现代控制理论最小二乘法辨识
- 格式:ppt
- 大小:265.50 KB
- 文档页数:3
最小二乘法参数辨识1 引言系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型。
现代控制理论中的一个分支。
通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。
对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。
对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。
而系统辨识所研究的问题恰好是这些问题的逆问题。
通常,预先给定一个模型类μ={M}(即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函数J达到最小的模型,作为辨识所要求的结果。
系统辨识包括两个方面:结构辨识和参数估计。
在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。
2 系统辨识的目的在提出和解决一个辨识问题时,明确最终使用模型的目的是至关重要的。
它对模型类(模型结构)、输入信号和等价准则的选择都有很大的影响。
通过辨识建立数学模型通常有四个目的。
①估计具有特定物理意义的参数有些表征系统行为的重要参数是难以直接测量的,例如在生理、生态、环境、经济等系统中就常有这种情况。
这就需要通过能观测到的输入输出数据,用辨识的方法去估计那些参数。
②仿真仿真的核心是要建立一个能模仿真实系统行为的模型。
用于系统分析的仿真模型要求能真实反映系统的特性。
用于系统设计的仿真,则强调设计参数能正确地符合它本身的物理意义。
③预测这是辨识的一个重要应用方面,其目的是用迄今为止系统的可测量的输入和输出去预测系统输出的未来的演变。
例如最常见的气象预报,洪水预报,其他如太阳黑子预报,市场价格的预测,河流污染物含量的预测等。
预测模型辨识的等价准则主要是使预测误差平方和最小。
目录一、系统辨识的定义.................................................................................................................. - 2 -二、最小二乘法的引出.............................................................................................................. - 2 -三、最小二乘法的原理.............................................................................................................. - 3 -3.1 最小二乘法一次完成推导[1]........................................................................................ - 3 -3.2最小二乘法的缺陷[ 5].................................................................................................... - 5 -四、其他系统辨识方法.............................................................................................................. - 5 -4.1 基于BP神经网络的系统辨识方法特点[3]................................................................. - 5 -4.2 基于遗传算法的系统辨识算法................................................................................... - 6 -五、结论...................................................................................................................................... - 7 -六、参考文献.............................................................................................................................. - 7 -系统辨识方法简介摘要:在研究一个控制系统过程中,建立系统的模型十分必要。
现代控制理论学习指导书第一部分重点要点线性系统理论线性系统数学模型稳定性、可控性和可观测性单变量极点配置的条件和方法。
最优控制理论变分法极小值原理最优性原理动态规划最优估计理论参数估计方法掌握最小方差估计和线性最小方差估计方法状态估计方法预测法,滤波系统辨识理论经典辨识方法最小二乘辨识方法系统模型确定方法自适应控制理论用脉冲响应求传递函数的原理和方法。
两种设计方法智能控制理论掌握智能控制的基本概念、基本方法以及智能控制的特点。
了解分级递阶智能控制、专家控制、神经网络控制、模糊控制、学习控制和遗传算法控制的基本概念第二部分练习题填空题1.自然界存在两类系统:______静态系统____和______动态系统____。
2.系统的数学描述可分为___外部描述_______和___内部描述_______两种类型。
3.线性定常连续系统在输入为零时,由初始状态引起的运动称为___自由运动_______。
5.互为对偶系统的__特征方程________和___特征值_______相同。
6.任何状态不完全能控的线性定常连续系统,总可以分解成____完全能控______子系统和____完全不能控______ 子系统两部分。
7.任何状态不完全能观的线性定常连续系统,总可以分解成__完全能观测________子系统和____完全不能观测______子系统两部分。
8.对状态不完全能控又不完全能观的线性定常连续系统,总可以将系统分解___能控又能观测、能控但不能观测、不能控但能观测、不能控又不能观测四个子系统。
9.对SISO系统,状态完全能控能观的充要条件是系统的传递函数没有__零极点对消_。
10.李氏稳定性理论讨论的是动态系统各平衡态附近的局部稳定性问题。
11.经典控制理论讨论的是__在有界输入下,是否产生有界输出的输入输出稳定性问题,李氏方法讨论的是_动态系统各平衡态附近的局部稳定性问题。
12. ___状态反馈_______和__输出反馈________是控制系统设计中两种主要的反馈策略。
---------------------------------------------------------------最新资料推荐------------------------------------------------------系统辨识—最小二乘法最小二乘法参数辨识 1 引言系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型。
现代控制理论中的一个分支。
通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。
对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。
对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。
而系统辨识所研究的问题恰好是这些问题的逆问题。
通常,预先给定一个模型类={M}(即给定一类已知结构的模型),一类输入信号 u 和等价准则 J=L(y,yM)(一般情况下,J 是误差函数,是过程输出 y 和模型输出 yM 的一个泛函);然后选择使误差函数J 达到最小的模型,作为辨识所要求的结果。
系统辨识包括两个方面:结构辨识和参数估计。
在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。
2 系统辨识的目的在提出和解决一个辨识问题时,明确最终使1 / 17用模型的目的是至关重要的。
它对模型类(模型结构)、输入信号和等价准则的选择都有很大的影响。
通过辨识建立数学模型通常有四个目的。
①估计具有特定物理意义的参数有些表征系统行为的重要参数是难以直接测量的,例如在生理、生态、环境、经济等系统中就常有这种情况。
这就需要通过能观测到的输入输出数据,用辨识的方法去估计那些参数。
②仿真仿真的核心是要建立一个能模仿真实系统行为的模型。
用于系统分析的仿真模型要求能真实反映系统的特性。
《系统辨识基础》第12讲要点第5章 最小二乘参数辨识方法5.1 辨识方法分类根据不同的辨识原理,参数模型辨识方法可归纳成三类:① 最小二乘类参数辨识方法,其基本思想是通过极小化如下准则函数来估计模型参数:min )()ˆ(ˆ==∑=θθLk k J 12ε其中)(k ε代表模型输出与系统输出的偏差。
典型的方法有最小二乘法、增广最小二乘法、辅助变量法、广义最小二乘法等。
② 梯度校正参数辨识方法,其基本思想是沿着准则函数负梯度方向逐步修正模型参数,使准则函数达到最小,如随机逼近法。
③ 概率密度逼近参数辨识方法,其基本思想是使输出z 的条件概率密度)|(θz p 最大限度地逼近条件0θ下的概率密度)|(0θz p ,即)|()ˆ|(0m a xθθz p z p −−→−。
典型的方法是极大似然法。
5.2 最小二乘法的基本概念● 两种算法形式① 批处理算法:利用一批观测数据,一次计算或经反复迭代,以获得模型参数的估计值。
② 递推算法:在上次模型参数估计值)(ˆ1-k θ的基础上,根据当前获得的数据提出修正,进而获得本次模型参数估计值)(ˆk θ,广泛采用的递推算法形式为() ()()()~()θθk k k k d z k =-+-1K h其中)(ˆk θ表示k 时刻的模型参数估计值,K (k )为算法的增益,h (k -d ) 是由观测数据组成的输入数据向量,d 为整数,)(~k z 表示新息。
● 最小二乘原理定义:设一个随机序列)},,,(),({L k k z 21∈的均值是参数θ 的线性函数θτ)()}({k k z h =E其中h (k )是可测的数据向量,那么利用随机序列的一个实现,使准则函数21])()([)(θθτ∑=-=Lk k k z J h达到极小的参数估计值θˆ称作θ的最小二乘估计。
● 最小二乘原理表明,未知参数估计问题,就是求参数估计值θˆ,使序列的估计值尽可能地接近实际序列,两者的接近程度用实际序列与序列估计值之差的平方和来度量。