →+λBA →=λOA →+(1-λ)OB →.又C ,O ,D 三点共线,令OD →=-μOC →(μ>1),则OC →=-λμ·OA →-1-λμOB →(λ>1,μ>1),所以m =-λμ,n =-1-λμ,且m +n=-λμ-1-λμ=-1μ∈(-1,0).答案:(-1,0) 9.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB →=a ,AC →=b ,试用a ,b 将MN →,NP →,PM →表示出来.解:NP →=AP →-AN →=13AB →-23AC →=13a -23b ,MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b ,PM →=-MP →=-(MN →+NP →)=13(a +b ).10.若点M 是△ABC 所在平面内一点,且满足AM →=34AB →+14AC →.(1)求△ABM 与△ABC 的面积之比;(2)若N 为AB 的中点,AM 与CN 交于点O ,设BO →=xBM →+yBN →,求x ,y 的值. 解:(1)由AM →=34AB →+14AC →可知M ,B ,C 三点共线,如图,令BM →=λBC →⇒AM →=AB →+BM →=AB →+λBC →=AB →+λ(AC →-AB →)=(1-λ)AB →+λAC →⇒λ=14,所以S △ABM S △ABC =14,即面积之比为1∶4.(2)由BO →=xBM →+yBN →⇒BO →=xBM →+y 2BA →,BO →=x 4BC →+yBN →,由O ,M ,A 三点共线及O ,N ,C 三点共线⇒⎩⎨⎧x +y 2=1,x 4+y =1⇒⎩⎨⎧x =47,y =67.[B.力量提升]1.在△ABC 中,N 是AC 边上一点,且AN →=12NC →,P 是BN 上的一点,若AP →=mAB →+29AC →,则实数m 的值为( )A.19 B .13 C .1 D .3解析:选B.由于AN →=12NC →,所以BN →-BA →=12(BC →-BN →),则BN →=23BA →+13BC →;由于AP →=mAB →+29AC →,所以BP →-BA →=-mBA →+29(BC →-BA →),即BP →=(79-m )BA →+29BC →;由于P 是BN 上的一点,所以BN →=λBP →,所以79-m=49,即m =13. 2.如图,在△ABC 中,AB →=a ,AC →=b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点为P ,若AP →=m a +n b ,则m +n =( )A.12 B .23C.67D .1解析:选C.由题意可得AP →=2QP →,QB →=2QR →,由于AB →=a =AQ →+QB →=12AP →+2QR →,①AC →=AP →+PC →=AP →+RP →=AP →+QP →-QR → =AP →+12AP →-QR →=32AP →-QR →=b ,②由①②解方程求得AP →=27a +47b .再由AP →=m a +n b 可得m =27,n =47,m +n =67.3.如图,平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________.解析:如图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,则OC →=OD →+OE →.在Rt △OCD 中,由于|OC →|=23,∠COD =30°, ∠OCD =90°,所以|OD →|=4,|CD →|=2,故OD →=4OA →, OE →=2OB →,即λ=4,μ=2,所以λ+μ=6. 答案:64.设点O 是面积为4的△ABC 内部一点,且有OA →+OB →+2OC →=0,则△AOC 的面积为________. 解析:如图,以OA ,OB 为邻边作▱OADB ,连接OD ,则OD →=OA →+OB →,结合条件OA →+OB →+2OC →=0知,OD →=-2OC →,设OD 交AB 于M ,则OD →=2OM →,所以OM →=-OC →,故O 为CM 的中点,所以S △AOC =12S △CAM =14S △ABC =14×4=1.答案:1 5.已知△OAB 中,延长BA 到C ,使AB =AC ,D 是将OB →分成2∶1两部分的一个分点,DC 和OA 交于点E ,设OA →=a ,OB →=b .(1)用a ,b 表示向量OC →,DC →;(2)若OE →=λOA →,求实数λ的值.解:(1)由于A 为BC 的中点,所以OA →=12(OB →+OC →),OC →=2a -b .DC →=OC →-OD →=OC →-23OB →=2a -b -23b =2a -53b .(2)由于OE →=λOA →,所以CE →=OE →-OC →=λOA →-OC →=λa -2a +b =(λ-2)a +b .由于CE →与CD →共线,所以存在实数m ,使得CE →=mCD →,即(λ-2)a +b =m (-2a +53b ),即(λ+2m -2)a +(1-53m )b =0.由于a ,b 不共线,所以⎩⎪⎨⎪⎧λ+2m -2=0,1-53m =0,解得λ=45.6.(选做题)如图所示,OM ∥AB ,点P 在由射线OM 、线段OB 及线段AB 的延长线围成的阴影区域内(不含边界)运动,且OP →=xOA →+yOB →.(1)求x 的取值范围;(2)当x =-12时,求y 的取值范围.解:(1)由于OP →=xOA →+yOB →,以OB 和OA 的反向延长线为两邻边作平行四边形,由向量加法的平行四边形法则可知OP 为此平行四边形的对角线,当OP 长度增大且靠近OM 时,x 趋向负无穷大,所以x 的取值范围是(-∞,0).(2)如图所示,当x =-12时,在OA 的反向延长线取点C ,使OC =12OA ,过C 作CE ∥OB ,分别交OM和AB 的延长线于点D ,E ,则CD =12OB ,CE =32OB ,要使P 点落在指定区域内,则P 点应落在DE 上,当点P 在点D 处时OP →=-12OA →+12OB →,当点P 在点E 处时OP →=-12OA →+32OB →,所以y 的取值范围是⎝⎛⎭⎫12,32.。
§2从位移的合成到向量的加法2.1向量的加法,) 1.问题导航(1)任意两个向量都可以应用向量加法的三角形法则吗?(2)向量加法的三角形法则与平行四边形法则的使用条件有何不同?2.例题导读教材P77例1,例2,P78例3.通过此三例的学习,生疏向量加法运算,学会利用向量加法解决实际生活问题.试一试:教材P81习题2-2 B组T1,T2,T3你会吗?1.向量加法的定义及运算法则定义求两个向量和的运算,叫做向量的加法法则三角形法则前提已知向量a,b,在平面内任取一点A 作法作AB→=a,BC→=b,再作向量AC→结论向量AC→叫做a与b的和,记作a+b,即a+b=AB→+BC→=AC→图形平行四边形法则前提已知不共线的两个向量a,b,在平面内任取一点O作法以同一点O为起点的两个已知向量a,b为邻边作▱OACB结论对角线OC→就是a与b的和图形规定零向量与任一向量a的和都有a+0=0+a=a. 2.向量加法的运算律运算律交换律a+b=b+a结合律(a+b)+c=a+(b+c)1.推断正误.(正确的打“√”,错误的打“×”)(1)任意两个向量的和仍旧是一个向量.()(2)|a+b|≤|a|+|b|等号成立的条件是a∥b.()(3)任意两个向量的和向量不行能与这两个向量共线.()解析:(1)正确.依据向量和的定义知该说法正确.(2)错误.条件应为a∥b,且a,b的方向相同.(3)错误.当两个向量共线时,两向量的和向量与这两个向量中的任意一个都共线.答案:(1)√(2)×(3)×2.若a,b为非零向量,则下列说法中不正确的是()A.若向量a与b方向相反,且|a|>|b|,则向量a+b与a的方向相同B.若向量a与b方向相反,且|a|<|b|,则向量a+b与a的方向相同C.若向量a与b方向相同,则向量a+b与a的方向相同D.若向量a与b方向相同,则向量a+b与b的方向相同解析:选B.由于a与b方向相反,|a|<|b|,所以a+b与a的方向相反,故B不正确.3.化简下列各向量:(1)AB→+BC→=________.(2)PQ→+OM→+QO→=________.解析:依据向量加法的三角形法则及运算律得:(1)AB→+BC→=AC→.(2)PQ→+OM→+QO→=PQ→+QO→+OM→=PO→+OM→=PM→.答案:(1)AC→(2)PM→4.在△ABC中,AB→=a,BC→=b,CA→=c,则a+b+c=________.解析:由向量加法的三角形法则,得AB→+BC→=AC→,即a+b+c=AB→+BC→+CA→=0.答案:01.对向量加法的三角形法则的四点说明(1)适用范围:任意向量.(2)留意事项:①两个向量肯定首尾相连;②和向量的起点是第一个向量的起点,终点是其次个向量的终点.(3)方法与步骤:第一步,将b(或a)平移,使一个向量的起点与另一个向量的终点相连;其次步:将剩下的起点与终点用有向线段相连,且有向线段的方向指向终点,则该有向线段表示的向量即为向量的和.也称“首尾相连,连首尾”.(4)图示:如图所示2.对向量加法的平行四边形法则的四点说明(1)适用范围:任意两个非零向量,且不共线.(2)留意事项:①两个非零向量肯定要有相同的起点;②平行四边形中的一条对角线所对应的向量为和向量.(3)方法与步骤:第一步:先把两个已知向量a与b的起点平移到同一点;其次步:以这两个已知向量为邻边作平行四边形,则两邻边所夹的对角线所表示的向量即为a与b的和.(4)图示:如图所示已知向量作和向量如图,已知向量a,b,c不共线,求作向量a+b+c .(链接教材P81习题2-2 A组T3)[解]法一:如图(1),在平面内作OA→=a,AB→=b,则OB→=a+b;再作BC→=c,则OC→=a+b+c.法二:如图(2),在平面内作OA→=a,OB→=b,以OA与OB为邻边作平行四边形OADB,则OD→=a+b;再作OC→=c,以OD与OC为邻边作平行四边形ODEC,则OE→=a+b+c.方法归纳已知向量求作和向量的方法(1)用三角形法则,在平面内任取一点,顺次作两个向量等于已知向量,从起点到终点的向量就是两个向量的和.(2)用平行四边形法则,在平面内任取一点,从今点动身分别作两个向量等于已知向量,以它们为邻边作平行四边形,共起点的对角线对应的向量就是这两个向量的和.1.(1)如图所示,已知向量a和b,求作a+b .(2)如图,已知a,b,c三个向量,试求作和向量a+b+c .解:(1)法一:(三角形法则)如图所示.①在平面上任取一点O,作OA→=a,AB→=b;②连接OB,则OB→=a+b.法二:(平行四边形法则)如图所示.①在平面上任取一点O,作OA→=a,OB→=b;②以OA,OB为邻边作平行四边形OACB,则OC→=a+b.(2)作出来的和向量如图,首先在平面内任取一点O,作向量OA→=a,再作向量AB→=b,则得向量OB→=a +b,然后作向量BC→=c,则向量OC→即为所求.向量的加法运算(1)下列等式不正确的是()①a+(b+c)=(a+c)+b;②AB→+BA→=0;③AC→=DC→+AB→+BD→.A.②③B.②C.①D.③(2)设A,B,C,D是平面上任意四点,试化简:①AB→+CD→+BC→;②DB→+AC→+BD→+CA→.(链接教材P81习题2-2A组T5(1)(2))[解](1)选B.由向量的加法满足结合律知①正确;由于AB→+BA→=0,故②不正确;DC→+AB→+BD→=AB→+BD→+DC→=AC→成立,故③正确.(2)①AB→+CD→+BC→=(AB→+BC→)+CD→=AC→+CD→=AD→.②DB→+AC→+BD→+CA→=(DB→+BD→)+(AC→+CA→)=0+0=0.方法归纳向量加法运算律的意义和应用原则(1)意义向量加法的运算律为向量加法供应了变形的依据,实现恰当利用向量加法法则运算的目的.实际上,由于向量的加法满足交换律和结合律,故多个向量的加法运算可以依据任意的次序、任意的组合来进行.(2)应用原则利用代数方法通过向量加法的交换律,使各向量“首尾相连”,通过向量加法的结合律调整向量相加的挨次.2.(1)在平行四边形ABCD 中,O 是对角线的交点,下列结论正确的是( ) A.AB →=CD →,BC →=AD → B.AD →+OD →=DA → C.AO →+OD →=AC →+CD → D.AB →+BC →+CD →=DA → (2)化简下列各式:①(AD →+MB →)+(BC →+CM →)=________. ②AB →+DF →+CD →+BC →+F A →=________.解析:(1)由于AO →+OD →=AD →,AC →+CD →=AD →,所以AO →+OD →=AC →+CD →.(2)①(AD →+MB →)+(BC →+CM →)=AD →+MB →+BM →=AD →+0=AD →. ②AB →+DF →+CD →+BC →+F A →=(AB →+BC →)+(DF →+F A →)+CD →=AC →+DA →+CD →=(AC →+CD →)+DA →=AD →+DA →=0.答案:(1)C (2)①AD →②0向量加法的应用(1)已知图中电线AO 与天花板的夹角为60°,电线AO 所受拉力|F 1|=24 N ;绳BO 与墙壁垂直,所受拉力|F 2|=12 N ,则F 1与F 2的合力大小为________N ;方向为________.(2)如图是中国象棋的部分棋盘,“马走日”是象棋中“马”的走法,假如不从原路返回,那么“马”从A 经过B 再走回到A 最少需几步?(链接教材P 77例1,例2,P 78例3) [解](1)如图,依据向量加法的平行四边形法则,得合力F 1+F 2=OC →.在△OAC 中,|F 1|=24,|AC →|=12,∠OAC =60°,所以∠OCA =90°,|OC →|=123,所以F 1与F 2的合力大小为12 3 N ,方向为竖直向上.故填123和竖直向上.(2)如图,假如不从原路返回,那么所走路线为A →B →C →D →A ,即AB →+BC →+CD →+DA →=0,所以最少需四步.本例(2)条件不变,若不限步数,那么“马”从A 经过B 再走回A 时,所走的步数有什么特点?解:若不限步数,则“马”从A 经过B 再走回A 时,不论如何走,均需走偶数步,且不少于四步. 方法归纳向量加法应用的关键及技巧(1)三个关键:一是搞清构成平面图形的向量间的相互关系;二是娴熟找出图形中的相等向量;三是能依据三角形法则或平行四边形法则作出向量的和向量.(2)应用技巧:①精确 画出几何图形,将几何图形中的边转化为向量;②将所求问题转化为向量的加法运算,进而利用向量加法的几何意义进行求解.3.(1)若a 表示向东走8 km ,b 表示向北走8 km ,则|a +b |=________km ,a +b 的方向是________.(2)如图所示,在某次抗震救灾中,一架飞机从A 地按北偏东35°的方向飞行800 km 到达B 地接到受伤人员,然后又从B 地按南偏东55°的方向飞行800 km 送往C 地医院,求这架飞机飞行的路程及两次位移的和.解:(1)设OA →=a ,OB →=b ,则OC →=a +b .又由于|OA →|=8,|OB →|=8,所以|OC →|=|a +b |=8 2.又由于∠AOC =45°,所以a +b 的方向是北偏东45°.故填82和北偏东45°.(2)设AB →,BC →分别表示飞机从A 地按北偏东35°的方向飞行800 km ,从B 地按南偏东55°的方向飞行800km ,则飞机飞行的路程指的是|AB →|+|BC →|;两次飞行的位移的和指的是AB→+BC→=AC→.依题意有|AB→|+|BC→|=800+800=1 600(km),又α=35°,β=55°,∠ABC=35°+55°=90°,所以|AC→|=|AB→|2+|BC→|2=8002+8002=8002(km).易错警示未能正确理解向量加法致误小船以10 3 km/h的静水速度按垂直于对岸的方向行驶,同时河水的流速为10 km/h,则小船实际航行速度的大小为________km/h.[解析]如图,设船在静水中的速度为|v1|=10 3 km/h,河水的流速为|v2|=10 km/h,小船实际航行速度为v0,则由|v1|2+|v2|2=|v0|2,得(103)2+102=|v0|2,所以|v0|=20 km/h,即小船实际航行速度的大小为20 km/h.[答案]20[错因与防范](1)解答本题,易将船的实际速度当成河水的流速与静水速度之和,导致得不到正确的实际航速关系式而出错.(2)①向量的和一般不能直接用模作和;要留意向量的方向的合成,如本例中用两个速度不能直接作和;②船在静水中的航行速度,水流的速度,船实际的航行速度三者间当航行方向与水流方向不共线时不能直接求实际航行速度,如本例中两个方向垂直,利用勾股定理求速度的大小.4.(1)一艘船以4 km/h的速度沿着与水流方向成120°的方向航行,已知河水流速为2 km/h,若船的实际航行方向与水流方向垂直,则经过3 h,该船的实际航程为________km.(2)在静水中船的速度为20 m/min,水流的速度为10 m/min,假如船从岸边动身沿垂直于水流的航线到达对岸,求船行进的方向.解:(1)由题意,如图,OA→表示水流速度,OB→表示船在静水中的速度,则OC→表示船的实际速度.由于|OA→|=2,|OB→|=4,∠AOB=120°,则∠CBO=60°,又由于∠AOC=∠BCO=90°,所以|OC→|=23,所以船的实际航行速度为2 3 km/h,则实际航程为23×3=63(km).故填6 3.(2)作出图形,如图.船速v船与岸的方向成α角,由图可知v水+v船=v实际,结合已知条件,四边形ABCD为平行四边形,在Rt△ACD中,|CD→|=|AB→|=|v水|=10 m/min,|AD→|=|v船|=20 m/min,所以cos α=|CD→||AD→|=1020=12,所以α=60°,从而船与水流方向成120°的角.故船行进的方向是与水流的方向成120°角的方向.1.已知下面的说法:①假如非零向量a与b的方向相同或相反,那么a+b的方向与a或b的方向相同;②在△ABC中,必有AB→+BC→+CA→=0;③若AB→+BC→+CA→=0,则A,B,C为一个三角形的三个顶点;④若a,b均为非零向量,则|a+b|与|a|+|b|肯定相等.其中正确的个数为()A.0B.1C.2 D.3解析:选B.①当a+b=0时,不成立;②说法正确;③当A,B,C三点共线时,也可以有AB→+BC→+CA→=0,故此说法不正确;④当a,b共线时,若a,b同向,则|a+b|=|a|+|b|;若a,b反向,则|a+b|=||a|-|b||;当a,b不共线时,|a+b|<|a|+|b|,故此说法不正确.2.如图,D,E,F分别是△ABC的边AB,BC,CA的中点,则下列等式中正确的是()A.FD→+DA→=F A→B.FD→+DE→+FE→=0C.DE→+DA→=EB→D.DA→+DE→=FD→解析:选A.如题图,可知FD→+DA→=F A→,FD→+DE→+FE→=FE→+FE→≠0,DE→+DA→=DF→,故A正确.3.化简(AB→+MB→)+(BO→+BC→)+OM→=________.解析:原式=(AB→+BO→)+(OM→+MB→)+BC→=AO→+OB→+BC→=AB→+BC→=AC→.答案:AC →, [同学用书单独成册])[A.基础达标]1.在四边形ABCD 中,若AC →=AB →+AD →,则( ) A .四边形ABCD 是矩形 B .四边形ABCD 是菱形 C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形解析:选D.由向量加法的平行四边形法则知四边形ABCD 是平行四边形.故选D.2.如图所示,在平行四边形ABCD 中,BC →+DC →+BA →=( )A.BD → B .DB →C.BC →D .CB →解析:选C.BC →+DC →+BA →=BC →+(DC →+BA →)=BC →+0=BC →.3.已知a ,b ,c 是非零向量,则(a +c )+b ,b +(a +c ),b +(c +a ),c +(a +b ),c +(b +a )中,与向量a +b +c 相等的个数为( )A .5B .4C .3D .2解析:选A.依据向量加法的交换律及结合律,每个向量式均与a +b +c 相等,故选A.4.如图所示的方格中有定点O ,P ,Q ,E ,F ,G ,H ,则OP →+OQ →=( )A.OH → B .OG →C.FO →D .EO →解析:选C.设a =OP →+OQ →,以OP ,OQ 为邻边作平行四边形,则夹在OP ,OQ 之间的对角线对应的向量即为向量a =OP →+OQ →,则a 与FO →长度相等,方向相同,所以a =FO →.5.设a =(AB →+CD →)+(BC →+DA →),b 是任一非零向量,则在下列结论中,正确的为( ) ①a ∥b ;②a +b =a ;③a +b =b ;④|a +b |<|a |+|b |; ⑤|a +b |=|a |+|b |.A .①②B .①③C .①③⑤D .③④⑤解析:选C.由于(AB →+CD →)+(BC →+DA →)=AB →+BC →+CD →+DA →=a =0. 所以a ∥b ,a +b =b ,即①③正确,②错误,而a =0时,|a +b |=|b |=|a |+|b |,故④错误,⑤正确.6.当非零向量a ,b 满足________时,a +b 平分以a 与b 为邻边的平行四边形的内角. 解析:由平面几何学问知,在平行四边形中,菱形的对角线平分其内角. 答案:|a |=|b |7.矩形ABCD 中,|AB |=3,|BC →|=1,则向量AB →+AD →+AC →的长度等于________. 解析:由于ABCD 为矩形,所以AB →+AD →=AC →,所以AB →+AD →+AC →=AC →+AC →,如图,过点C 作CE →=AC →,则AC →+AC →=AE →,所以|AB →+AD →+AC →|=|AE →| =2|AC →|=2|AB →|2+|BC →|2=4.答案:48.在平行四边形ABCD 中,若|BC →+BA →|=|BC →+AB →|,则四边形ABCD 是________(图形).解析:如图所示,BC →+BA →=BD →,BC →+AB →=AC →, 又|BC →+BA →|=|BC →+AB →|,所以|BD →|=|AC →|,则四边形ABCD 是矩形. 答案:矩形9.如图所示,P ,Q 是三角形ABC 的边BC 上两点,且BP =QC .求证:AB →+AC →=AP →+AQ →.证明:AB →=AP →+PB →,AC →=AQ →+QC →,所以AB →+AC →=AP →+PB →+AQ →+QC →.由于PB →与QC →大小相等,方向相反,所以PB →+QC →=0, 故AB →+AC →=AP →+AQ →+0=AP →+AQ →.10.如图,在重300 N 的物体上拴两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30°,60°,当整个系统处于平衡状态时,求两根绳子的拉力.解:如图,在平行四边形OACB 中,∠AOC =30°,∠BOC =60°,则在△OAC 中,∠ACO =∠BOC =60°,∠OAC =90°,设向量OA →,OB →分别表示两根绳子的拉力,则CO →表示物体的重力,|CO →|=300 N ,所以|OA →|=|CO →|cos 30°=150 3 N , |OB →|=|CO →|cos 60°=150 N.所以与铅垂线成30°角的绳子的拉力是150 3 N , 与铅垂线成60°角的绳子的拉力是150 N. [B.力量提升]1.设A 1,A 2,A 3,A 4是平面上给定的4个不同的点,则使MA 1→+MA 2→+MA 3→+MA 4→=0成立的点M 的个数为( )A .0B .1C .2D .4解析:选B.依据所给的四个向量的和是一个零向量, 即MA 1→+MA 2→+MA 3→+MA 4→=0.当A 1,A 2,A 3,A 4是平面上给定的4个不同点确定以后,在平面上有且只有一个点满足使得四个向量的和等于零向量,故选B.2.已知|OA →|=3,|OB →|=3,∠AOB =60°,则|OA →+OB →|=( ) A. 3 B .3 C .2 3 D .3 3解析:选D.在平面内任取一点O ,作向量OA →,OB →,以OA →,OB →为邻边作▱OACB ,则OC →=OA →+OB →.由题意知四边形OACB 为菱形,又∠AOB =60°,所以|OC →|=2×3×sin 60°=3 3.3.已知G 是△ABC 的重心,则GA →+GB →+GC →=________. 解析:如图,连接AG 并延长交BC 于E ,点E 为BC 中点,延长AE 到D ,使GE =ED ,则GB →+GC →=GD →,GD →+GA →=0,所以GA →+GB →+GC →=0. 答案:04.若|AB →|=10,|AC →|=8,则|BC →|的取值范围是________.解析:如图,固定AB →,以A 为起点作AC →,则AC →的终点C 在以A 为圆心,|AC →|为半径的圆上,由图可见,当C 在C 1处时,|BC →|取最小值2,当C 在C 2处时,|BC →|取最大值18.答案:[2,18]5.一艘船在水中航行,水流速度与船在静水中航行的速度均为5 km/h.假如此船实际向南偏西30°方向行驶2 km ,然后又向西行驶2 km ,你知道此船在整个过程中的位移吗?解:如图,用AC →表示船的第一次位移, 用CD →表示船的其次次位移,依据向量加法的三角形法则知AD →=AC →+CD →,所以AD →可表示两次位移的和位移. 由题意知,在Rt △ABC 中,∠BAC =30°,所以BC =12AC =1,AB = 3.在等腰△ACD 中,AC =CD =2,所以∠D =∠DAC =12∠ACB =30°,所以∠BAD =60°,AD =2AB =23,所以两次位移的和位移的方向是南偏西60°,位移的大小为2 3 km.6.(选做题)在四边形ABCD 中,对角线AC ,BD 交于点O ,且|AB →|=|AD →|=1,OA →+OC →=OB →+OD →=0,cos ∠DAB =12.求|DC →+BC →|与|CD →+BC →|.解:由于OA →+OC →=OB →+OD →=0,所以OA →=CO →,OB →=DO →,所以四边形ABCD 为平行四边形, 又|AB →|=|AD →|=1,知四边形ABCD 为菱形.由于cos ∠DAB =12,∠DAB ∈(0,π),所以∠DAB =π3,所以△ABD 为正三角形,所以|DC →+BC →|=|AB →+AD →|=|AC →|=2|AO →|= 3.→+BC→|=|BD→|=|AB→|=1. |CD。
§3 弧 度 制, )1.问题导航(1)“1弧度”指的是“1度的角所对的弧”吗? (2)“2 rad ”的角终边在第几象限?(3)30°的角化为弧度是多少?120°是30°的几倍?其弧度数是多少? 2.例题导读P 10例1.通过本例学习,学会把角度换算成弧度,并留意,不要用“rad ”的中文名称“弧度”作单位写在数据的后面.试一试:教材P 12习题1-3 T 1你会吗?P 10例2.通过本例学习,学会把弧度换算成度,并留意,“度”的单位“°”不能省略. 试一试:教材P 12习题1-3 T 2你会吗?1.度量角的单位制 (1)角度制规定周角的1360为1度的角,用度作为单位来度量角的单位制叫做角度制.(2)单位圆半径为1的圆称为单位圆. (3)弧度制当半径不同时,同样的圆心角所对的弧长与半径之比是常数,称这个常数为该角的弧度数.在单位圆中,长度为1的弧所对的圆心角称为1弧度角.它的单位符号是rad ,读作弧度.这种以弧度作单位度量角的单位制,叫作弧度制.2.弧度数与弧长公式(1)符号:一般地,任一正角的弧度数都是一个正数;任一负角的弧度数都是一个负数;零角的弧度数是0.(2)公式:如图所示,l 、r 、α分别是弧长、半径、弧所对的圆心角的弧度数.弧度数公式:|α|=lr;弧长公式:l =|α|r ;这就是说,弧长等于弧所对的圆心角弧度数的确定值与半径的积. 3.角度制与弧度制的换算 (1)角度与弧度的互化角度化弧度 弧度化角度 360°=2π rad 2π rad =360° 180°=π rad π rad =180°1°=π180 rad ≈0.017_45 rad1 rad =⎝⎛⎭⎫180π°≈57.30°=57°18′ (2)一些特殊角的角度数与弧度数的对应关系角度数0° 15° 30° 45° 60° 75° 90° 120° 135° 150°弧度数π12 π6 π4 π3 5π12 π2 2π3 3π4 5π6角度数 180° 210° 225° 240°270° 300° 315° 330° 360° 弧度数π 7π6 5π4 4π33π25π37π411π62π4.弧长公式及扇形面积公式的两种表示角度制弧度制 弧长公式 l =|n |πr180l =|α|r扇形面积公式S =|n |πr 2360S =|α|2r 2=12lr留意事项 r 是扇形的半径,n 是圆心角的角度数r 是扇形的半径,α是圆心角的弧度数,l 是弧长明显弧度制下的两个公式在形式上都要简洁得多,记忆和应用也就更加便利.留意:在弧度制下的弧长公式、面积公式有诸多优越性,但假如已知角是以“度”为单位,则应当先化成弧度后再计算.1.推断正误.(正确的打“√”,错误的打“×”) (1)1弧度指的是1度的角.( ) (2)周角的大小是2π.( )(3)弧长为π,半径为2的扇形的圆心角是直角.( )解析:(1)错误.1弧度指的是长度等于半径长的弧所对的圆心角. (2)正确.周角的大小是2πrr=2π.(3)正确.若弧长为π,半径为2,则|α|=π2,故其圆心角是直角.答案:(1)× (2)√ (3)√ 2.下列转化结果错误的是( )A .60°化成弧度是π3B .-103π化成度是-600°C .-150°化成弧度是-7π6 D.π12化成度是15°解析:选C.对于A ,60°=60×π180=π3;对于B ,-103π=-103×180°=-600°;对于C ,-150°=-150×π180=-5π6;对于D ,π12=112×180°=15°.3.已知圆的半径为2,则弧长为4的弧所对的圆心角α(0<α<2π)的弧度数为________.解析:|α|=l r =42=2.答案:24.若扇形的圆心角为60°,半径为1,则扇形的弧长l =________,面积S =________.解析:由于α=60°=π3,r =1,所以l =|α|·r =π3,S =12r ·l =12×1×π3=π6.答案:π3 π61.对弧度制概念的三点说明(1)“1 rad ”是指:长度等于半径长的圆弧所对的圆心角的大小,不是弧长,这个角是固定的,与圆的半径的长度无关.(2)引入弧度制后,角的集合与实数建立一一对应关系,我们今后表示角时,多用弧度制表示.(3)表示角时π就是无理数,它表示一个实数,同1 rad 角的大小一样,π rad 的角表示:长度等于半径的π倍的圆弧所对的圆心角,在推断有理数表示角的象限,与π比较大小时,有时需要把π化为小数.2.对弧度数计算公式的说明我们常用α=lr来求解圆中圆心角所对弧度数,一般来说,在圆中弧长是个正数,故得出的圆心角也为正数.但在平面直角坐标系中,所求的角不肯定为正角,所以经常依据需要在角α上添加正负号,故这个求弧度数的公式经常记为|α|=lr.3.角度与弧度的区分与联系区分 (1)定义不同,大小不同(2)单位不同(3)弧度制是十进制,而角度制是六十进制联系(1)不管以“弧度”还是以“度”为单位的角的大小都是一个与圆的半径大小无关的值,仅和半径与所含的弧这两者的比值有关(2)“弧度”与“角度”之间可以相互转化 (3)表示角时,弧度制与角度制不能混用4.角度制与弧度制换算时应留意的四个问题 (1)用弧度为单位表示角的大小时,“弧度(rad)”可以省略不写,假如以度(°)为单位表示角的大小时,度(°)不能省略不写.(2)度化为弧度时,应先将分、秒化为度,再化为弧度.(3)有些角的弧度数是π的整数倍时,如无特殊要求,不必把π化成小数.(4)用“弧度”与“度”去度量每个角时,除了零角以外,所得的结果都是不同的,二者要留意不能混淆. 5.角度制与弧度制换算的要点角度与弧度的互化(1)把112°30′化为弧度; (2)将-512π rad 化为度.(链接教材P 10例1、例2)[解] (1)由于1°=π180rad ,所以112°30′=112.5°=112.5×π180=58π.(2)由于1 rad =⎝ ⎛⎭⎪⎫180π°,所以-512π=-512π×⎝ ⎛⎭⎪⎫180π°=-75°.方法归纳(1)在进行角度制和弧度制的换算时,抓住关系式π rad =180°是关键.由它可以得到:度数×π180=弧度数,弧度数×⎝ ⎛⎭⎪⎫180π°=度数.(2)特殊角的弧度数与角度数对应值今后常用,应熟记. (3)在同一个角的表达式中,角度和弧度不能混合使用.1.(1)-690°化为弧度是( )A .-5π3B .-7π3C .-23π6D .-13π6(2)①18°=________ rad ; ②67°30′=________ rad ; ③310π rad =________度; ④2 rad ≈________度.(保留一位小数)解析:(1)由于1°=π180 rad ,所以-690°=-690×π180=-236π.(2)①18°=π180×18 rad =π10rad ;②67°30′=67.5°=67.5×π180 rad =38π rad ;③310π rad =310π×⎝ ⎛⎭⎪⎫180π°=54°; ④2 rad ≈57.3°×2=114.6°.答案:(1)C (2)①π10 ②38π ③54 ④114.6用弧度表示终边相同的角(1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π,并推断它是第几象限角? (2)若β∈[-4π,0],且β与(1)中α的终边相同,求β. (链接教材P 12习题1-3T 7)[解] (1)-1 480°=-749π=-8π-29π=-10π+169π=2×(-5)π+169π,其中0≤169π<2π,由于169π是第四象限角,所以-1 480°是第四象限角. (2)由题意知:β=α+2k π=2k π+169π(k ∈Z ),又由于β∈[-4π,0],所以令k =-1,-2得,β1=-29π,β2=-209π.本例(1)中的条件“-1 480°”若换为“-855°”,其他条件不变,其结论又如何呢?解:由于-855°=-855×π180 rad =-19π4=-6π+5π4,所以-855°与5π4的终边相同.又由于5π4是第三象限角,所以-855°是第三象限角. 方法归纳(1)无论用角度制还是用弧度制来度量角,都能在角的集合与实数集R 之间建立一种一一对应的关系:每一个角都有唯一的一个实数与它对应;反过来,每一个实数也都有唯一的一个角与它对应.(2)用弧度制表示终边相同角α+2k π(k ∈Z )时,留意2k π是π的偶数倍,而不是π的奇数倍.2.(1)与-660°角终边相同的最小正角是________.(用弧度制表示)(2)将下列各角化成2k π+α(0≤α<2π,k ∈Z )的形式,并指出它们是第几象限角. ①-1 725°;②870°.解:(1)由于与角α终边相同的角为α+k ·360°(k ∈Z ),所以与-660°角终边相同的角是-660°+k ·360°(k ∈Z ),其中最小正角是60°,化为弧度为π3.故填π3.(2)①由于-1 725°=-5×360°+75°, 所以-1 725°=-10π+5π12.所以-1 725°与5π12的终边相同,是第一象限的角.②870°=296π=5π6+4π,所以-870°与5π6终边相同,是其次象限角.扇形的弧长和面积公式的应用一条弦的长度等于半径r ,求:(1)这条弦所对的劣弧长;(2)这条弦和劣弧所组成的弓形的面积.[解] (1)如图,半径为r 的⊙O 中弦AB =r ,则△OAB 为等边三角形,所以∠AOB =π3,则弦AB 所对的劣弧长为π3r .(2)由于△AOB 是边长为r 的正三角形,所以S △AOB =34r 2, S 扇形OAB =12|α|r 2=12×π3×r 2=π6r 2,所以S 弓形=S 扇形OAB -S △AOB =π6r 2-34r 2=⎝ ⎛⎭⎪⎫π6-34r 2. 方法归纳图形的分解与组合是解决数学问题的基本方法之一.本例中,把弓形面积看成扇形面积与三角形面积的差,即可运用已有学问解决问题.3.(1)设扇形的半径长为2 cm ,面积为4 cm 2,则扇形的圆心角的弧度数是________. (2)解答下列各题:①已知扇形的面积为1 cm 2,它的周长为4 cm ,求它的圆心角; ②已知一扇形的圆心角是72°,半径等于20 cm ,求扇形的面积.解:(1)设扇形圆心角的弧度数为α,则扇形面积为S =12αr 2=12α×22=4,解得α=2.故填2.(2)①设扇形的弧长为l cm ,半径为r cm ,则l =4-2r .由于S 扇形=12lr ,所以12(4-2r )r =1.解得r =1,l =2,所以圆心角的弧度数为|α|=lr =2(rad).②设扇形弧长为l cm ,由于72°=72×π180=2π5rad. 所以l =|α|r =2π5×20=8π(cm),S =12lr =12×8π×20=80π(cm 2).思想方法函数思想的运用已知一个扇形的周长为a ,求当扇形的圆心角多大时,扇形的面积最大,并求出这个最大值.[解] 设扇形的弧长为l ,半径为r ,圆心角为α, 面积为S .由已知,得2r +l =a ,即l =a -2r .所以S =12l ·r =12(a -2r )·r =-r 2+a 2r =-⎝⎛⎭⎫r -a 42+a 216.由于r >0,l =a -2r >0,所以0<r <a2.所以当r =a 4时,S max =a216.此时,l =a -2·a 4=a 2,所以|α|=lr =2.故当扇形的圆心角为2 rad 时,扇形的面积取得最大值a 216.[感悟提高] 分析题目所给的有关信息,以扇形的有关学问为载体,选择函数为模型,将实际问题转化为求函数的最值问题.运用二次函数求最值,可更快地解决问题.1.-72°的弧度数是( )A .-π3B .-25πC .-5π6D .-5π7解析:选B.-72°=-72×π180=-25π.2.-2312π化为角度为________.解析:-2312π=-2312π×⎝ ⎛⎭⎪⎫180π°=-345°.答案:-345°3.在扇形中,已知半径为8,弧长为12,则圆心角是________弧度,扇形面积是________.解析:|α|=l r =128=32 rad ,S =12l ·r =12×12×8=48.答案:3248[A.基础达标]1.-630°化为弧度为( )A .-7π2B .7π4C .-7π16D .-7π4解析:选A.-630°=-630×π180=-7π2.2.若α=-3,则角α的终边在( ) A .第一象限 B .其次象限 C .第三象限 D .第四象限 解析:选C.由于α=-3≈-3×57.30°=-171.9°, 所以α的终边在第三象限.3.与角23π终边相同的角是( )A.113π B .2k π-23π(k ∈Z )C .2k π-103π(k ∈Z )D .(2k +1)π+23π(k ∈Z )解析:选C.选项A 中11π3=2π+53π,与角53π终边相同,故A 错;2k π-23π,k ∈Z ,当k =1时,得[0,2π)之间的角为43π,故与43π有相同的终边,B 错;2k π-103π,k ∈Z ,当k =2时,得[0,2π)之间的角为23π,与23π有相同的终边,故C 对;(2k +1)π+23π,k ∈Z ,当k =0时,得[0,2π)之间的角为53π,故D 错. 4.已知扇形的周长是3 cm ,面积是12cm 2,则扇形的圆心角的弧度数是( )A .1B .1或4C .4D .2或4解析:选B.设扇形的半径为r ,弧长为l , 则⎩⎪⎨⎪⎧l +2r =3,12l ·r =12,所以⎩⎪⎨⎪⎧r =1,l =1或⎩⎪⎨⎪⎧r =12,l =2,故|α|=lr=1或4.5.扇形圆心角为π3,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( )A .1∶3B .2∶3C .4∶3D .4∶9解析:选B.如图,设内切圆半径为r ,则r =a3,所以S 圆=π·⎝⎛⎭⎫a 32=πa 29,S 扇=12a 2·π3=πa 26,所以S 圆S 扇=23.6.在[-2π,2π]内,与α=-11π3的终边相同的角为________.解析:与α=-11π3终边相同的角的集合为P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β|β=-11π3+2k π,k ∈Z ,令k =1,2,得β=-5π3,π3.答案:-5π3,π37.将时钟拨慢了15分钟,则分针转过的弧度数是________.解析:由于时钟拨慢了15分钟,所以分针逆时针旋转了90°,即分针转过的弧度数为π2.答案:π28.火车站钟楼上有座大钟,这座大钟的分针20 min 所走的圆弧长是π3m ,则这座大钟分针的长度为________ m.解析:由于分针20 min 转过的角为2π3,所以由l =αr ,得r =l α=π32π3=0.5(m),即这座大钟分针的长度为0.5 m. 答案:0.59.用弧度制表示终边在图中阴影区域内角的集合(含边界),并推断2 014°是不是这个集合的元素.解:由于150°=56π,所以终边落在阴影区域内角的集合为S =⎩⎨⎧⎭⎬⎫β|56π+2k π≤β≤32π+2k π,k ∈Z .由于2 014°=214°+5×360°=107π90+10π.又56π<107π90<3π2, 所以2 014°=10790π+10π∈S .10.已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?解:设扇形圆心角的弧度数为θ(0<θ<2π),半径为r ,弧长为l ,面积为S , 则l +2r =40,所以l =40-2r ,所以S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.所以当半径r =10 cm 时,扇形的面积最大,这个最大值为100 cm 2,这时,θ=l r =40-2×1010=2 rad.[B.力量提升]1.若圆弧长度等于其所在圆的内接正三角形的边长,则该圆弧所对圆心角的弧度数为( ) A.π3 B .2π3 C. 3 D .2解析:选C.如图,设圆的半径为R ,则圆的内接正三角形的边长为3R ,所以圆弧长度为3R 的圆心角的弧度数α=3RR = 3. 2.集合⎩⎨⎧⎭⎬⎫α|k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选C.当k 为偶数时,令k =2n ,n ∈Z ,则集合可化为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α|2n π+π4≤α≤2n π+π2,n ∈Z ,表示的范围为⎣⎢⎡⎦⎥⎤π4,π2区域;当k 为奇数时,令k =2n +1,n ∈Z ,则集合可化为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α|2n π+5π4≤α≤2n π+32π,n ∈Z ,表示的范围为⎣⎡⎦⎤54π,32π区域,故选C. 3.若α=3 rad ,则角α的终边在第________象限,与角α终边相同的角的集合可表示为________.解析:由1 rad =⎝ ⎛⎭⎪⎫180π°≈57.30°.所以3 rad ≈171.90°.所以α是其次象限角,与角α终边相同的角的集合为{β|β=3+2k π,k ∈Z }.答案:二 {β|β=3+2k π,k ∈Z }4.半径为3 cm ,圆心角为120°的扇形面积为________cm 2.解析:由于扇形面积为S =12lr =12αr 2,所以S =12·2π3·32=3π(cm 2).答案:3π每秒钟转π3弧5.如图,动点P ,Q 从点A (4,0)动身,沿圆周运动,点P 按逆时针方向度,点Q 按顺时针方向每秒钟转π6弧度,求P ,Q 第一次相遇时所用的时间及P ,Q 点各自走过的弧长.解:设P ,Q 第一次相遇时所用的时间是t , 则t ·π3+t ·⎪⎪⎪⎪⎪⎪-π6=2π.解得t =4, 所以P ,Q 第一次相遇时所用的时间是4秒,第一次相遇时点P 已经运动到角π3·4=43π的终边与圆交点的位置,点Q 已经运动到角-2π3的终边与圆交点的位置,所以点P 走过的弧长为43π×4=163π,点Q 走过的弧长为⎪⎪⎪⎪⎪⎪-2π3×4=23π×4=83π.6.(选做题)如图所示,已知一长为4 cm ,宽为3 cm 的长方形木块在桌面上做无滑动的翻滚,翻滚到第四周时被一小木块拦住,使木块底面与桌面成30°角,求点A 走过的总路程及走过的弧所在的扇形的总面积.解:木块的翻滚过程如题图所示.第一面运动时,点A 的路程为AA 1︵,其圆心角∠ACA 1=π2,半径为5,弧长AA 1︵=5π2,所在扇形的面积为254π;其次面翻滚时,路程为A 1A 2︵,圆心角∠A 1B 1A 2=π2,半径为3,弧长A 1A 2︵=3π2,所在扇形的面积为9π4;第三面翻滚时,A 点在A 2处不动;第四周翻滚时,点A 的路程为A 2A 3︵,圆心角为∠A 2D 3A 3=π2-π6=π3,半径为4,弧长A 2A 3︵=4π3,所在扇形的面积为8π3,故总路程为AA 1︵+A 1A 2︵+A 2A 3︵=5π2+3π2+4π3=16π3(cm),所在扇形的总面积为25π4+9π4+8π3=67π6(cm 2).。
第十三章 导数(理)编写:王建宏【网络图】1.导数的定义:f(x)在点x 0处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim)(00000.2.导数的几何意义:曲线y =f (x )在点P (x 0,f(x 0))处的切线的斜率是).(0x f '(切线的斜率必存在)相应地,切线方程是000()()y y f x x x '-=-.3.导数的应用:利用导数判断函数的单调性:设函数y =f (x )在某个区间内可导,如果,0)(>'x f 那么f(x)为增函数;如果,0)(<'x f 那么f(x)为减函数;如果在某个区间内恒有,0)(='x f 那么f(x)为常数.4.求可导函数极值的步骤:①求导数)(x f ';②求方程0)(='x f 的根(此时只是可能极值点);③列表检验)(x f '在方程0)(='x f 根的左右的符号,如果左正右负,那么函数y=f(x)在这个根处取得极大值;如果左负右正,那么函数y=f(x)在这个根处取得极小值.5.求可导函数最大值与最小值的步骤:①求y=f(x)在(a,b)内的极值;②将y=f(x)在各极值点的极值与f (a )、f (b )比较,其中最大的一个为最大值,最小的一个是最小值. 【网络导读】导数的方法: 包括导数的定义、求导公式,四则运算、求导法则、复合函数求导法则和微分的计算.导数在函数研究上的应用主要涉及函数单调性的判断、极大(小)值的判断求解,以及函数最大(小)值的求解.重要的数学思想方法: (1)极限思想方法; (2)数形结合思想; (3)转化与化归思想. 【易错指导】易错点1:常用的求导公式记忆不牢,求复合函数的导数没有分清函数的复合关系. 利用函数的单调性构造不等关系.要明确函数的单调性或单调区间及定义域限制.易错点2:误认为()0 ((,))f x x a b '<∈是()f x 在(,)a b 内单调递减的充分必要条件,导致错误结论.例题1如果函数2()(31)(0x x f x a a a a =-->且1)a ≠在区间[0,)+∞上是增函数,那么实数a 的取值范围是(A )2(0,]3(B )(C )(D )3[,)2+∞【解法一】设xt a =,2222223131()()(31)[]()22x x xa a f x a a a a ++=-+=-- 即22223131[]()22a a y t ++=--,根据复合函数单调性判别法则,有 当(0,1)a ∈时,xt a=在[0,)+∞上单调递减,且(0,1t ∈,所以有22223131[]()22a a y t ++=--在(0,1]区间上递减,即23112a t +=≥,解得13a ≤< 当(1,)a ∈+∞时,同理可得a ∈∅综上,故应选B.【解法二】由题可知2'()[2(31)]ln 0xxf x a a a a =-+⋅⋅≥在[0,)+∞上恒成立,解得13a ≤<. 【点评】本题考查了复合函数的单调性及字母参数的取值范围的导数求解策略问题.不少考生由于求导公式记忆不牢,致使导数求解错误,而影响正确求解参数的取值范围.例题2已知函数()f x 在R 上有定义,对任何实数0a >和任何实数x ,都有()()f ax af x =(Ⅰ)证明()00f =;(Ⅱ)证明(),0,0kx x f x hx x ≥⎧=⎨<⎩ 其中k 和h 均为常数;(Ⅲ)当(Ⅱ)中的0k >时,设()()()1(0)g x f x x f x =+>,讨论()g x 在()0,+∞内的单调性并求极值。
§7向量应用举例7、1点到直线的距离公式7、2向量的应用举例,)1、问题导航(1)已知直线l的方向向量(M,N)或法向量(A,B),如何设l的方程?(2)向量可以解决哪些常见的几何问题?(3)向量可以解决哪些物理问题?2、例题导读P102例1、通过本例学习,学会利用点到直线的距离公式计算点到直线的距离、试一试:教材P102练习T1,T2,T3您会不?P102例2、通过本例学习,学会利用向量方法解答平面几何问题的方法步骤、试一试:教材P104习题2-7 B组T1您会不?P103例3,例4、通过此两例学习,学会利用向量方法解答物理中位移、力等问题、试一试:教材P104习题2-7 A组T3,B组T2您会不?1、直线l:Ax+By+C=0的法向量(1)与直线的方向向量垂直的向量称为该直线的法向量、(2)若直线l的方向向量v=(B,-A),则直线l的法向量n=(A,B)、(3)与直线l的法向量n同向的单位向量n0=错误!=错误!、2、点到直线的距离公式点M(x0,y0)到直线l:Ax+By+C=0的距离d=错误!、3、用向量解决平面几何中的问题(1)证明线段平行或相等,可以用向量的数乘、平行向量定理、(2)证明线段垂直,可以用向量数量积运算、(3)利用向量数量积运算,可以求线段的长度、夹角及平面图形的面积、4、用向量解决解析几何中的问题解析几何就是在平面直角坐标系内研究图形的性质,这类问题大多适用于向量的坐标运算,建立适当的平面直角坐标系,设出向量的坐标,将几何问题转化为向量的线性运算或数量积的运算、5、向量在物理中的应用向量有着丰富的物理背景,向量的物理背景就是位移、力、速度等,向量数量积的物理背景就是力所做的功,因此,利用向量可以解决一些物理问题、用向量法解决物理问题时,要作出相应的几何图形,以帮助我们建立数学模型、向量在物理中的应用,如求力的合成与分解,力做功等,实际上就是把物理问题转化为向量问题,然后通过向量运算解决向量问题,最后再用获得的结果解释物理现象、1、判断正误、(正确的打“√",错误的打“×")(1)求力F1与F2的合力可按照向量加法的三角形法则求解、()(2)若△ABC为直角三角形,则有错误!·错误!=0、()(3)若向量错误!∥错误!,则AB∥CD、()解析:(1)正确、物理中的力既有大小又有方向,所以力可以瞧作向量,F1,F2的合力可按照向量加法的三角形法则求解、(2)错误、因为△ABC为直角三角形,角A并不一定就是直角,有可能就是角B或角C 为直角、(3)错误、向量错误!∥错误!时,直线AB∥CD或AB,CD重合、答案:(1)√(2)×(3)×2、已知A,B,C,D四点的坐标分别为(1,0),(4,3),(2,4),(0,2),则此四边形为()A、梯形B、菱形C、矩形D、正方形解析:选A、错误!=(3,3),错误!=(-2,-2),所以错误!=-错误!错误!,错误!与错误!共线,但|错误!|≠|错误!|,故此四边形为梯形、3、两个大小相等的共点力F1,F2,当它们间的夹角为90°时合力大小为20 N,则当它们的夹角为120°时,合力的大小为________N、解析:根据题意,当F1,F2夹角为90°时,|F1|2+|F2|2=202,因为|F1|=|F2|,所以|F1|=|F2|=102,则当F1,F2夹角为120°时,它们的合力大小为|错误!|=10错误!、答案:10错误!4、在△ABC中,若C=90°,AC=BC=4,则错误!·错误!=________、解析:因为C=90°,AC=BC=4,所以△ABC为等腰直角三角形,所以BA=42,∠ABC=45°,所以错误!·错误!=16、答案:161、对直线l:Ax+By+C=0的方向向量及法向量的两点说明(1)设P1(x1,y1),P2(x2,y2)为直线上不重合的两点,则错误!=(x2-x1,y2-y1)及其共线的向量λ错误!均为直线的方向向量、显然当x1≠x2时,向量错误!与错误!共线,因此向量错误!=错误!(B,-A)为直线l的方向向量,由共线向量的特征可知(B,-A)为直线l的方向向量、(2)结合法向量的定义可知,向量(A,B)与(B,-A)垂直,从而向量(A,B)为直线l 的法向量、2、向量法在几何证明与计算中的几个主要应用(1)A、B、C三点共线的证法只需证错误!=λ错误!或错误!=(x1,y1),错误!=(x2,y2)满足x1y2-x2y1=0、(2)证明AB⊥AC的方法只需证错误!·错误!=0、(3)求A、B两点间距离的方法可把错误!表示成λa+μb或者求坐标(x,y),然后利用向量的运算求解、(4)求∠AOB的方法利用数量积定义的变形cos∠AOB=错误!、3、向量在物理中应用时应注意的三个问题(1)把物理问题转化为数学问题,也就就是将物理量之间的关系抽象成数学模型、(2)利用建立起来的数学模型解释与回答相关的物理现象、(3)在解决具体问题时,要明确与掌握用向量方法研究物理问题的相关知识:①力、速度、加速度与位移都就是向量;②力、速度、加速度与位移的合成与分解就就是向量的加、减法;③动量m v就是数乘向量;④功就是力F与在力F的作用下物体所产生的位移s的数量积、向量在解析几何中的应用(1)经过点A(-1,2),且平行于向量a=(3,2)的直线方程就是________、(2)已知圆C:(x-3)2+(y-3)2=4及点A(1,1),M就是圆C上的任一点,点N在线段MA的延长线上,且错误!=2错误!,求点N的轨迹方程、[解](1)在直线上任取一点P(x,y),则错误!=(x+1,y-2),由错误!∥a,得(x+1)×2-(y-2)×3=0,即2x-3y+8=0、故填2x-3y+8=0、(2)设N(x,y),M(x0,y0)、因为错误!=2错误!,所以(1-x0,1-y0)=2(x-1,y-1),所以错误!即错误!又因为点M(x0,y0)在圆C:(x-3)2+(y-3)2=4上,所以(x0-3)2+(y0-3)2=4,所以(2x)2+(2y)2=4,即x2+y2=1,所以点N的轨迹方程为x2+y2=1、将本例(1)中的“平行于向量”改为“法向量为”结果如何?解:由法向量a=(3,2),设直线的方程为3x+2y+c=0,又A(-1,2)在直线上,所以3×(-1)+2×2+c=0,得c=-1,即3x+2y-1=0、方法归纳向量在解析几何中的应用问题向量与解析几何的综合就是高考的热点、主要题型有:(1)向量的概念、运算、性质、几何意义与解析几何问题结合、(2)将向量作为描述问题或解决问题的工具、(3)以向量坐标运算为工具,考查直线与曲线相交、轨迹等问题、1、(1)已知两点A(3,2),B(-1,4)到直线mx+y+3=0的距离相等,则m=________、(2)已知点P(-3,0),点A在y轴上,点Q在x轴的正半轴上,点M在直线AQ上,满足错误!·错误!=0,错误!=-错误!错误!、当点A在y轴上移动时,求动点M的轨迹方程、解:(1)由已知得直线的一个法向量为n=(m,1),其单位向量为n0=错误!=错误!(m,1),在直线上任取一点P(0,-3),则错误!=(-3,-5),错误!=(1,-7)、依题意有|错误!·n0|=|错误!·n0|,即错误!=错误!,解得m=错误!或m=-6、故填错误!或-6、(2)设点M(x,y)为轨迹上的任一点,设A(0,b),Q(a,0)(a>0),则错误!=(x,y -b),错误!=(a-x,-y)、因为错误!=-错误!错误!,所以(x,y-b)=-错误!(a-x,-y)、所以a=错误!,b=-错误!,即A错误!,Q错误!、错误!=错误!,错误!=错误!、因为错误!·错误!=0,所以3x-错误!y2=0、即所求轨迹方程为y2=4x(x>0)、向量在平面几何中的应用如图正三角形ABC中,D、E分别就是AB、BC上的一个三等分点,且AE、CD交于点P、求证:BP⊥DC、(链接教材P100例2)[证明]设错误!=λ错误!,并设三角形ABC的边长为a,则有:错误!=错误!+错误!=λ错误!+错误!错误!=λ错误!+错误!错误!=错误!(2λ+1)错误!-λ错误!、又错误!=错误!-错误!错误!,错误!∥错误!,所以错误!(2λ+1)错误!-λ错误!=k错误!-错误!k错误!,于就是有错误!解得λ=错误!、所以错误!=错误!错误!、所以错误!=错误!+错误!=错误!错误!+错误!错误!,错误!=错误!错误!-错误!、所以错误!·错误!=错误!·错误!=错误!a2-错误!a2-错误!a2cos 60°=0、所以由向量垂直的等价条件知BP⊥DC、方法归纳用向量解决平面几何问题的两种常见思路(1)向量的线性运算法错误!―→错误!―→利用向量的线性运算或数量积找相应关系―→错误!(2)向量的坐标运算法建立适当的平面直角坐标系―→错误!―→错误!―→错误!2、(1)如图,在▱ABCD中,E,F在对角线BD上,且BE=FD,则四边形AECF的形状就是________、(2)如图所示,在平行四边形ABCD中,BC=2BA,∠ABC=60°,作AE⊥BD交BC于点E,求BE∶EC的值、解:(1)由已知可设错误!=错误!=a,错误!=错误!=b,故错误!=错误!+错误!=a +b,错误!=错误!+错误!=b+a,又a+b=b+a,则错误!=错误!,即AE,FC平行且相等,故四边形AECF就是平行四边形、故填平行四边形、(2)法一:设错误!=a,错误!=b,|a|=1,|b|=2,则a·b=|a||b|cos 60°=1,错误!=a+b、设错误!=λ错误!=λb,则错误!=错误!-错误!=λb-a、由AE⊥BD,得错误!·错误!=0,即(λb-a)·(a+b)=0,解得λ=错误!,所以BE∶EC=错误!∶错误!=2∶3、法二:以B为坐标原点,BC所在直线为x轴建立平面直角坐标系,设B(0,0),C(2,0),则A错误!,D错误!、设E(m,0),则错误!=错误!,错误!=错误!,由AE⊥BD,得错误!·错误!=0,即错误!(m-错误!)-错误!×错误!=0,解得m=错误!,所以BE∶EC=错误!∶错误!=2∶3、向量在物理中的应用一个物体受到同一平面内三个力F1,F2,F3的作用,沿北偏东45°的方向移动了8 m、已知|F1|=2 N,方向为北偏东30°,|F2|=4 N,方向为北偏东60°,|F3|=6 N,方向为北偏西30°,求这三个力的合力F所做的功、(链接教材P103例4)[解]以三个力的作用点为原点,正东方向为x轴正半轴,正北方向为y轴正半轴建立平面直角坐标系,如图所示、由已知可得F 1=(1,错误!),F 2=(2错误!,2),F 3=(-3,3错误!)、所以F =F 1+F 2+F 3=(2错误!-2,4错误!+2)、又位移s =(4错误!,4错误!),所以F ·s =(23-2)×4错误!+(4错误!+2)×4错误!=24错误!(J)、故这三个力的合力F 所做的功就是24错误! J 、方法归纳利用向量解决物理问题的思路及注意问题(1)向量在物理中的应用,实际上就是把物理问题转化为向量问题,然后通过向量运算解决向量问题,最后用所获得的结果解释物理现象、(2)在用向量法解决物理问题时,应作出相应图形,以帮助建立数学模型,分析解题思路、(3)注意问题:①如何把物理问题转化为数学问题,也就就是将物理之间的关系抽象成数学模型;②如何利用建立起来的数学模型解释与回答相关的物理现象、3、(1)一质点受到平面上的三个力F 1,F 2,F 3(单位:牛顿)的作用而处于平衡状态、已知F 1,F 2成60°角,且F 1,F 2的大小分别为2与4,则F 3的大小为( )A 、6B 、2C 、2错误!D 、2错误!(2)点P 在平面上做匀速直线运动,速度向量v =(4,-3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位)、设开始时点P 0的坐标为(-10,10),则5秒后点P 的坐标为( )A 、(-2,4)B 、(-30,25)C 、(10,-5)D 、(5,-10)(3)已知两恒力F 1=(3,4)、F 2=(6,-5)作用于同一质点,使之由点A (20,15)移动到点B (7,0),试求:①F 1、F 2分别对质点所做的功;②F 1,F 2的合力F 对质点所做的功、解:(1)选D 、因为力F 就是一个向量,由向量加法的平行四边形法则知F 3的大小等于以F 1,F 2为邻边的平行四边形的对角线的长,故|F 3|2=|F 1|2+|F 2|2+2|F 1||F 2|·cos 60°=4+16+8=28,所以|F 3|=2错误!、(2)选C 、由题意知,P 0P ,→=5v =(20,-15),设点P 的坐标为(x ,y ),则错误!解得点P 的坐标为(10,-5)、(3)设物体在力F 作用下的位移为s ,则所做的功为W =F ·s ,错误!=(7,0)-(20,15)=(-13,-15)、①W 1=F 1·错误!=(3,4)·(-13,-15)=3×(-13)+4×(-15)=-99(J ),W 2=F 2·错误!=(6,-5)·(-13,-15)=6×(-13)+(-5)×(-15)=-3(J )、②W =F ·错误!=(F 1+F 2)·错误!=[(3,4)+(6,-5)]·(-13,-15)=(9,-1)·(-13,-15)=9×(-13)+(-1)×(-15)=-117+15=-102(J )、易错警示 向量在几何应用中的误区在△ABC 中,已知向量错误!与错误!满足错误!·错误!=0且错误!=错误!,则△ABC 的形状为________、[解析] 因为向量错误!,错误!分别表示与向量错误!,错误!同向的单位向量,所以以错误!,错误!为邻边的平行四边形就是菱形、根据平行四边形法则作错误!=错误!+错误!(如图所示),则AD 就是∠BAC 的平分线、因为非零向量满足错误!·错误!=0,所以∠BAC 的平分线AD 垂直于BC ,所以AB =AC ,又cos ∠BAC =错误!=错误!,且∠BAC ∈(0,π),所以∠BAC =错误!,所以△ABC 为等边三角形、[答案] 等边三角形[错因与防范] (1)解答本题常会给出错误的答案为“直角三角形”,原因在于未能正确分析挖掘题设中的条件,直接根据数量积为零,就判断△ABC 为直角三角形、(2)为杜绝上述可能发生的错误,应该:①注意知识的积累向量线性运算与数量积的几何意义就是解决向量问题的依据,如本例中错误!,错误!的含义,邻边相等的平行四边形就是菱形,菱形的对角线平分对角、②树立数形结合意识推导图形的形状时要以题目条件为依据全面进行推导,回答应力求准确,如本例求解时,以图形辅助解题,较为形象直观、4、(1)设A 1,A 2,A 3,A 4就是平面直角坐标系中两两不同的四点,若错误!=λ错误!(λ∈R ),错误!=μ错误!(μ∈R ),且错误!+错误!=2,则称A 3,A 4调与分割A 1,A 2、已知平面上的点C ,D 调与分割点A ,B ,则下面说法正确的就是( )A 、C 可能就是线段AB 的中点B 、D 可能就是线段AB 的中点C 、C 、D 可能同时在线段AB 上D 、C 、D 不可能同时在线段AB 的延长线上(2)设O 为△ABC 所在平面上一点,动点P 满足错误!=错误!+λ错误!,λ∈(0,+∞),则动点P 的轨迹一定通过△ABC 的( )A 、重心B 、垂心C 、外心D 、内心解析:(1)选D 、因为C ,D 调与分割点A ,B ,所以错误!=λ错误!,错误!=μ错误!,且错误!+错误!=2(*),不妨设A (0,0),B (1,0),则C (λ,0),D (μ,0),对A ,若C 为AB 的中点,则错误!=错误!错误!,即λ=错误!,将其代入(*)式,得错误!=0,这就是无意义的,故A 错误;对B ,若D 为AB 的中点,则μ=错误!,同理得错误!=0,故B 错误;对C ,要使C ,D 同时在线段AB 上,则0<λ<1,且0<μ<1,所以错误!>1,错误!>1,所以错误!+错误!>2,这与错误!+错误!=2矛盾;故C 错误;显然D 正确、(2)选C 、设线段BC 的中点为D ,则错误!=错误!、所以错误!=错误!+λ 错误!=错误!+λ 错误!,所以OP →-错误!=λ 错误!=错误!,所以错误!·错误!=λ 错误!·错误!=λ 错误!=λ 错误!=λ(-|错误!|+|错误!|)=0,所以DP ⊥BC ,即点P 一定在线段BC 的垂直平分线上,即动点P 的轨迹一定通过△ABC 的外心、1、已知直线x +3y +9=0,则直线的一个法向量为( )A 、a =(1,3)B 、a =(3,1)C 、a =(3,-1)D 、a =(-3,-1)解析:选A 、直线Ax +By +C =0的法向量可以为(A ,B )、2、在△ABC 中,若错误!·错误!+|错误!|2=0,则△ABC 的形状就是( )A 、锐角三角形B 、等腰三角形C 、直角三角形D 、钝角三角形解析:选C 、因为AB →·错误!+|错误!|2=0,所以错误!·错误!+错误!2=0,即错误!·(错误!+错误!)=0、所以错误!·错误!=0,所以错误!⊥错误!,即AB ⊥AC 、所以A =90°、所以△ABC 就是直角三角形、3、一只鹰正以与水平方向成30°角的方向向下飞行,直扑猎物,太阳光从头上直照下来,鹰在地面上的影子的速度就是40 m/s ,则鹰的飞行速率为( )A 、错误! m/sB 、错误! m/sC 、错误! m/sD 、错误! m/s解析:选C 、设鹰的飞行速度为v 1,鹰在地面上的影子的速度为v 2,则v 2=40 m/s ,因为鹰的运动方向就是与水平方向成30°角向下,故|v 1|=错误!=错误!(m/s ),故选C 、, [学生用书单独成册])[A 、基础达标]错误!一个人骑自行车行驶速度为v 1,风速为v 2,则逆风行驶的速度的大小为( )A 、v 1-v 2B 、v 1+v 2C 、|v 1|-|v 2|D 、错误!解析:选C 、根据速度的合成可知、错误!若错误!=(2,2),错误!=(-2,3)分别表示F 1,F 2,则|F 1+F 2|为( )A 、(0,5)B 、25C 、2错误!D 、5解析:选D 、因为F 1+F 2=(0,5),所以|F 1+F 2|=错误!=5、3、过点A (2,3)且垂直于向量a =(2,1)的直线方程为( )A 、2x +y -7=0B 、2x +y +7=0C 、x -2y +4=0D 、x -2y -4=0解析:选A 、设所求直线上任一点P (x ,y ),则错误!⊥a 、又因为错误!=(x -2,y -3),所以2(x -2)+(y -3)=0,即所求的直线方程为2x +y -7=0、错误!若A i (i =1,2,3,4,…,n)就是△AOB 所在平面内的点,且错误!·错误!=错误!·错误!、给出下列说法:①|错误!|=|错误!|=…=|错误!|=|错误!|;②|错误!|的最小值一定就是|错误!|;③点A 、A i 在一条直线上、其中正确的个数就是( )A 、0B 、1C 、2D 、3解析:选B 、由错误!·错误!=错误!·错误!,可得(错误!-错误!)·错误!=0,即错误!·错误!=0,所以错误!⊥错误!,即点A i 在边OB 过点A 的垂线上、故三个命题中,只有③正确,故选B 、5、已知△ABC 中,A(2,-1),B(3,2),C(-3,-1),BC 边上的高为AD ,则错误!等于( )A 、(-1,2)B 、(1,-2)C 、(1,2)D 、(-1,-2)解析:选A 、设D (x ,y ),则错误!=(x -2,y +1),错误!=(x -3,y -2),错误!=(-6,-3)、因为错误!⊥错误!,错误!∥错误!、所以错误!解得错误!所以错误!=(-1,2)、错误!已知三个力F 1=(3,4),F 2=(2,-5),F 3=(x ,y ),满足F 1+F 2+F 3=0,若F 1与F 2的合力为F ,则合力F 与力F 1夹角的余弦值为________、解析:因为F 1+F 2+F 3=0,F 1+F 2=F ,所以F =-F 3,因为F 3的坐标为(-5,1),所以F =-F 3=(5,-1),设合力F 与力F 1的夹角为θ,则cos θ=错误!=错误!=错误!、答案:错误!错误!已知直线的方向向量为a =(3,1),且过点A (-2,1),则直线方程为____________、 解析:由题意知,直线的斜率为错误!,设直线方程为x -3y +c =0,把(-2,1)代入得c =5,故所求直线方程为x -3y +5=0、答案:x -3y +5=08、已知|a |=错误!,|b |=4,|c |=2错误!,且a +b +c =0,则a ·b +b ·c +c ·a =________、解析:(a +b +c )2=|a |2+|b |2+|c |2+2(a ·c +b ·c +a ·b )=0,所以a ·b +b ·c +c ·a =-错误!、答案:-错误!9、在△ABC 中,错误!·错误!=|错误!-错误!|=6,M 为BC 边的中点,求中线AM 的长、解:因为|错误!-错误!|=6,所以(错误!-错误!)2=36、即错误!2+错误!2-2错误!·错误!=36、又因为错误!·错误!=6,所以错误!2+错误!2=48、又因为错误!=错误!(错误!+错误!),所以AM →2=错误!(错误!2+错误!2+2错误!·错误!)=错误!×(48+12)=15,所以|错误!|=错误!,即中线AM 的长为错误!、10、已知点A (-1,0),B (0,1),点P (x ,y )为直线y =x -1上的一个动点、(1)求证:∠APB 恒为锐角;(2)若四边形ABPQ 为菱形,求错误!·错误!的值、解:(1)证明:因为点P (x ,y )在直线y =x -1上,所以点P (x ,x -1),所以错误!=(-1-x ,1-x ),错误!=(-x ,2-x ),所以错误!·错误!=2x 2-2x +2=2(x 2-x +1)=2错误!>0,所以cos ∠APB =错误!>0,若A ,P ,B 三点在一条直线上,则错误!∥错误!,得到(x +1)(x -2)-(x -1)x =0,方程无解,所以∠APB ≠0,所以∠APB 恒为锐角、(2)因为四边形ABPQ 为菱形,所以|错误!|=|错误!|,即错误!=错误!,化简得到x 2-2x +1=0,所以x =1,所以P (1,0),设Q (a ,b ),因为错误!=错误!,所以(a -1,b )=(-1,-1),所以错误!所以错误!·错误!=(0,-2)·(1,-1)=2、[B 、能力提升]1、水平面上的物体受到力F 1,F 2的作用,F 1水平向右,F 2与水平向右方向的夹角为θ,物体在运动过程中,力F 1与F 2的合力所做的功为W ,若物体一直沿水平地面运动,则力F 2对物体做功的大小为( )A 、错误!WB 、错误!WC 、错误!WD 、错误!W解析:选D 、设物体的位移就是s ,根据题意有(|F 1|+|F 2|·cos θ)|s |=W ,即|s |=错误!,所以力F 2对物体做功的大小为错误!W 、2、记max{x ,y }=错误!min {x ,y }=错误!设a ,b 为平面向量,则( )A 、min{|a +b |,|a -b |}≤min {|a |,|b |}B 、min {|a +b|,|a -b |}≥min{|a |,|b |}C 、max{|a +b|2,|a -b |2}≤|a|2+|b|2D 、max{|a +b |2,|a -b |2}≥|a|2+|b|2解析:选D 、对于min {|a +b|,|a -b |}与min {|a |,|b|},相当于平行四边形的对角线长度的较小者与两邻边长的较小者比较,它们的大小关系不确定,因此A ,B 均错,而|a +b |,|a -b |中的较大者与|a |,|b |可构成非锐角三角形的三边,因此有max {|a +b |2,|a -b|2}≥|a |2+|b|2、3、已知△ABC 的面积为10,P 就是△ABC 所在平面上的一点,满足P A ,→+错误!+2错误!=3错误!,则△ABP 的面积为________、解析:由错误!+错误!+2错误!=3错误!,得错误!+错误!+2错误!=3(错误!-错误!),所以4错误!+2(错误!-错误!)=0,所以2错误!=错误!,由此可得P A 与CB 平行且|CB |=2|P A |,故△ABP 的面积为△ABC 的面积的一半,故△ABP 的面积为5、答案:54、在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|错误!|=1,则|错误!+错误!+错误!|的最大值就是________、解析:设D (x ,y ),由|错误!|=1,得(x -3)2+y 2=1,向量错误!+错误!+错误!=(x -1,y +错误!),故|错误!+错误!+错误!|=错误!的最大值为圆(x -3)2+y 2=1上的动点到点(1,-错误!)距离的最大值,其最大值为圆(x -3)2+y 2=1的圆心(3,0)到点(1,-错误!)的距离加上圆的半径,即错误!+1=1+错误!、答案:1+错误!5、在平面直角坐标系xOy 中,已知向量AB →=(6,1),错误!=(x ,y ),错误!=(-2,-3),且错误!∥错误!、(1)求x 与y 间的关系;(2)若错误!⊥错误!,求x 与y 的值及四边形ABCD 的面积、解:(1)由题意得错误!=错误!+错误!+错误!=(x +4,y -2),错误!=(x ,y ), 因为错误!∥错误!,所以(x +4)y -(y -2)x =0,即x +2y =0、①(2)由题意得错误!=错误!+错误!=(x +6,y +1),错误!=错误!+错误!=(x -2,y -3),因为错误!⊥错误!,所以错误!·错误!=0,即(x +6)(x -2)+(y +1)(y -3)=0,即x 2+y 2+4x -2y -15=0,②由①②得错误!或错误!当错误!时,错误!=(8,0),错误!=(0,-4),则S 四边形ABCD =错误!|错误!||错误!|=16,当错误!时,错误!=(0,4),错误!=(-8,0),则S 四边形ABCD =错误!|错误!||错误!|=16,综上错误!或错误!四边形ABCD 的面积为16、6、(选做题)已知e 1=(1,0),e 2=(0,1),现有动点P 从P 0(-1,2)开始,沿着与向量e 1+e 2相同的方向做匀速直线运动,速度为|e 1+e 2|;另一动点Q 从Q 0(-2,-1)开始,沿着与向量3e 1+2e 2相同的方向做匀速直线运动,速度为|3e 1+2e 2|,设P 、Q 在t =0 s 时分别在P0、Q0处,问当错误!⊥错误!时所需的时间为多少?解:e1+e2=(1,1),|e1+e2|=2,其单位向量为错误!;3e1+2e2=(3,2),|3e1+2e2|=错误!,其单位向量为错误!、依题意,|错误!|=错误!t,|错误!|=错误!t,所以错误!=|错误!|错误!=(t,t),错误!=|错误!|错误!=(3t,2t),由P0(-1,2),Q0(-2,-1),得P(t-1,t+2),Q(3t-2,2t-1),所以错误!=(-1,-3),错误!=(2t-1,t-3),因为错误!⊥错误!,所以错误!·错误!=0,即2t-1+3t-9=0,解得t=2、即当错误!⊥错误!时所需的时间为2 s、。
一、导数及其应用多选题1.已知0a >,0b >,下列说法错误的是( )A .若1a b a b ⋅=,则2a b +≥B .若23a b e a e b +=+,则a b >C .()ln ln a a b a b -≥-恒成立D .2ln a a b be e-<恒成立 【答案】AD 【分析】对A 式化简,通过构造函数的方法,结合函数图象,说明A 错误;对B 不等式放缩22a b e a e b +>+,通过构造函数的方法,由函数的单调性,即可证明B 正确;对C 不等式等价变型()ln ln ln1-≥-⇔≥-a b a a b a b b a ,通过10,ln 1∀>>-x x x恒成立,可得C 正确;D 求出ln -a a b b e 的最大值,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,故D 错误.【详解】A. 1ln ln 0⋅=⇔+=a b a b a a b b 设()ln f x x x =,()()0∴+=f a f b由图可知,当1+→b 时,存在0+→a ,使()()0f a f b += 此时1+→a b ,故A 错误. B. 232+=+>+a b b e a e b e b设()2xf x e x =+单调递增,a b ∴>,B 正确C. ()ln ln ln 1-≥-⇔≥-a ba ab a b b a又10,ln 1∀>>-x x x ,ln 1∴≥-a bb a,C 正确D. max 1=⇒=x x y y e e当且仅当1x =;min 1ln =⇒=-y x x y e 当且仅当1=x e;所以2ln -≤a a b b e e ,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,D 错误.故选:AD 【点睛】本题考查了导数的综合应用,考查了运算求解能力和逻辑推理能力,转化的数学思想和数形结合的数学思想,属于难题.2.已知:()f x 是奇函数,当0x >时,()'()1f x f x ->,(1)3f =,则( )A .(4)(3)f ef >B .2(4)(2)f e f ->-C .3(4)41f e >-D .2(4)41f e -<--【答案】ACD 【分析】由已知构造得'()+10x x e f ⎡⎤>⎢⎥⎣⎦,令()()+1x f x g x e =,判断出函数()g x 在0x >时单调递增,由此得()()4>3g g ,化简可判断A ;()()4>2g g ,化简并利用()f x 是奇函数,可判断B ;()()4>1g g ,化简可判断C ;由C 选项的分析得32(4)41>4+1f e e >-,可判断D.【详解】 因为当0x >时,()'()1fx f x ->,所以()'()10f x f x -->,即()[]'()+10xf x f e x ->,所以'()+10x x e f ⎡⎤>⎢⎥⎣⎦, 令()()+1xf xg x e=,则当0x >时,()'>0g x ,函数()g x 单调递增, 所以()()4>3g g ,即43(4)+1(3)+1>f f e e,化简得(4)(3)1>(3)f f e e ef >+-,故A 正确;()()4>2g g ,即42(4)+1(2)+1>f f e e ,化简得222(4)(2)1>(2)f f e e e f >+-, 所以2(4)(2)e f f -<-,又()f x 是奇函数,所以2(4)(2)e f f -<-,故B 不正确;()()4>1g g ,即4(4)+1(1)+1>f f e e,又(1)3f =,化简得3(4)41f e >-,故C 正确; 由C 选项的分析得32(4)41>4+1f e e >-,所以2(4)41f e -<--,又()f x 是奇函数,所以2(4)41f e -<--,故D 正确,故选:ACD. 【点睛】关键点点睛:解决本题中令有导函数的不等式,关键在于构造出某个函数的导函数,得出所构造的函数的单调性,从而可比较函数值的大小关系.3.在湖边,我们常看到成排的石柱子之间两两连以铁链,这就是悬链线(Catenary ),其形状因与悬在两端的绳子因均匀引力作用下掉下来之形相似而名.选择适当的坐标系后,悬链线的方程是一个双曲余弦函数()cosh 2xx aax e ef x a a a -+⎛⎫=⋅=⋅ ⎪⎝⎭,其中a 为非零常数,在此坐标平面上,过原点的直线与悬链线相切于点()()00,T x f x ,则0x a ⎡⎤⎢⎥⎣⎦的值可能为( )(注:[]x 表示不大于x 的最大整数)A .2-B .1-C .1D .2【答案】AC 【分析】求出导数,表示出切线,令0x t a=,可得()()110t tt e t e --++=,构造函数()()()11x x h x x e x e -=-++,可得()h x 是偶函数,利用导数求出单调性,结合零点存在性定理可得021x a -<<-或012xa<<,即可求出. 【详解】()2x xaae ef x a -+=⋅,()2x x aae ef x --'∴=,∴切线斜率002x x aae ek --=,()0002x x aae ef x a -+=⋅,则切线方程为()0000022x x x x aaaaee e ey a x x --+--⋅=-,直线过原点,()0000022x x x x aaa aee e ea x --+-∴-⋅=⋅-令0x t a=,则可得()()110t tt e t e --++=, 令()()()11xxh x x e x e -=-++,则t 是()h x 的零点,()()()()11x x h x x e x e h x --=++-=,()h x ∴是偶函数,()()x x h x x e e -'=-+,当0x >时,()0h x '<,()h x 单调递减,()1120h e -=>,()22230h e e -=-+<,()h x ∴在()1,2存在零点t ,由于偶函数的对称性()h x 在()2,1--也存在零点,且根据单调性可得()h x 仅有这两个零点,021x a ∴-<<-或012xa<<, 02x a ⎡⎤∴=-⎢⎥⎣⎦或1. 故选:AC. 【点睛】本题考查利用导数求切线,利用导数研究函数的零点,解题的关键是将题目转化为令0x t a=,()()110t t t e t e --++=,求()()()11x xh x x e x e -=-++的零点问题.4.阿基米德是伟大的物理学家,更是伟大的数学家,他曾经对高中教材中的抛物线做过系统而深入的研究,定义了抛物线阿基米德三角形:抛物线的弦与弦的端点处的两条切线围成的三角形称为抛物线阿基米德三角形.设抛物线C :2yx 上两个不同点,A B 横坐标分别为1x ,2x ,以,A B 为切点的切线交于P 点.则关于阿基米德三角形PAB 的说法正确的有( )A .若AB 过抛物线的焦点,则P 点一定在抛物线的准线上B .若阿基米德三角形PAB 为正三角形,则其面积为4C .若阿基米德三角形PAB 为直角三角形,则其面积有最小值14D .一般情况下,阿基米德三角形PAB 的面积212||4x x S -=【答案】ABC 【分析】设出直线AB 的斜截式方程、点,A B 的坐标,根据导数的几何意义求出切线,PA PB 的方程,进而求出点P 的坐标,将直线AB 的方程和抛物线方程联立,得到一元二次方程以及该方程两根的和、积的关系.A :把抛物线焦点的坐标代入直线AB 的斜截式方程中,根据抛物线的准线方程进行判断即可;B :根据正三角形的性质,结合正三角形的面积公式进行判断即可;C :根据直角三角形的性质,结合直角三角形的面积公式进行判断即可;D :根据点到直线距离公式、两点间距离公式进行求解判断即可.. 【详解】由题意可知:直线AB 一定存在斜率, 所以设直线AB 的方程为:y kx m =+,由题意可知:点221122(,),(,)A x x B x x ,不妨设120x x <<,由2'2yx y x ,所以直线切线,PA PB 的方程分别为:221112222(),2()y x x x x y x x x x -=--=-,两方程联立得:211122222()2()y x x x x y x x x x ⎧-=-⎨-=-⎩, 解得:12122x x x y x x +⎧=⎪⎨⎪=⎩,所以P 点坐标为:1212(,)2x x x x +,直线AB 的方程与抛物线方程联立得:2121220,y kx mx kx m x x k x x m y x=+⎧⇒--=⇒+==-⎨=⎩. A :抛物线C :2y x 的焦点坐标为1(0,)4,准线方程为 14y =-,因为AB 过抛物线的焦点,所以14m =,而1214x x m =-=-,显然P 点一定在抛物线的准线上,故本选项说法正确;B :因为阿基米德三角形PAB 为正三角形,所以有||||PA PB =,= 因为 12x x ≠,所以化简得:12x x =-,此时221111(,),(,)A x x B x x -, P 点坐标为:21(0,)x -, 因为阿基米德三角形PAB 为正三角形,所以有||||PA AB =,1122x x =-⇒=-, 因此正三角形PAB, 所以正三角形PAB的面积为11sin 6022︒==, 故本选项说法正确;C :阿基米德三角形PAB 为直角三角形,当PA PB ⊥时, 所以1212121222121122122114PAPBx x x xx x kk x x x x x x x x ++--⋅=-⇒⋅=-⇒=---, 直线AB 的方程为:14y kx =+所以P 点坐标为:1(,)24k -,点 P 到直线AB 的距离为:=||AB ===,因为12121,4x x k x x +==-,所以21AB k =+, 因此直角PAB的面积为:2111(1)224k ⨯+=≥, 当且仅当0k =时,取等号,显然其面积有最小值14,故本说法正确; D :因为1212,x x k x x m +==-,所以1||AB x x ===-,点P 到直线AB 的距离为:212== 所以阿基米德三角形PAB的面积32121211224x x S x x -=⋅-=, 故本选项说法不正确. 故选:ABC 【点睛】关键点睛:解决本题的关键就是一元二次方程根与系数关系的整体代换应用,本题重点考查了数学运算核心素养的应用.5.对于定义域为R 的函数()f x ,()'f x 为()f x 的导函数,若同时满足:①()00f =;②当x ∈R 且0x ≠时,都有()0xf x '>;③当120x x <<且12x x =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( )A .21()xx f x ee x =--B .2()1xf x e x =+-C .31,0(),0x e x f x x x ⎧-≥=⎨-<⎩D .42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩【答案】ACD 【分析】结合“偏对称函数”的性质,利用导数的方法,分别讨论四个函数是否满足三个条件,即可得到所求结论. 【详解】条件①()00f =;由选项可得:001(0)00f e e =--=,02(0)010f e =+-=,03(0)10f e =-=,4()ln(10)0f x =-=,即ABCD 都符合;条件②0()0()0x xf x f x >⎧'>⇔⎨'>⎩,或0()0x f x <⎧⎨'<⎩;即条件②等价于函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增; 对于21()xx f x ee x =--,则()()21()11212x x x xf x e e e e =-+-=-',由0x >可得,()()120(1)1x xf x e e '-=+>,即函数1()f x 单调递增;由0x <可得,()()120(1)1xxf x ee '-=+<,即函数1()f x 单调递减;满足条件②;对于2()1xf x e x =+-,则2()10x f x e =+>'显然恒成立,所以2()1xf x e x =+-在定义域上单调递增,不满足条件②;对于31,0(),0x e x f x x x ⎧-≥=⎨-<⎩,当0x <时,3()f x x =-显然单调递减;当0x ≥时,3()1x f x e =-显然单调递增;满足条件②;对于42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩,当0x ≤时,4()ln(1)f x x =-显然单调递减;当0x >时,4()2f x x =显然单调递增,满足条件②; 因此ACD 满足条件②;条件③当120x x <<且12x x =时,12x x -=,都有()()12f x f x <,即()()()()21220f x f x f x f x -=-->,对于21()xx f x ee x =--,()()212122211211x x x x f x f x e e e e x x -=-+--+()()()()22222222222222x x x x x x x x x e e e e e e e x e ----=----=-+-,因为222x x e e -+≥=,当且仅当22x x e e -=,即20x =时,等号成立,又20x >,所以222x x e e -+>, 则()()()()2222122211222xx x x f x f x e ee e xx ----=--->令()xxg x e ex -=--,0x >,所以()1110x x e e g x -'=+->=>在0x >上显然恒成立, 因此()xxg x e ex -=--在0x >上单调递增,所以()()00g x g >=,即()()()222121120xx f x f x e ex -->-->,所以()()1211f x f x >满足条件③;对于31,0(),0x e x f x x x ⎧-≥=⎨-<⎩,()()2232311211x xf x f x e x x e -=--=-+,令()1xh x e x =--,0x >,则()10xh x e '=->在0x >上显然恒成立,所以()()00h x h >=,则()()23231210xf x f x e x --=>-,即()()3231f x f x >满足条件③;对于42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩,()()()()212122442ln 12ln 1f x f x x x x x -=--=-+,令()()2ln 1u x x x =-+,0x >, 则()1221101u x x'=->-=>+在0x >上显然恒成立,所以()()00u x u >=, 则()()()1422422ln 10f x f x x x -=-+>,即()()1442f x f x >满足条件③; 综上,ACD 选项是“偏对称函数”, 故选:ACD. 【点睛】 思路点睛:求解此类函数新定义问题时,需要结合函数新定义的概念及性质,结合函数基本性质,利用导数的方法,通过研究函数单调性,值域等,逐项判断,即可求解.(有时也需要构造新的函数,进行求解.)6.已知函数()21ln 2f x ax ax x =-+的图象在点()()11,x f x 处与点()()22,x f x 处的切线均平行于x 轴,则( )A .()f x 在1,上单调递增B .122x x +=C .()()121212x x x x f x f x ++++的取值范围是7,2ln 24⎛⎫-∞-- ⎪⎝⎭D .若163a =,则()f x 只有一个零点【答案】ACD 【分析】求导,根据题意进行等价转化,得到a 的取值范围;对于A ,利用导数即可得到()f x 在()1,+∞上的单调性;对于B ,利用根与系数的关系可得121x x =+;对于C ,化简()()121212x x x x f x f x ++++,构造函数,利用函数的单调性可得解;对于D ,将163a =代入()f x ',令()0f x '=,可得()f x 的单调性,进而求得()f x 的极大值小于0,再利用零点存在定理可得解. 【详解】 由题意可知,函数()f x 的定义域为()0,∞+,且()211ax ax ax a x x xf -+=-+=',则1x ,2x 是方程210ax ax -+=的两个不等正根,则2124010a a x x a ⎧∆=->⎪⎨=>⎪⎩,解得4a >, 当()1,x ∈+∞时,函数210y ax ax =-+>,此时()0f x '>,所以()f x 在()1,+∞上单调递增,故A 正确;因为1x ,2x 是方程210ax ax -+=的两个不等正根,所以121x x =+,故B 错误; 因为()()221212121112221111ln ln 22x x x x f x f x x ax ax x ax ax a ++++=+++-++- 1112111ln 1ln 22a a a a a a a a⎛⎫=+++--=--+ ⎪⎝⎭, 易知函数()11ln 2h a a a a=--+在()4,+∞上是减函数, 则当4a >时,()()742ln 24h a h <=--,所以()()121212x x x x f x f x ++++的取值范围是7,2ln 24⎛⎫-∞-- ⎪⎝⎭,故C 正确;当163a =时,()1616133f x x x '=-+,令()0f x '=,得14x =或34, 则()f x 在10,4⎛⎫ ⎪⎝⎭上单调递增,在13,44⎛⎫⎪⎝⎭上单调递减,在3,4⎛⎫+∞ ⎪⎝⎭上单调递增, 所以()f x 在14x =取得极大值,且104f ⎛⎫< ⎪⎝⎭,()2ln 20f =>, 所以()f x 只有一个零点,故D 正确. 故选:ACD. 【点睛】关键点点睛:导数几何意义的应用主要抓住切点的三个特点: ①切点坐标满足原曲线方程; ②切点坐标满足切线方程;③切点的横坐标代入导函数可得切线的斜率.7.设函数()()1x af x a x a =->的定义域为()0,∞+,已知()f x 有且只有一个零点,下列结论正确的有( ) A .a e =B .()f x 在区间()1,e 单调递增C .1x =是()f x 的极大值点D .()f e 是()f x 的最小值【答案】ACD 【分析】()f x 只有一个零点,转化为方程0x a a x -=在(0,)+∞上只有一个根,即ln ln x ax a=只有一个正根.利用导数研究函数ln ()xh x x=的性质,可得a e =,判断A ,然后用导数研究函数()x e f x e x =-的性质,求出()'f x ,令()0f x '=,利用新函数确定()'f x 只有两个零点1和e ,并证明出()'f x 的正负,得()f x 的单调性,极值最值.判断BCD .【详解】()f x 只有一个零点,即方程0x a a x -=在(0,)+∞上只有一个根,x a a x =,取对数得ln ln x a a x =,即ln ln x ax a=只有一个正根. 设ln ()xh x x =,则21ln ()x h x x-'=,当0x e <<时,()0h x '>,()h x 递增,0x →时,()h x →-∞,x e >时,()0h x '<,()h x 递减,此时()0h x >,max 1()()h x h e e==. ∴要使方程ln ln x ax a =只有一个正根.则ln 1a a e =或ln 0a a<,解得a e =或0a <,又∵1a >,∴a e =.A 正确;()x e f x e x =-,1()x e f x e ex -'=-,1()0x e f x e ex -'=-=,11x e e x --=,取对数得1(1)ln x e x -=-,易知1x =和x e =是此方程的解.设()(1)ln 1p x e x x =--+,1()1e p x x-'=-,当01x e <<-时,()0p x '>,()p x 递增,1x e >-时,()0p x '<,()p x 递减,(1)p e -是极大值,又(1)()0p p e ==, 所以()p x 有且只有两个零点,01x <<或x e >时,()0p x <,即(1)ln 1e x x -<-,11e x x e --<,1e x ex e -<,()0f x '>,同理1x e <<时,()0f x '<,所以()f x 在(0,1)和(,)e +∞上递增,在(1,)e 上递减,所以极小值为()0f e =,极大值为(1)f ,又(0)1f =,所以()f e 是最小值.B 错,CD 正确.故选:ACD .【点睛】关键点点睛:本题考用导数研究函数的零点,极值,单调性.解题关键是确定()'f x 的零点时,利用零点定义解方程,1()0x e f x e ex -'=-=,11x e e x --=,取对数得1(1)ln x e x -=-,易知1x =和x e =是此方程的解.然后证明方程只有这两个解即可.8.对于定义在1D 上的函数()f x 和定义在2D 上的函数()g x ,若直线y kx b =+(),k b R ∈同时满足:①1x D ∀∈,()f x kx b ≤+,②2x D ∀∈,()g x kx b ≥+,则称直线y kx b =+为()f x 与()g x 的“隔离直线”.若()ln x f x x =,()1x g x e -=,则下列为()f x 与()g x 的隔离直线的是( )A .y x =B .12y x =-C .3e x y =D .1122y x =- 【答案】AB【分析】 根据隔离直线的定义,函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方,并且可以有公共点,结合函数的图象和函数的单调性,以及直线的特征,逐项判定,即可求解.【详解】根据隔离直线的定义,函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方,并且可以有公共点,由函数()ln x f x x =,可得()21ln x f x x -'=, 所以函数()f x 在()0,e 上单调递增,在(),e +∞上单调递减,因为()10f =,()11f '=,此时函数()f x 的点(1,0)处的切线方程为1y x =-, 且函数()f x 的图象在直线1y x =-的下方;又由函数()1x g x e -=,可得()1e 0x g x -'=>,()g x 单调递增,因为()()111g g '==,所以函数()g x 在点(1,1)处的切线方程为11y x -=-,即y x =,此时函数()g x 的图象在直线y x =的上方,根据上述特征可以画出()y f x =和()y g x =的大致图象,如图所示,直线1y x =-和y x =分别是两条曲线的切线,这两条切线以及它们之间与直线y x =平行的直线都满足隔离直线的条件,所以A ,B 都符合;设过原点的直线与函数()y f x =相切于点00(,)P x y , 根据导数的几何意义,可得切线的斜率为0201ln x k x -=,又由斜002000ln 0y x k x x -==-,可得002100ln 1ln x x x x -=,解得0x e =, 所以21ln 12()e k e e -==,可得切线方程为2x y e =, 又由直线3x y e =与曲()y f x =相交,故C 不符合; 由直线1122y x =-过点()1,0,斜率为12,曲线()y f x =在点()1,0处的切线斜率为1, 明显不满足,排除D.故选:AB.【点睛】对于函数的新定义试题:(1)认真审题,正确理解函数的新定义,合理转化;(2)根据隔离直线的定义,转化为函数()y f x =的图象总在隔离直线的下方,()y g x =的图象总在隔离直线的上方.9.对于函数2ln ()x f x x =,下列说法正确的是( ) A .()f x 在x e =12e B .()f x 有两个不同的零点 C .(23f f f π<< D .若()21f x k x<-在()0,∞+上恒成立,则2e k > 【答案】ACD【分析】 求得函数的导数312ln ()-'=x f x x,根据导数的符号,求得函数的单调区间和极值,可判定A 正确;根据函数的单调性和()10f =,且x >()0f x >,可判定B 不正确;由函数的单调性,得到f f >,再结合作差比较,得到f f >,可判定C 正确;分离参数得到()221ln 1x k f x x x +>+=在()0,∞+上恒成立,令()2ln 1x g x x +=,利用导数求得函数()g x 的单调性与最值,可判定D 正确. 【详解】 由题意,函数2ln ()x f x x =,可得312ln ()(0)x f x x x -'=>,令()0f x '=,即312ln 0x x -=,解得x =当0x <<()0f x '>,函数()f x 在上单调递增;当x >()0f x '<,函数()f x 在)+∞上单调递减,所以当x =()f x 取得极大值,极大值为12f e=,所以A 正确; 由当1x =时,()10f =,因为()f x 在上单调递增,所以函数()f x 在上只有一个零点,当x >()0f x >,所以函数在)+∞上没有零点,综上可得函数在(0,)+∞只有一个零点,所以B 不正确;由函数()f x 在)+∞上单调递减,可得f f >,由于ln 2ln ,42f f ππ====,则2ln ln 2ln ln 22444f f ππππππ-=-=-,因为22ππ>,所以0f f ->,即f f >,所以f f f <<,所以C 正确;由()21f x k x <-在()0,∞+上恒成立,即()221ln 1x k f x x x +>+=在()0,∞+上恒成立,设()2ln 1x g x x +=,则()32ln 1x g x x --'=, 令()0g x '=,即32ln 10x x --=,解得x = 所以当0x<<()0g x '>,函数()g x 在上单调递增; 当x>()0g x '<,函数()g x 在)+∞上单调递减, 所以当x=()g x 取得最大值,最大值为22e e g e =-=, 所以2e k >,所以D 正确. 故选:ACD.【点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.10.已知实数a ,b ,c ,d 满足2111a a e cb d --==-,其中e 是自然对数的底数,则()()22a c b d -+-的值可能是( ) A .7B .8C .9D .10【答案】BCD【分析】 由题中所给的等式,分别构造函数()2xf x x e =-和()2g x x =-+,则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,利用导数的几何意义可知当()01f x '=-时,切点到直线的距离最小,再比较选项.【详解】 由212a a a e b a e b-=⇒=-,令()2x f x x e =-,()12x f x e '∴=- 由1121c d c d -=⇒=-+-,令()2g x x =-+ 则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,设()y f x =上与()y g x =平行的切线的切点为()000,M x y由()0001210xf x e x '=-=-⇒=,∴切点为()00,2M -所以切点为()00,2M -到()y g x =的距离的平方为28=的距离为(),M a b 与(),N c d 的距离的平方的最小值.故选:BCD.【点睛】本题考查构造函数,利用导数的几何意义求两点间距离的最小值,重点考查转化思想,构造函数,利用几何意义求最值,属于偏难题型.。
诱导公式——单元导读单元学习目标:1.借助单位圆的对称性,利用定义推导出诱导公式(π±α,-α,2π±α的正弦、余弦、正切);通过经历诱导公式的探究过程,积累应用类比、转化、数形结合等方法研究三角函数性质的经验,发展直观想象素养; 2.应用诱导公式解决一些三角函数式的证明、化简、求值等问题,进一步认识、理解诱导公式,提高运用转化与化归数学思想方法的能力,发展数学运算素养.内容结构:本单元内容包括利用圆的对称性探究五组诱导公式. 本单元的知识结构图:内容解析:三角函数的定义刻画了单位圆上点的运动规律,诱导公式一刻画了终边相同的角的函数关系,同角三角函数关系刻画了圆的几何性质.我们知道对称性是圆的重要性质,将之代数化,还能得到三角函数的哪些性质呢?由此想到,可以借助单位圆的对称性,研究三角函数的对称性.如果用三角函数表示单位圆上点的坐标,就可将这些对称性表示为三角函数之间的关系.因此,用数形结合的思想,从单位圆上的点关于原点、坐标轴、直线y=x 等的对称性出发探究诱导公式,是一个自然的思路.在数学史上,求三角函数值曾经是一个重要而困难的问题.数学家制作了锐角三角函数表,并通过公式一~公式四解决了问题.信息化的今天,利用诱导公式“求值”已不是重点,所以教学时应该将重点放在研究诱导公式中所体现的数学思想方法上.依据单位圆的对称性,探究三角函数的对称性,分三步进行.第一步,当单位圆上的点分别关于原点、坐标轴、直线y =x 等对称时,建立对应的终边与角α的终边之间的关系,从而确定两个角之间的关系;第二步,根据圆的对称性,建立圆与两个角的终边的交点坐标之圆的对称性 公式二旋转的对称性 关于直线y=x 的对称性 关于y 轴的对称性 关于x 轴的对称性 关于原点的对称性公式三 公式四 公式五 公式六间的关系;第三步,利用三角函数的定义,建立等量关系,得到诱导公式.这样既能很好地反映诱导公式的本质(圆的对称性的代数表示),又使它们成了一个有机的整体,不仅大大简化了诱导公式的推导过程,缩减了认识、理解诱导公式的时间,而且还有利于学生对公式的记忆,减轻学生的记忆负担.诱导公式的探究过程发展了学生直观想象的核心素养.诱导公式五与公式二~公式四的探究相比,采用的研究方法一样,不同之处在于公式五的探究中,对称轴变为直线y =x ,增加了推导的难度,体现在两个方面:第一,终边关于直线y =x 对称的两个角之间的关系,角γ的终边与角α的终边关于直线y =x 对称,那么γ=2π-α.由于角α是任意的,所以这个结论至少需要分8种情况进行证明,其严谨简洁的证明需要在解析几何中完成.第二,直角坐标系中关于直线y =x 对称的两个点的坐标之间的关系,点P 1(x 1,y 1)与点P 5(x 5,y 5)关于直线y =x 对称,那么x 5=y 1,y 5=x 1.这个结论,需要证明之后才能应用.本单元在此处的处理是只对特殊情况进行证明.既不失严谨性,让学生了解了这些结论的来源,又不至于喧宾夺主.公式六的探究与前两个探究相比,采用的研究方法也一样,对称轴也是特殊的直线y 轴,其推导简单易行.不同之处在于,它是通过对P 1作两次对称变换得到的,这需要学生突破前四组公式探究的思维模式.教学中,老师可以提出问题:前面的公式都是点P 1经过一次对称得到的,那如果将点P 1经过两次对称呢?然后引导学生进行开放式的探究:角α的终边首先关于直线y =x 作对称,再关于y 轴作对称,就得到角2π+α的终边;或者角α的终边首先关于x 轴作对称,再关于直线y =x 作对称,也可以得到角2π+α的终边.这两种变换方式都是从轴对称的角度得到角2π+α的终边.实际上,还可以从旋转对称的角度回答:角α的终边旋转2π角,就得到角2π+α的终边,为后续两角差的余弦公式的推导作铺垫.这样可以激发起学生探究的欲望和兴趣,而且也给学生提供了探究的思路,在此基础上,学生还可以进行更多的探索发现.在诱导公式的应用中,不能仅满足于完成求值、化简,关键是要引导学生总结利用诱导公式解题的基本步骤,逐步巩固和完善教科书中的流程图,明确从任意角转化为锐角(或零角)的程序;同时,让学生逐步体会公式选择的依据是角之间的关系.在公式应用的过程中,提高自觉地、理性地选择运算公式的能力,发展数学运算素养,体会转化的数学思想方法.使用建议:根据教学内容和教学目标,本单元分为2个课时:第一课时,诱导公式(一):六组诱导公式的探究;第二课时,诱导公式(二):诱导公式的简单应用.。
1中学数学课程要把数学的学术形态转化为易于学生接受的:A. 教育形态2中学数学课程要讲逻辑推理,更要讲:B. 道理3现代数学发展表明,数学全面形式化是:B. 不可能的4高中数学要强调对数学的本质的认识,否则会将什么淹没在形式化海洋里:A. 数学思维活动5、数学教学中,学习形式化的表达是一项什么要求:B. 基本6、strong>哪种正多边形可以尺规作图?1. A. 正五边形7、strong>《自然哲学的数学原理》是哪位数学家的著作?1. A. 牛顿8、strong>等边三角形的几何对称群共包含多少元素?B. 69、strong>根据欧拉圆函数公式,根号-1开根号-1次方是一个什么数?1. A. 实数10、strong>欧几里德《几何原本》包含多少个几何定理?B. 46511、strong>每几个专题可组成1个模块:A. 212、strong>每个专题几学分:1. A. 113、其中系列1、2由若干个模块组成,系列3、4由若干个专题组成;每个模块几学分:1. A. 214、strong>选修课程包含几个系列:B. 415、strong>高中数学课程分必修和选修。
必修课由几个模块组成:B. 516、形式化是数学的基本特征之一,高中数学课程对形式推理的要:B. 适度形式化17、(4)为了培养学生的应用意识,高中数学课程设置了什么教学容:C. 数学建模18、高中数学课程倡导学生采取的学习方式:C. 自主探索19、为了使不同的学生在数学上得到不同发展,高中数学课程还应具有:A. 多样性与选择性20、高中数学课程的性质是:A. 基础性21、strong>列入高中数学选修课的是:1.A. 微分方程初步2.B. 初等数论初步3.C. 对称与群22、strong>列入高中数学课程数列容是:1.A. 差分数列2.B. 递归数列3.C. 等差数列23、strong>属于高中平面解析几何的容是:1.A. 直线方程2.B. 射影平面3.C. 圆锥曲24、strong>属于高中立体几何的容是:1.A. 三视图2.B. 空间向量3.C. 工程制图25、strong>属于高中数学课程的函数容是:1.A. 指数函数2.B. 对数函数3.C. 多项式函数26、选择性是整个高中课程的基本理念,是本次高中课程改革的最大变化之一。
1. A.√27、在高中数学课程中,数形结合主要有三个载体:解析几何、向量几何、函数。
1. A.√28、算法是设计高中数学课程的主线之一。
1. A.√29、高中数学课程除了应具有基础性,还要具有多样性与选择性,使不同的学生在数学上得到不同的发展。
1. A.√30、数学的现代发展表明,数学全盘形式化是不可能的。
1. A.√31、在中学数学教学中,应加强几何直观,重视图形在数学学习中的作用,鼓励学生借助直观进行思考。
1. A.√32、形式化是数学的基本特征之一。
在数学教学中,学习形式化的表达是一项基本要求。
1. A.√33、(5)1/2+1/3+1/4+…+1/99=24/25B.×34、1/2+1/4+1/8+1/16+1/32+1/64=63/641. A.√35、1+2+4+8+16+32+64=63+641. A.√36、1+3+5+7+…+99=50×50。
1. A.√37、1+2+3+4+…+100=5050。
1. A.√38、长度为1的线段上的黄金分割点分该线段长度之比是一个有理数。
B.×39、黄金分割是三条线段之间的比例关系。
1. A.√40、黄金分割是两条线段之间的比例关系。
B.×41、正五边形两条对角线的交点将正五边形的对角线黄金分割。
1. A.√42、指出下列论断正或误:(1)黄金矩形可以尺规作图。
1. A.√43、在立体几何容的教学中,可以用长方体点、线、面的关系为载体,使学生在直观感知的基础上,认识空间点、线、面的位置关系。
1. A.√44、我国的数学教学具有重视基础知识教学、基本技能训练和能力培养的传统,新世纪的高中数学课程应发扬这种传统。
1. A.√45、数学课程要讲逻辑推理,更要讲道理,通过典型例子的分析和学生自主探索活动,使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法,追寻数学发展的历史足迹,把数学的学术形态转化为学生易于接受的---------------。
教育形态46、数学探究、----------------、数学文化是贯彻于整个高中数学课程的重要容,这些容不单独设置,渗透在每个模块或专题中。
数学建模47.选择高中数学课程中的某一具体容,以此容完成一项探究性教学设计,并对你的教学设计进行简单的点评分析。
解答:教学设计:平方差公式“探究式”教学。
引入语:象整数的算术演算中存在某些“缩算法”一样,代数式的演算中同样存在“缩算法”,而这些“缩算法”依赖一些形式简便的乘法公式,这些乘法公式由来简单,但是灵活运用它们,可能会使复杂的代数式运算变得简单快捷。
通过直接的计算,同学们不难发现下面的等式:介绍一则有关“平方差公式”的故事:美国北卡罗莱纳大学教授Carl Pomerance是一位当代著名的计算数论家。
Pomerance回忆中学时代曾经参加一次普通的数学竞赛,其中有一道题是分解整数8051。
Pomerance没有采用常规的因数检验法,从小到大逐个验证,由2到的素数,哪些能够整除8051。
其实这样做并不困难。
象所有爱动脑筋孩子一样,Pomerance力图寻找一个简便算法,更快捷地发现8051的因数,但是他没有能够在规定的时间之完成任务,他失败了。
事实上,存在简捷的分解方法:但是,失败并没有使这位未来的数论家放弃对问题的进一步思考。
事后Pomerance向自己提出下面一个非常有趣的问题。
Pomerance问题:是否一个能够分解的整数必定是两个整数的平方差?上面问题的答案是肯定的,也就是说,我们有下面的定理。
定理每个奇合数必定能用平方差的方式分解为两个大于1的整数之积。
评述:本案例中的“自主探究”是以一位数学家真实的故事而引出的,故事中引出与“乘法公式”密切相关的“Pomerance问题”,并通过数学家Pomerance之口,导出了一个多少有些使人感到意外的数学结果(定理)。
我们认为,这样的结果对学生的启发性远远胜过案例4中所列的一串“数字运算等式”。
自主探究应当采用生动活泼、真正发人深思的形式,教师与教材编写者应该不断研究、不断改进教学的思想方法,创建富有个性特点的“发现法”教学方法。
48、从若干方面论述教师知识结构对于高中数学课程标准的适应性问题新课标对教师的知识结构提出了新的要求,系列3、4的选修课程涉及大量的以往高中数学课程中没有的知识。
对称与群,欧拉公式与必曲面分类,三等分角与数域扩充,初等数论与密码,球面几何,矩阵与变换,统筹法与图论,等等。
这些知识虽然都是大学数学专业能够覆盖的,但是如何在中学阶段、在中学生的知识背景和理解能力的条件之下实施课程教学,这是非常值得研究和探讨的问题。
越是复杂高深的知识在知识背景比较浅近的人群之传播,对于教师本人在知识理解和讲授方法方面的要求越高。
从这个意义上说,对中学生讲授高等数学比在大学对数学专业的学生讲授高等数学,教师所面临的困难更大。
另外,新课程的教学法提倡启发式、探究式教学,这样的教学方式也对教师的知识和能力提出了更高的要求。
我们认为教学中的探究与真正的数学研究没有本质的区别,我们难以想象完全缺乏研究能力的教师能够启发学生进行探究性学习。
49、(1)对下面有关函数概念教学的案例进行分析,通过分析指出《高中数学课程标准》中有关函数容的教学目标。
案例:一个圆台形物体的上底面积是下底面积的1/4,如果该物体放置在桌面上,下底面与桌面接触,则物体对桌面的压强是200帕。
若把物体翻转过来,上底面朝下与桌面接触,问物体对桌面的压强是多少?案例分析:我们认为该教学案例作为函数概念的教学容,这是一个构思很好的实例,它好在以下四个方面:1)函数概念存在于问题背景之中。
题目条件中没有明显地给出函数关系,但是要求学生首先判断所要求的变量压强y应是接触面积x的函数。
2)体积—质量—压强;代数—几何—物理。
强调了不同学科知识的联系。
3)本题可以进一步作扩充为“桌面压强y”作为“接触面积x”的函数,与物体的形状是否相关?4)把本案例与一些认为制造的烦琐的函数问题对比不难看到:函数教学中两种理念、两种结果。
函数教学的一个非常重要的方面是让学生体会函数能够作为反映现实世界客观规律的数学模型。
《高中数学课程标准》在函数的教学建议中要求:“在函数应用的教学中,教师要引导学生不断地体验函数是描述客观世界的变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用”。
50、简述数学在现代社会发展中的地位和作用纵观近代科学技术的发展,可以看到数学科学是使科学技术取得重大进展的一个重要因素,同时它提出了大量的富有创造性并卓有成效的思想。
本世纪的数学成就,可以归入数学史上最深刻的成就之列,它们已经成为我们这个工业技术时代发展的基础。
数学科学的这些发展,已经超出了它们许多实际应用的围,而可载入人类伟大的智力成就的史册。
数学科学是集严密性、逻辑性、精确性和创造力与想象力于一身的一门科学。
这个领域已被称作模式的科学。
其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。
无论是探讨心脏中的血液流动这种实际的问题还是由于探讨数论中各种形态的抽象问题的推动,数学科学家都力图寻找各种模型来描述它们,把它们联系起来,并从它们作出各种推断。
部分地说,数学探讨的目的是追求简单性,力求从各种模型提炼出它们的本质。
51、你自己对于我国数学课程教学“双基”的认识。
《普通高中数学课程标准(实验)》要求:一方面保持我国重视基础知识教学、基本技能训练和能力培养的传统。
另一方面,随着时代的发展,特别是数学的广泛应用、计算机技术和现代信息技术的发展,数学课程设置和实施应重新审视基础知识、基本技能和能力的涵,形成符合时代要求的新的“双基”。
例如,高中数学课程增加“算法”容,把最基本的数据处理、统计知识等作为新的数学基础知识和基本技能。
同时,应删减烦琐的计算、人为的技巧化难题和过分强调细枝末节的容,克服“双基”异化的倾向。
强调数学的本质,注意适度形式化。
数学课程教学中,需要学习严格的、形式化的逻辑推理方式。
但是数学教学,不仅限于形式化数学,学生还必须接触到生动活泼、灵活多变的数学思维过程。
要让学生追寻数学发展的历史足迹,体念数学的形成过程和数学中的思想方法。
教师应该把高度严格的学术形态的数学转化为学生乐于思考的、兴趣盎然的教学形态。