专题一 勾股定理(解析版)
- 格式:docx
- 大小:424.91 KB
- 文档页数:24
学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图是两个全等的三角形纸片,其三边长之比为3: 4: 5,按图中方法分别将其对折,使折痕(图中虚线)过其中的一个顶点,且使该顶点所在两边重合,记折叠后不重叠部分面积分别为,A B S S ,已知15A B S S -=,则纸片的面积是()A .102B .104C .106D .108【答案】D 【分析】设3AC FH x ==,则4BC GH x ==,5AB GF x ==,根据勾股定理即可求得CD 的长,利用x 表示出A S ,同理表示出B S ,根据15A BS S -=,即可求得x 的值,进而求得三角形的面积.【详解】解:设3AC FH x ==,则4BC GH x ==,5AB GF x ==.设CD y =,则4BD x y =-,DE CD y ==,在直角BDE ∆中,532BE x x x =-=,根据勾股定理可得:2224(4)x y x y +=-,解得:32y x =,2222A 同理可得:223B S x =,15A B S S -= ,∴22321523x x -=,解得:x =,∴纸片的面积是:213461082x x x ⨯== ,故选:D ..【点睛】本题主要考查了翻折变换(折叠问题),三角形面积的计算,根据勾股定理求得CD 的长是解题的关键.2.七巧板是大家熟悉的一种益智玩具,用七巧极能拼出许多有趣的图案,小聪将一块等腰直角三角形硬纸板(如图①)切割成七块,正好制成一副七巧板(如图②),已知80cm AB =,则图中阴影部分的面积为()2cm .A .200B .2003C .50D .100【答案】A如图,设OF=EF=FG=x cm,可得EH==40cm,解方程即可解决问题.【详解】解:如图:设OF=EF=FG=x(cm),∴OE=OH=2x,在Rt△EOH中,由勾股定理得:EH=,∵AB=80cm,∴由题意得EH=40cm,∴40=,∴x=∴阴影部分的面积=(2=200(cm2)故选:A.【点睛】本题考查了正方形的性质、勾股定理、等腰三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.3.下列四组数据,不是勾股数的是()A.3,4,5B.5,6,7C.6,8,10D.9,40,41【答案】B根据勾股数的定义:满足222a b c +=的三个正整数,称为勾股数,根据定义即可求解.【详解】解:A 、因为32+42=52,属于勾股数;B 、因为52+62≠72,不属于勾股数;C 、因为62+82=102,属于勾股数;D 、因为92+402=412,属于勾股数;故选:B .【点睛】本题考查了勾股数的定义,注意:作为勾股数的三个数必须是正整数,一组勾股数扩大相同的整数倍得到的三个数仍是一组勾股数.4.ABC 在由边长为1的小正方形构成网格中的位置如图所示,则AC 边上的高是()A .135B .145C .165D .175【答案】D 【分析】作BD AC ⊥于D ,根据勾股定理求出AC 的长,再利用三角形面积公式求ABC 中AC 边上的高即可.【详解】∵小正方形的边长都为1,∴5AC ==,∵11117451523342222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯= ,∴11175222ABC S AC BD BD =⨯⨯=⨯⨯= ,解得:175BD =,故选:D .【点睛】本题主要考查了勾股定理在网格中的应用以及三角形的面积,根据题意得出ABC 的面积等于矩形的面积减去三个小三角形的面积是解题的关键.5.如图,在Rt ABC 中,90,8,6ACB AC BC ∠=︒==,将边BC 沿CN 折叠,使点B 落在AB 上的点B ′处,再将边AC 沿CM 折叠,使点A 落在CB '的延长线上的点A '处,两条折痕与斜边AB 分别交于点N 、M ,则线段A M '的长为()5555【答案】B 【分析】利用勾股定理求出AB =10,利用等积法求出CN =245,从而得AN =325,再证明∠NMC =∠NCM =45°,进而即可得到答案.【详解】解:∵90,8,6ACB AC BC ∠=︒==∴AB 10==,∵S △ABC =12×AB ×CN =12×AC ×BC∴CN =245,∵AN 325=,∵折叠∴AM =A'M ,∠BCN =∠B'CN ,∠ACM =∠A'CM ,∵∠BCN +∠B'CN +∠ACM +∠A'CM =90°,∴∠B'CN +∠A'CM =45°,∴∠MCN =45°,且CN ⊥AB ,∴∠NMC =∠NCM =45°,∴MN =CN =245,∴A'M =AM =AN −MN =325-245=85.故选B .本题考查了翻折变换,勾股定理,等腰直角三角形的性质,熟练运用折叠的性质是本题的关键.6.有一个面积为1的正方形,经过一次“生长”后,在它的左右“肩”上“生出”两个小正方形,这3个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图所示的图形,如果继续“生长”下去,它将变得“枝繁叶茂”,则“生长”了2021次后形成的图形中所有正方形的面积和为()A.2019B.2020C.2021D.2022【答案】D【分析】根据勾股定理求出“生长”了1次后形成的图形中所有的正方形的面积和,结合图形总结规律,根据规律解答即可.【详解】解:如图,设直角三角形的三条边分别是a,b,c,根据勾股定理,得222a b c,+=同理:正方形D 的面积+正方形E 的面积+正方形F 的面积+正方形G 的面积=正方形A 的面积+正方形B 的面积=正方形C 的面积1=,推而广之,“生长”了2021次后形成的图形中所有的正方形的面积和是202212022⨯=.故选:D 【解答】本题考查了勾股定理,熟练掌握勾股定理,理解“勾股树”的关系是解题关键.7.我们把梯形下底与上底的差叫做梯形的底差,梯形的高与中位线的比值叫做梯形的纵横比.如果一个腰长为5的等腰梯形,底差等于6,面积为24,那么这个等腰梯形的纵横比等于()A .54B .56C .23D .35【答案】C 【分析】作AE ⊥BC 于E ,DF ⊥BC 于F ,根据BC-AD =6求出BE=CF =3,利用勾股定理求出高AE 的长,利用梯形面积公式求出AD 的长,由此得到梯形中位线的长,即可得到答案.【详解】解:如图,由题意得:AB=CD =5,BC-AD =6,作AE ⊥BC 于E ,DF ⊥BC 于F ,∴BE=CF =3,∴4AE DF ===,∵梯形面积11()(6)42422S AD BC AE AD AD =+⋅=⨯++⨯=,∴3AD =,22∴这个等腰梯形的纵横比=4263=,故选:C ..【点睛】此题考查勾股定理,梯形面积公式及中位线公式,正确理解题意确定各线之间的数量及关系是解题的关键.8.如图,1OP =,过P 作1PP OP ⊥且11PP =,得1OP =再过1P 作122PP OP ⊥且121P P =,得2OP =;又过2P 作232PP OP ⊥且231PP =,得32OP =…依此法继续作下去,则20202021OP P △的面积为()A B C D 【答案】B 【分析】根据勾股定理分别列式计算,找出被开方数的变化规律,最后用三角形的面积公式求解.123=12OP OP OP OP == ,4OP ∴==,…,n OP2020OP ∴202020211P P = ,2020OP 和20202021P P 相互垂直20202021OP P ∴ 的面积为1122S =⨯⨯=.故答案为:B .【点睛】本题考查了勾股定理(在直角三角形中,两直角边的平方之和等于斜边的平方),三角形面积公式(1=2S ⨯底⨯底边上的高).根据题目观察出,被开方数比相应的序数大1是解题的关键.9.如图,有一张长方形纸片ABCD ,8cm AB =,10cm BC =,点E 为CD 上一点,将纸片沿AE 折叠,BC 的对应边B C ''恰好经过点D ,则线段CE 的长为()cmA .3B .4C .5D .6【答案】A 【分析】由折叠的性质可得8cm AB AB '==,10cm BC B C ''==,CE C E '=,由勾股定理可求B D '的长,由勾股定理可求解.解: 将纸片沿AE 折叠,BC 的对应边B C ''恰好经过点D ,8AB AB cm '∴==,10BC B C cm ''==,CE C E '=,6B D cm '∴=,4C D B C B D cm ''''∴=-=,222DE C D C E ''=+ ,2216(8)DE DE ∴=+-,5DE cm ∴=,∴3cmCE =故选:A .【点睛】本题考查了翻折变换,矩形的性质,勾股定理,熟练运用折叠的性质是解决本题的关键.10.已知a 、b 为两正数,且12a b +=,则代数式+)A .12B .13C .14D .15【答案】B 【分析】如图所示,构造Rt △BEA 和Rt △AFC 使得BE =a ,EA =2,AF =3,FC =b ,然后根据勾股定理构可得AB 和AC ,当A ,B ,C 三点共线时有最小值,在根据勾股定理计算即可.【详解】解:如图所示,构造Rt △BEA 和Rt △AFC 使得BE =a ,EA =2,AF =3,FC =b ,根据勾股定理可得:AB 和AC所以:AB AC BC +≥,∴当A ,B ,C 三点共线时+AB AC 有最小值,即BC ,在Rt △BDC 中13BC ===.故选:B 【点睛】本题主要考查勾股定理,能够根据二次根式的特点,数形结合,构造出直角三角形表示所求式子是解题的关键.11.如图,在Rt ABC 中,90ACB ∠=︒,分别以AB ,AC ,BC 为斜边作三个等腰直角ABD △,ACE ,BCF △,图中阴影部分的面积分别记为1S ,2S ,3S ,4S ,若已知Rt ABC 的面积,则下列代数式中,一定能求出确切值的代数式是()A .4S B .143S S S +-C .234S S S ++D .123S S S +-【答案】A 【分析】表示相应的面积,确定面积与m ,n ,S 之间的关系,从而作出判断.【详解】设AC =m ,BC =n ,ABC 的面积为S ,∵Rt ABC 中,90ACB ∠=︒,分别以AB ,AC ,BC 为斜边作三个等腰直角ABD △,ACE ,BCF △,∴S =1mn 2,AB∴AE =EC =m 2,BF =CF =2n ,AD =BD ,在直角三角形AED 中,ED ==2n ,∴DC =EC -ED =m 2-2n =()2m n -,∴4S =11111AE ED=2222222m n mn S ∙=⨯=,故4S 的值可以确定,∴A 选项符合题意;设AC ,BD 的交点为G ,则3S +ADG S =112222()22S CD AE m n =∙=⨯-⨯△ADC =24()1m mn -,1S +ADG S =222241S AD m n +==△ADB ,∴143S S S +-=224m n ++12S -24()1m mn -=2+4n S ,与n 有关系,故代数式的值不能确定,∴B 选项不符合题意;∵3S +ADG S =24()1m mn -,1S +ADG S =224m n +,∴13S S -=21+42n S ,∴234S S S ++=212BF +12S +1S -21-42n S =24n +12S +1S -21-42n S =1S ,无法确定,∴C 选项不符合题意;∵123S S S +-=21+42n S +24n =21+22n S ,与n 有关,∴D 选项不符合题意;故选A .【点睛】本题考查了直角三角形的性质,等腰直角三角形的性质,勾股定理,图形面积的割补,灵活运用性质和勾股定理计算阴影的面积是解题的关键.12.如图,在ABC 中,点D 是边AB 上的中点,连接CD ,将BCD △沿着CD 翻折,得到ECD ,CE 与AB 交于点F ,连接AE .若6,42AB CD AE ===,,则点C 到AB 的距离为()A .72B .C .3D .【答案】C 【分析】连接BE ,延长CD 交BE 于G 点,过C 作CH ⊥AB 于H ,由折叠的性质及中点性质,可得△AEB 是直角三角形,且G 点是BE 的中点,从而CG ⊥BE ,由勾股定理可求得BE 的长,则根据△ABC 的面积相等一方面可表示为12AB CH ,另一方面其面积为△BCD 与△ACD 面积的和,从而可求得CH 的长.【详解】连接BE ,延长CD 交BE 于G 点,过C 作CH ⊥AB 于H ,如图所示由折叠的性质,得:BD =ED ,CB =CE∴CG 是线段BE 的垂直平分线∴BG =12BE∵D 点是AB 的中点∴BD =AD ,BCD ACDS S ∴AD =ED∴∠DAE =∠DEA∴∠DEB =∠DBE∵∠DAE +∠BEA +∠DBE =180°即∠DAE +∠DEA +∠DEB +∠DBE =180°∴2∠DEA +2∠DEB =180°∴∠DEA +∠DEB =90°即∠AEB =90°在Rt △AEB 中,由勾股定理得:BE =∴BG =∵BCD ACD ABCS S S += ∴11222CD BG AB CH ⨯=∴224863CD BG CH AB ⨯⨯==故选:C .【点睛】本题考查了直角三角形的判定、勾股定理、线段垂直平分线的判定,利用面积相等求线七巧板拼成的,则这四个图形的周长从大到小排列正确的是()A.乙>丙>甲>丁B.乙>甲>丙>丁C.丙>乙>甲>丁D.丙>乙>丁>甲【答案】A【分析】设最小的直角三角形的直角边长为1,根据勾股定理,分别表示出七块七巧板各边的长度,计算每个图形中重合的线段和,和越大,周长越小.【详解】解:设七巧板中最小的边长为1根据勾股定理,可以得出其余的边长分别为2,分别求出各图中重合的线段的长度和,和越大,则周长越小;甲图中重叠的线段和为:;乙图中重叠的线段和为:;丙图中重叠的线段和为丁图中重叠的线段和为:;+>+>+>+∵6755∴乙>丙>甲>丁本题考查了勾股定理,不规则图形的周长,解题关键是明确总周长一定,重叠的线段和越大,则周长越小.二、填空题14.如图,点A ,B 在直线MN 的同侧,A 到MN 的距离8AC =,B 到MN 的距离5BD =,已知4CD =,P 是直线MN 上的一个动点,记PA PB +的最小值为a ,||PA PB -的最大值为b ,则22a b -=_______.【答案】160【分析】作点A 关于直线L 的对称点A ′,连接A ′B 交直线L 于点P ,过点A ′作直线A ′E ⊥BD 的延长线于点E ,再根据勾股定理求出A ′B 的长就是PA +PB 的最小值;延长AB 交MN 于点P ′,此时P ′A -P ′B =AB ,由三角形三边关系可知AB >|PA -PB |,故当点P 运动到P ′点时|PA -PB |最大,作BE ⊥AM ,由勾股定理即可求出AB 的长就是|PA -PB |的最大值.进一步代入求得答案即可.【详解】解:如图,作点A关于直线L的对称点A′,连接A′B交直线L于点P,则点P即为所求点.过点A′作直线AE⊥BD的延长线于点E,则线段A′B的长即为PA+PB的最小值.∵AC=8cm,BD=5cm,CD=4cm,∴A′C=8cm,BE=8+5=13cm,A′E=CD=4cm,∴A′B=即PA+PB的最小值是a如图,延长AB交MN于点P′,∵P′A-P′B=AB,AB>|PA-PB|,∴当点P运动到P′点时,|PA-PB|最大,∵BD=5,CD=4,AC=8,∴AB =5.∴|PA -PB |=5为最大,即b =5,∴a 2-b 2=185-25=160,故答案为:160.【点睛】本题考查的是最短线路问题及勾股定理,熟知两点之间线段最短及三角形的三边关系是解答此类问题的关键.15.在ABC 中,1520AB AC BC ==,,边上的高线为12,则ABC ∆的面积为________.【答案】150或42【分析】分两种情况:①B Ð为锐角;②B Ð为钝角;利用勾股定理求出BD 、CD ,即可求出BC 的长.【详解】解:分两种情况:①当B Ð为锐角时,如图1所示,在Rt △ABD 中,9BD ===,在Rt ADC 中,16CD ===,25BC BD CD ∴=+=,ABC ∆∴的面积为125121502⨯⨯=;②当B Ð为钝角时,如图2所示,在Rt △ABD 中,1697BC CD BD =-=-=,所以ABC ∆的面积为1712422⨯⨯=;故答案为:150或42.【点睛】本题主要考查了勾股定理;熟练掌握勾股定理,画出图形,分类讨论是解答此题的关键.16.在ABC 中,5AB =,AC =,BC 边上的高为3,则边BC 的长为__________.【答案】2或10【分析】分两种情况考虑:当△ABC 为锐角三角形,在直角三角形ABD 与直角三角形ACD 中,利用勾股定理求出BD 与DC 的长,由BD +DC 求出BC 的长即可;当△ABC 为钝角三角形,同理由CD -BD 求出BC 的长即可.【详解】解:分两种情况考虑:如图,此时△ABC为锐角三角形,==,在Rt△ABD中,根据勾股定理得:BD4在Rt△ACD中,根据勾股定理得:CD6,此时BC=BD+DC=4+6=10;如图,此时△ABC为钝角三角形,==;在Rt△ABD中,根据勾股定理得:BD4在Rt△ACD中,根据勾股定理得:CD6,=-=,此时BC=CD-BD642综上,BC的长为2或10.故答案为:2或10.【点睛】本题考查的是勾股定理,在解答此题时要注意进行分类讨论,不要漏解.17.如图,Rt△ABC,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在AB上的点D处;再将BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段CE的长等于_________,线段BF的长等于_________.【答案】24585【分析】先依据勾股定理求得AB 的长,然后在△ABC 中,利用面积法可求得CE 的长,然后依据勾股定理定理可求得AE 的长,证明△ECF 为等腰直角三角形可求得EF 的长,依据FB =AB -AF 求得FB 的长即可.【详解】解:由翻折的性质可知CE ⊥AD ,在Rt △ABC 中,AB ,∵S △ABC =12AC •BC =12AB •CE ,∴CE =6824105⨯=,在△AEC 中,依据勾股定理得:AE =185,由翻折的性质可知∠ECD =12∠ACD ,∠DCF =12∠DCB ,CE ⊥AD ,∴∠ECF =45°,∵CE ⊥AD ,∴CE =EF =245,∴FB =AB -AE -EF =10-185-245=85,故答案为:245,85.本题主要考查的是翻折的性质、勾股定理的应用,利用面积法求得CE 的长,然后再利用勾股定理和等腰三角形的性质求得AE 和EF 的长是解答问题的关键.18.如图,已知在Rt △ABC 中,∠ACB =90°,分别以AC ,BC ,AB 为直径作半圆,面积分别记为S 1,S 2,S 3,若S 3=9π,则S 1+S 2等于_____.【答案】9π.【分析】根据勾股定理和圆的面积公式,可以得到S 1+S 2的值,从而可以解答本题.【详解】解:∵∠ACB =90°,∴AC 2+BC 2=AB 2,∵S 1=π(2AC )2×12,S 2=π(2BC )2×12,S 3=π(2AB )2×12,∴S 1+S 2=π(2AC )2×12+π(2BC )2×12=π(2AB )2×12=S 3,∵S 3=9π,∴S 1+S 2=9π,故答案为:9π.【点睛】本题考查勾股定理,解答本题的关键是利用数形结合的思想解答.作A E BC '⊥,垂足为E ,若8AB =,5CE =,则BC 的长为__.【答案】【分析】过C 作CF AB ⊥,F 为垂足,通过已知条件可以求得()AFC CEA AAS D @D ¢,AF CE =,从而求得3BF =,再根据直角三角形的性质,即可求解.【详解】解:过C 作CF AB ⊥,F为垂足,ACE ABC A ∠=∠+∠Q ,又30ABC =︒∠ ,30ACE A \Ð=°+Ð,又30ACE A CE ��孝Q ,A A CE \�孝,在AFC ∆与CEA D ¢中,'90''AFC A EC A A CE AC CA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()AFC CEA AAS \D @D ¢,∴3BF AB AF =-=,在Rt BFC △中,30FBC ∠=︒,设FC x =,则2BC x=由勾股定理可得222BC FC BF =+即222(2)3x x =+解得x =BC =故答案为【点睛】此题主要考查了三角形全等的证明方法和直角三角形的有关性质,利用已知条件合理构造直角三角形是解决本题的关键.20.如图,在Rt ABC 中,AC BC =,点D 为AB 中点.90GDH ∠=︒,GDH ∠绕点D 旋转,DG ,DH 分别与边AC ,BC 交于E ,F 两点.下列结论:①AE BF AC +=;②222AE BF EF +=;③12ABC CEDF S =四边形△;④DEF 始终为等腰直角三角形.其中正确答案的序号有__________.【答案】①②③④【分析】连接CD 根据等腰直角三角形的性质就可以得出ADE CDF ∆≅∆,就可以得出AE CF =,进而得出CE BF =,就有AE BF AC +=,由勾股定理就即可求出结论.【详解】12AD CD BD AB ∴===.45A B ACD BCD ∠=∠=∠=∠=︒,90ADC BDC ∠=∠=︒.90ADE EDC ∴∠+∠=︒,90EDC FDC GDH ∠+∠=∠=︒ ,ADE CDF \Ð=Ð.在ADE ∆和CDF ∆中,A DCB AD CD ADE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ADE CDF ASA ∴∆≅∆,AE CF ∴=,DE DF =,ADE CDF S S ∆∆=.AC BC = ,AC AE BC CF ∴-=-,CE BF ∴=.AC AE CE =+ ,AC AE BF ∴=+.①222AC BC AB +=,AC ∴=,2AE BF AB ∴+=.DEF ∴∆始终为等腰直角三角形.④222CE CF EF += ,222AE BF EF ∴+=.②EDC CDF CEDF S S S ∆∆=+ 四边形,12EDC ADE ABC CEDF S S S S ∆∆∆∴=+=四边形.③∴正确的有①②③④.故答案为:①②③④.【点睛】本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,三角形的面积公式的运用,解答时证明ADE CDF ∆≅∆是关键.21.如图所示的网格是正方形网格,点A ,B ,C ,D ,E 是网格线交点,则BAC DAE ∠-∠的度数为_______.【答案】45°【分析】如图,连接CG 、AG ,根据勾股定理的逆定理可得∠CAG =90°,从而知△CAG 是等腰直角三角形,根据平行线的性质和三角形全等,可知:∠BAC -∠DAE =∠ACG ,即可得解.【详解】解:如图,连接CG 、AG ,设小正方形的边长为1,由勾股定理得:AC 2=AG 2=12+22=5,CG 2=12+32=10,∴AC 2+AG 2=CG 2,∴∠CAG =90°,∴△CAG 是等腰直角三角形,∴∠ACG =45°,∵CF ∥AB ,∴∠ACF =∠BAC ,在△CFG 和△ADE 中,∵90CF AD CFG ADE FG DE ⎧⎪∠∠︒⎨⎪⎩====,∴△CFG ≌△ADE (SAS ),∴∠FCG =∠DAE ,∴∠BAC -∠DAE =∠ACF -∠FCG =∠ACG =45°,故答案为:45°.【点睛】本题考查了勾股定理的逆定理,勾股定理,三角形的全等的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.22.如图,在ABC 中,4AB =,135BAC ∠=︒,D 为边BC 的中点,若 1.5AD =,则AC 的长度为______.【答案】1+【分析】延长AD 到E ,使得AD =DE ,证明△ADB ≌△EDC ,得4CE AB ==,过点E 作EH AC ⊥于H ,分别求出CH 和AH 的长即可得到结论.【详解】解:延长AD 到E ,使得AD =DE,如图,∵D 为边BC 的中点,∴BD=CD在△ADB 和△EDC 中,AD DE ADB EDC BD CD =⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△EDC∴,4B DCE CE AB ∠=∠==∴//AB CE∴180BAC ACE ︒∠+∠=∴18013545ACE ︒︒︒∠=-=过点E 作EH AC ⊥于H∴CH EH ==在Rt AHE ∆中,23AE AD ==,HE =∴1AH ==∴1AC AH HC =+=故答案为:1.【点睛】此题主要考查了全等三角形的判定与性质,中线的性质,等腰直角三角形的性质以及勾股定理等知识,正确作出辅助线构造全等三角形是解答此题的关键.23.如图,四边形ABCD 中,AB AD =,90BAD ∠=︒,连接AC ,BD 交于点E ,90CBD ∠=︒,若点E 为AC 的中点,CD =ABCD 的面积为______.【答案】6【分析】过点A 作AF BD ⊥,可证得CBE AFE ≌△△,得到线段BC 和BD 的数量关系,即可求出BC 和BD 的长度,然后根据三角形面积公式即可求得.【详解】过点A 作AF BD ⊥,如图所示,在CBE △和AFE △中,CBE AFE BEC AEF EC EA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CBE AFE AAS ≌△△,∴BC AF =,又∵2BD AF =,∴2BD BC =,∴在Rt BCD 中,222BC BD CD +=,()2222BC BC +=,解得:BC(负值舍去),BD=AF∴四边形ABCD的面积11=622ABD CBD S S +=⨯=△△.故答案为:6.【点睛】此题考查了勾股定理,全等三角形的判定和性质,三角形面积的计算,正确的识别图形是解题的关键.24.我们规定:经过三角形的一个顶点且将三角形的周长分成相等的两部分的直线叫做3BC=,若直线l为Rt ABC的“等周线”,请直接写出ABC的所有“等周径”长为______________.【答案】5或【分析】分直线过顶点A、B、C三种情况,分别画出图形求解即可.【详解】解:分三种情况讨论:①当“等周线”经过点C时,直线1交AB于点E,设BE=x,则AE=5-x,作CH⊥AB于H,由题意:3+x=4+5-x,解得:x=3,∵125BC ACCHAB⋅==,∴95 BH==,∴96355 EH=-=,在Rt△ECH中,CE=∴“等周径”由题意得:4+3-x=5+x,解得:x=1,∴EC=2,在Rt△ACE中,AE==,∴“等周径”长为③当∴“等周径”经过点B时,直线l交AC于点E,设AE=x,则CE=4-x,由题意:3+4-x=5+x,解得:x=1,∴CE=3,在Rt△BCE中,BE==∴“等周径”长为本题考查了勾股定理的应用和分类讨论思想,关键是分三种情况进行讨论.25.把两个同样大小含45︒角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A ,且另外三个锐角顶点B ,C ,D 在同一直线上.若4AB =,则CD =____.【答案】【分析】作AF BC ⊥于F ,根据等腰直角三角形的性质求出AF ,BF ,CF ,在Rt ABC ∆中根据勾股定理求出BC ,得到AD ,在Rt ADF ∆中,根据勾股定理求出DF ,即可得CD .【详解】过点A 作AF BC ⊥于点F ,在Rt ABC ∆中,45B ∠=︒,∴4AB AC ==,∴BC =,BF CF AF ===,∵两个同样大小的含45°角的三角尺,∴AD BC ==DF ==∴CD FD FC =-=,故答案为:【点睛】本题考查的是勾股定理,等腰直角三角形的性质,掌握勾股定理,正确作出辅助线是解本题的关键.26.如图,矩形ABCD 中,3AD =,2AB =.点E 是AB 的中点,点F 是BC 边上的任意一点(不与B 、C 重合),EBF △沿EF 翻折,点B 落在B '处,当DB '的长度最小时,BF 的长度为______.【答案】13+【分析】先确定当D ,B ',E 共线时,DB '的值最小,再根据勾股定理解题.【详解】如图,连接DE ,∴1DB '≥,∴当D ,B ',E 共线时,DB '的值最小,不妨设此时点B '落在DE 上的点B ''处,设BF F B x ''''==,∵22222F D CD F C B D B F '''''''=+=+,∴())2222231x x +-=-+,解得13x =.故答案为:13.【点睛】本道题考查了两点之间,线段最短、勾股定理(在直角三角形中,两直角边的平方之和等于斜边的平方).解题的关键是确定当D ,B ',E 共线时,DB '的值最小.27.如图,矩形ABCD 中,6AB =,4=AD ,E ,F ,Q 分别是AD 和BC 、DC 的中点,P 是EF 上的点,则PD PQ +的最小值为________.【答案】5【分析】取AB 的中点为'Q ,连接'DQ 交EF 于点P',则PD PQ +的最小值转为两点之间的距离最短,利用勾股定理求解.【详解】小值,如下图:由图可知,'''P Q P Q =,''''PD PQ DP P Q DQ ∴+=+=,在'Rt DQQ 中,13,'42DQ AB QQ AD ====,'5DQ ∴==,由两点之间的距离最短即,PD PQ +的最小值为5,故答案是:5.【点睛】本题考查了动点问题,涉及到勾股定理的使用,解题的关键是把PD PQ +转换为两点之间的距离最短来求解,运用转换的思想.28.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,点E 是AB 边上一点.将△CEB 沿直线CE 折叠到△CEF ,使点B 与点F 重合.当CF ⊥AB 时,线段EB 的长为_____.【分析】设CF 与AB 交于点H ,利用勾股定理求出AB ,利用面积法求出CH ,求出HF 和BH ,设BE =EF =x ,在△EHF 中利用勾股定理列出方程,解之即可.【详解】解:设CF 与AB 交于点H ,∵∠ACB =90°,AC =3,BC =4,∴AB =5,∴S △ABC =1122AC BC AB CH ⨯⨯=⨯⨯,即345CH ⨯=⨯,∴CH =125,由折叠可知:CF =CB =4,∴HF =CF -CH =85,在△BCH 中,BH 165=,设BE =EF =x ,则EH =165-x ,在△EHF 中,222EH FH EF +=,∴22216855x x ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得:x =2,∴EB =2,故答案为:2.【点睛】本题考查了勾股定理,折叠的性质,解题的关键是利用折叠的性质得到相等线段,利用勾股定理列出方程.29.在平面直角坐标系中,己知y轴上一点B,A为x轴上的一动点,连接AB,的最小值是________.以AB为边作等边ABC如图所示,连接OC,则BC OC【答案】3【分析】作等边△BOD,构造出△BAO≌△BCD,从而得到∠BDC=∠AOB=90°,找到点C的运动轨迹为直线CD,延长BD交y轴于点B′,利用已知条件可证明直线CD就是线段BB′的中垂线,从而BC+OC=B'C+OC,而O、C、B'三点共线时,B'C+OC的值最小,最小值为OB'的长.【详解】解:如图所示,在第二象限以OB为边长作等边△BOD,连接OD,并作直线BD,延∵等边△ABC 、等边△BOD∴AB =BC ,BO =BD ,∠CBA =∠OBD =60°∴∠OBA =∠CBD在△BAO 和△BCD 中BO BD BA BC OBA DBC =⎧⎪=⎨⎪∠=∠⎩∴△BAO ≌△BCD (SAS )∴∠AOB =∠BDC =90°∴CD ⊥BD∴点C 随着点B 的运动形成的图形是直线CD∵∠BOB '=90°,∠OBD =60°∴∠BB 'O =30°∴OB =12BB '∴BD =OB =12BB '∴点D 是BB '的中点∴CD 是BB '的中垂线∴BC =B ′C∴BC +OC =B 'C +OC又∵点C 在直线CD 上运动,所以点O 、C 、B '三点共线时,B 'C +OC 的值最小,最小值为OB '的长.在R △BOB '中,∠BOB '=90°,∠OBD =60°,OB BB,OB ′3=,∴BC +OC 的最小值为3.故答案为3.【点睛】本题主要考查等边三角形的性质、利用轴对称求最短线路.这里构造三角形全等找到点C 的运动轨迹是关键.30.如图,在ABC 中,90ACB ∠=︒,4BC AC ==,M 为AB 中点,D 是射线BC 上的一动点,连接AD ,将线段AD 绕点A 逆时针旋转90︒得到线段AE ,连接ED 、ME ,点D 在运动过程中ME 的最小值为_______.【答案】2【分析】连接EB ,过点M 作MG EB ⊥于点G ,过点A 作AK AB ⊥交BD 的延长线于点K ,则AKB △是等腰直角三角形.推出ADK ABE ≅△△,根据全等三角形的性质得到【详解】解:连接EB ,过点M 作MG EB ⊥于点G ,过点A 作AK AB ⊥交BD 的延长线于点K ,则AKB △是等腰直角三角形.在ADK △与ABE △中,AK AB KAD BAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()ADK ABE ASA ≅ ,∴45ABE K ∠=∠=︒,∴BMG △是等腰直角三角形,∵4BC =,∴AB =∵M 为AB 中点,∴MB =∴2MG =,∵90G ∠=︒,∴ME MG ≥,∴当ME MG =时,ME 的值最小,∴2ME BE ==.故答案为:2.【点睛】本题考查了旋转的性质和等腰直角三角形的性质、三角形全等的性质和判定,证明线段最短有一定的难度.但通过构造全等三角形,利用全等三角形和等腰直角三角形的性质就变得容易.31.已知,有一个井泵如图1所示,它的一个纵向截面如图2,当活塞EF向上移动时,底面BC上的阀门打开,EF上的阀门关闭,外部液体被吸入活塞下方的空间内,活塞EF上方的液体被上推;当活塞EF向下移动时,BC上的阀门关闭,EF上的阀门打开,液体从活塞EF下方空间被压入活塞内EF上方空间.在图2中,点J在直径AD上,水泵底面直径BC=10cm,活塞直径EF∥BC,G为EF中点.手柄IH支撑杆ID长cm,弧JI是直径为的半圆,连轴JG的长为25cm,(点C,D,F,I四点共线,J,I,H三点共线,水泵材质厚度忽略不计),则DF=_____cm,当手柄IH从图2位置按压到与CD重合(如图3)过程中井泵的最大出水量是_____cm3.【答案】GM=DF,在直角△IJD中由勾股定理可计算出JD,从而可得MJ,然后在直角△GMJ 中,由勾股定理可求得GM,进而求得DF的长;当手柄IH从图2位置按压到与CD重合(如图3)过程中,点J上升的最大高度为JD=ID+IJ,从而EF的最大上升高度也为JD,此时最大出水量为一个圆柱的体积,圆柱的高为JD的长,底面直径为10cm,所以可求得其体积.【详解】(1)如图,连接AD,过点G作GM⊥AD于点M,则M为AD的中点,且四边形MGFD为矩形,所以有DF=MG,MD=GF=152EF=cm∵ID⊥AD,ID=cm,IJ=∴由勾股定理得:6JD===(cm)∴MJ=JD−MD=6-5=1(cm)在Rt△GMJ中,由勾股定理得:GM===(cm)∴DF=cm当手柄IH从图2位置按压到与CD重合(如图3)过程中,点J上升的最大高度为JD=ID+IJ==(cm),相应地EF也随之上升的最大高度为cm,此时井泵的最大出水量是一个底面直径为10cm高为的圆柱的体积.2V π=⨯⨯= ⎪⎝⎭(cm 3)故答案为:;【点睛】本题主要考查了解直角三角形在实际中的应用,第二问的关键是明白点J 上升的最大垂直高度为图3中JD 的长度,即为EF 上升的最大高度,从而可求出此时的最大出水量,且这个出水量是底面直径为10cm ,高为JD 的圆柱的体积.32.如图,在等腰直角三角形ABC 中,∠ABC =90°.点E 是BC 上的一点,D 为AC 中点,连接ED ,将△CED 沿ED 翻折,得到△EDC ′,连接AC ′,BC ′.若DC ′⊥AB ,AC ′=2,则△ABC 的面积为_____.【答案】4+【分析】设AB 与C′D 交于O 点,根据等腰直角三角形以及折叠找到三角形AOC ′的三边关系利用勾股定理计算即可.【详解】∴DB=DC=DA ,∠BAD =45°∵将△CED 沿ED 翻折,得到△EDC ′,∴DC=DC′设DB=DC=DA=DC′=x∵DC ′⊥AB∴△AOD 是等腰直角三角形∴22OA OD x ===∴C C O O D x x D ==''-在Rt △AOC ′中,222C OA O AC +=''∵AC ′=2∴222())2x +=解得24x =+∴2142ABC S BD AC x =⋅==+V 故答案为4+【点睛】本题综合考察勾股定理与等腰直角三角形,解题过程中与二次根式有关的运算也是解题的关键.33.如图,在Rt ABC 的纸片中,∠C =90°,AC =7,AB =25.点D 在边BC 上,以AD 为折痕将 ADB 折叠得到ADB ' ,AB '与边BC 交于点E .若DEB '△为直角三角形,则BD 的长是_____.【答案】17或754【分析】由勾股定理可以求出BC 的长,由折叠可知对应边相等,对应角相等,当DEB ∆'为直角三角形时,可以分为两种情况进行考虑,分别利用勾股定理可求出BD 的长.【详解】解:在Rt ABC ∆中,24BC =,(1)当90EDB ∠'=︒时,如图1,过点B ′作B F AC '⊥,交AC 的延长线于点F ,由折叠得:25AB AB ='=,BD B D CF ='=,设BD x =,则B D CF x '==,24B F CD x '==-,在Rt AFB ∆'中,由勾股定理得:222(7)(24)25x x ++-=,即:2170x x -=,解得:10x =(舍去),217x =,因此,17BD =.由折叠得:25AB AB ='=,则25718B C '=-=,设BD x =,则B D x '=,24CD x =-,在Rt △B CD ¢中,由勾股定理得:222(24)18x x -+=,解得:754x =,因此754BD =.故答案为:17或754.【点睛】本题考查了翻折变换,直角三角形的性质,勾股定理等知识,解题的关键是:分类讨论思想的应用注意分类的原则是不遗漏、不重复.34.如图,Rt ACB △中,90ACB ∠=︒,ACB △的角平分线AD ,BE 相交于点P ,过P 作PF AD ⊥交BC 的延长线于点F ,交AC 于点H ,则下列结论:①135APB ∠=︒;②DH =;③APH ADE S S =△△;④DH 平分CDE ∠;其中正确的结论是___________.(填正确结论的序号)【答案】①②③【分析】(ASA )与△APH ≌△FPD (ASA ),结合90,HPD ∠=︒可判断②,由△ABP ≌△FBP ,△APH ≌△FPD ,可得S △APB =S △FPB ,S △APH =S △FPD ,再证明HD ∥EP ,可判断③,若DH 平分∠CDE ,推导DE ∥AB ,这个显然与条件矛盾,可判断④;【详解】解:在△ABC 中,∵∠ACB =90°,∴90BAC ABC ∠+∠=︒,又∵AD 、BE 分别平分∠BAC 、∠ABC ,∴∠BAD +∠ABE =190452窗=,∴∠APB =135°,故①正确.∴∠BPD =45°,又∵PF ⊥AD ,∴∠FPB =90°+45°=135°,∴∠APB =∠FPB ,又∵∠ABP =∠FBP ,BP =BP ,∴△ABP ≌△FBP (ASA ),∴∠BAP =∠BFP ,AB =FB ,PA =PF ,,BAD CAD ∠=∠ ,PAH PFD ∴∠=∠在△APH 和△FPD 中,90APH FPD PA PF PAH PFD ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,。
(苏科版)八年级上册数学《第3章 勾股定理》3.1 勾股定理●勾股定理: 直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.◆1、勾股定理的应用条件:勾股定理只适用于直角三角形;◆2、勾股定理揭示的是直角三角形三边的关系,已知直角三角形中的任意两边可以求出第三边.◆3、勾股定理的几种变形式:勾股定理将“数”与“形”联系起来,体现了直角三角形三边之间的等量关系.如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,则a 2 + b 2 = c 2、 a 2 = c 2 - b 2、b 2 = c 2 - a 2;22b a c +=、22b c a -=、22a c b -=.【拓展】◎1、锐角三角形的三边关系是:在锐角三角形中,若三边长分别为a ,b ,c ,其中c 为最大边,则a 2+b 2>c 2.◎2、钝角三角形的三边关系是:在钝角三角形中,若三边长分别为a ,b ,c ,其中c 为最大边,则a 2+b 2<c 2.●通过拼图证明勾股定理的思路:(1)图形经过割补拼接后,只要没有重叠、没有空隙,面积就不会改变.(2)根据同一种图形的面积的不同表示方法列出等式.(3)利用等式性质变化验证结论成立,即拼出图形→写出图形面积的表达式→找出等量关系→恒等变形→推导命题结论.●下面列举几种证明方法:◆1、“赵爽弦图”证明:在图1中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即c2=12ab×4+(b﹣a)2,化简得:a2+b2=c2.◆2、我国数学家邹元治的证明方法证明:在图2中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即(a+b)2=c2+12ab×4,化简得:a2+b2=c2.◆3、美国第二十任总统伽菲尔德的“总统证法”证明:在图3中,梯形的面积等于三个直角三角形的面积的和.即12(a+b)(a+b)=12ab×2+12c2,化简得:a2+b2=c2.【例题1】在直角三角形中,两条直角边的长分别为9和12,则斜边的长为 .【分析】根据勾股定理直接求出斜边的长即可.【解答】解:∵在直角三角形中,两条直角边的长分别为9和12,=15.故答案为:15.【点评】本题主要考查了勾股定理,解题的关键是熟练掌握勾股定理,如果直角三角形的两条直角边长为a、b,斜边长为c,那么a2+b2=c2.【变式1-1】已知△ABC中,∠C=90°,AB=c,BC=a,AC=b.(1)如果a=7,b=24,求c;(2)如果a=12,c=13,求b.【分析】(1)利用勾股定理计算c=(2)利用勾股定理计算b=【解答】解:(1)在Rt△ABC中,∠C=90°,由勾股定理得:c===25;(2)在Rt△ABC中,由勾股定理得:b===5.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.注意勾股定理应用的前提条件是在直角三角形中.【变式1-2】(2022秋•东方期末)如图,在△ABC 中,AB =AC =10,BC =12,AD 平分∠BAC ,则AD 等于( )A .6B .7C .8D .9【分析】根据等腰三角形的三线合一得到AD ⊥BC ,BD =DC =12BC =6,根据勾股定理计算,得到答案.【解答】解:∵AB =AC ,AD 平分∠BAC ,∴AD ⊥BC ,BD =DC =12BC =6,在Rt △ABD 中,AD 8,故选:C .【点评】本题考查的是勾股定理、等腰三角形的性质,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.【变式1-3】(2022秋•新泰市期末)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,则点C 到直线AB 的距离是( )A .185B .3C .125D .2【分析】作CD⊥AB于点D,根据勾股定理可以求得AB的长,然后根据面积法,可以求得CD的长.【解答】解:作CD⊥AB于点D,如右图所示,∵∠C=90°,AC=3,BC=4,∴AB=5,∵AC⋅BC2=AB⋅CD2,∴3×42=5CD2,解得CD=2.4,故选:C.【点评】本题考查勾股定理、三角形的面积,解答本题的关键是明确题意,画出相应的图形,利用勾股定理和面积法解答.【变式1-4】(2021春•连州市期中)如图所示,AB⊥BC,DC⊥BC,E是BC上一点,∠BAE=∠DEC=60°,AB=3,CE=4,则AD等于( )A.10B.12C.24D.48【分析】本题主要考查勾股定理运用,解答时要灵活运用直角三角形的性质.【解答】解:∵AB⊥BC,DC⊥BC,∠BAE=∠DEC=60°∴∠AEB=∠CDE=30°∵30°所对的直角边是斜边的一半∴AE=6,DE=8又∵∠AED =90°根据勾股定理∴AD =10.故选:A .【点评】解决此类题目的关键是熟练掌握运用直角三角形两个锐角互余,30°所对的直角边是斜边的一半,勾股定理的性质.【变式1-5】如图,在△ABC 中,∠ACB =90°,AC =3,BC =4,分别以点A 和点B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,连接CD ,则CD 的长为 .【分析】根据勾股定理可以求得AB 的长,然后根据线段垂直平分线的判定方法可以得到MN 为线段AB 的垂直平分线,再根据直角三角形斜边上的中线等于斜边的一半,即可得到CD 的长.【解答】解:∵∠ACB =90°,AC =3,BC =4,∴AB ==5,连接NA ,NB ,MA ,MB ,如图所示,∵分别以点A 和点B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,∴NA =NB ,MA =MB ,∴直线MN 垂直平分AB ,∵直线MN 交AB 于点D ,∴点D 为AB 的中点,∴CD 为Rt △ACB 斜边上的中线,∴CD =12AB =52,故答案为:52.【点评】本题考查勾股定理、线段垂直平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.【变式1-6】(2022春•河北区期末)如图,在△ABC中,CD⊥AB于点D,AC=20,CD=12,BD=9.求AB与BC的长.【分析】根据勾股定理求出BC即可;根据勾股定理求出AD,求出AB即可.【解答】解:∵CD⊥AB,AC=20,CD=12,BD=9,∴∠ADC=∠BDC=90°,在Rt△CDB中,由勾股定理得:BC=15,在Rt△ADC中,由勾股定理得:AD=16,∴AB=AD+DB=16+9=25.答:AB的长为25,BC的长为15.【点评】本题考查了勾股定理的应用,关键是对定理的掌握和运用.【变式1-7】如图,在△ABC中,AC=8,BC=6,CE是AB边上的中线,CD是AB边上的高,且AE=5.(1)求CD的长;(2)求DE的长.【分析】(1)先证明三角形ABC是直角三角形,再根据等面积法即可求解;(2)根据勾股定理求出BD的长即可求解.【解答】解:(1)∵CE是AB边上的中线,∴AE=BE=5,∴AB=10,又∵AC=8,BC=6,∴AC2+BC2=82+62=100=AB2,∴△ABC是直角三角形,又∵CD是△ABC的高,∴S△ABC=12AC⋅BC=12AB⋅CD,∴CD=AC⋅BCAB=4.8;(2)在Rt△BDC中,由勾股定理得,BD=3.6,∴DE=BE﹣BD=5﹣3.6=1.4.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.【例题2】勾股定理的验证方法很多,用面积(拼图)证明是最常见的一种方法.如图所示,一个直立的长方体在桌面上慢慢地倒下,启发人们想到勾股定理的证明方法,设AB=c,BC=a,AC=b,证明中用到的面积相等关系是( )A.S△ABC+S△ABD=S△AFG+S△AEFB.S梯形BCEF=S△ABC+S△ABF+S△AEFC.S△BDH=S△FGHD.S梯形BCEF=S△ABC+S△ABF+S△AEF+S△FGH【分析】通过用两种方法计算梯形BCEF的面积即可证明勾股定理.【解答】解:∵矩形ACBD旋转得出矩形AGFE,∴△ABC≌△FAE,∴AB=AF,∠BAC=∠AFE,∵∠AFE+∠EAF=90°,∴∠BAC+∠EAF=90°,∴△ABF是等腰直角三角形,由题意知:S梯形BCEF =12(a+b)•(a+b)=12(a+b)2=12a2+ab+12b2,S△ABC+S△ABF+S△AEF=12ab+12ab+12c2=ab+12c2,∴12a2+ab+12b2=ab+12c2,∴a2+b2=c2,故选:B.【点评】本题主要考查了勾股定理的证明,等腰直角三角形的判定,表示出图形面积的不同表达形式,建立等量关系是解题的关键.【变式2-1】(2022春•三门峡期末)我国是最早了解勾股定理的国家之一.据《周髀算经》记载,勾股定理的证明是在商代由商高发现的,故又称之为“商高定理”;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明.古代印度、希腊、阿拉伯等许多国家也都很重视对勾股定理的研究和应用.下面四幅图中,不能证明勾股定理的是( )A .B .C .D .【分析】由正方形面积公式、三角形面积公式以及梯形面积公式分别对各个选项进行判断即可.【解答】解:A 、大正方形的面积为:c 2,也可看作是4个直角三角形和一个小正方形组成,则其面积为:12ab ×4+(b ﹣a )2=a 2+b 2,∴a 2+b 2=c 2,故A 选项能证明勾股定理;B 、大正方形的面积为:(a +b )2,也可看作是2个矩形和2个小正方形组成,则其面积为:a 2+b 2+2ab ,∴(a +b )2=a 2+b 2+2ab ,∴B 选项不能证明勾股定理.C 、大正方形的面积为:(a +b )2;也可看作是4个直角三角形和一个小正方形组成,则其面积为:12ab ×4+c 2=2ab +c 2,∴(a +b )2=2ab +c 2,∴a 2+b 2=c 2,故C 选项能证明勾股定理;D、梯形的面积为:12(a+b)(a+b)=12(a2+b2)+ab,也可看作是2个直角三角形和一个等腰直角三角形组成,则其面积为:12ab×2+12c2=ab+12c2,∴12(a2+b2)+ab=ab+12c2,∴a2+b2=c2,故D选项能证明勾股定理;故选:B.【点评】本题考查了勾股定理的证明、正方形面积公式、三角形面积公式以及梯形面积公式,熟练掌握内弦图、外弦图是解题的关键.【变式2-2】“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为( )A.9B.6C.4D.3【分析】分析题意,首先根据已知条件易得,中间小正方形的边长为:a﹣b;接下来根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:12ab=12×8=4,从图形中可得,大正方形的面积是4个直角三角形的面积与中间小正方形的面积之和,∴4×12ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3.故选:D.【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式.【变式2-3】(2022春•高安市期中)勾股定理被誉为“几何明珠”,如图是我国古代著名的“赵爽弦图”,它由4个全等的直角三角形拼成,已知大正方形面积为25,小正方形面积为1,若用a、b表示直角三角形的两直角边(a>b),则下列说法:①a2+b2=25,②a﹣b=1,③ab=12,④a+b=7.正确的是( )A.①②B.①②③C.①②④D.①②③④【分析】根据勾股定理和大正方形面积为25,可以判断①;根据小正方形面积为1,可以判断②;根据大正方形面积为25,小正方形面积为1,可以得到四个直角三角形的面积,从而可以得到ab的值,即可判断③;根据完全平方公式可以判断④.【解答】解:由图可得,a2+b2=c2=25,故①正确;∵小正方形面积为1,∴小正方形的边长为1,∴a﹣b=1,故②正确;∵大正方形面积为25,小正方形面积为1,∴12ab=(25﹣1)÷4,解得ab=12,故③正确;∵a2+b2=25,ab=12,∴(a+b)2=a2+2ab+b2=49,∴a+b=7,故④正确;故选:D.【点评】本题考查勾股定理的证明、正方形的性质、直角三角形的面积,利用数形结合的思想解答是解答本题的关键.【变式2-4】如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC =6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是( )A .36B .76C .66D .12【分析】由题意∠ACB 为直角,利用勾股定理求得外围中一条边,又由AC 延伸一倍,从而求得风车的一个轮子,进一步求得四个.【解答】解:依题意,设“数学风车”中的四个直角三角形的斜边长为x ,则x 2=122+52=169,所以x =13,所以这个风车的外围周长是:(13+6)×4=76.故选:B .【点评】此题考查了勾股定理的证明,本题是勾股定理在实际情况中的应用,并注意隐含的已知条件来解答此类题.【变式2-5】用不同的方式表示同一图形的面积可以解决线段长度之间关系的有关问题,这种方法称为等面积法,这是一种重要的数学方法,请你用等面积法来探究下列三个问题:(1)如图1是著名的“赵爽弦图”,由四个全等的直角三角形拼成,请用它验证勾股定理c 2=a 2+b 2.(2)如图2,在Rt △ABC 中,∠ACB =90°,CD 是AB 边上的高,AC =4,BC =3,求CD 的长度;(3)如图1,若大正方形的面积是13,小正方形的面积是1,求(a +b )2的值(a <b ).【分析】(1)根据大正方形的面积的两种表示方法求解即可;(2)根据直角三角形的面积公式求解即可;(3)根据小正方形的为1得出2ab =12,再结合c 2=13即可求解.【解答】解:(1)如图1,大正方形的面积=c 2=4×12ab +(b ―a )2,整理得,c2=a2+b2;(2)在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵S△ABC=12AC⋅BC=12AB⋅CD,∴CD=AC⋅BCAB=125;(3)∵大正方形的面积是13,小正方形的面积是1,∴c2=13,(b﹣a)2=1,∴a2+b2﹣2ab=1,∴2ab=12,∴(a+b)2=a2+b2+2ab=13+12=25,即(a+b)2的值为25.【点评】本题考查了勾股定理的证明,正确表示出大正方形的面积的两种表示方法是解题的关键.【变式2-6】(2022春•巢湖市校级期中)学习勾股定理之后,同学们发现证明勾股定理有很多方法.某同学提出了一种证明勾股定理的方法:如图1点B是正方形ACDE边CD上一点,连接AB,得到直角三角形ACB,三边分别为a,b,c,将△ACB裁剪拼接至△AEF位置,如图2所示,该同学用图1、图2的面积不变证明了勾股定理.请你写出该方法证明勾股定理的过程.【分析】连接BF,由图1可得正方形ACDE的面积为b2,由图2可得四边形ABDF的面积为三角形ABF 与三角形BDF面积之和,再利用正方形ACDE的面积与四边形ABDF的面积相等即可证明.【解答】证明:如图,连接BF,∵AC =b ,∴正方形ACDE 的面积为b 2,∵CD =DE =AC =b ,BC =a ,EF =BC =a ,∴BD =CD ﹣BC =b ﹣a ,DF =DE +EF =a +b ,∵∠CAE =90°,∴∠BAC +∠BAE =90°,∵∠BAC =∠EAF ,∴∠EAF +∠BAE =90°,∴△BAE 为等腰直角三角形,∴四边形ABDF 的面积为:12c 2+12(b ﹣a )(a +b )=12c 2+12(b 2﹣a 2),∵正方形ACDE 的面积与四边形ABDF 的面积相等,∴b 2=12c 2+12(b 2﹣a 2),∴b 2=12c 2+12b 2―12a 2,∴12a 2+12b 2=12c 2,∴a 2+b 2=c 2.【点评】本题考查勾股定理的证明,解题的关键是熟练掌握勾股定理的证明方法,一般利用拼图的方法,再利用面积相等证明.【例题3】如图,当正方形B的面积为64,正方形C的面积为100时,正方形A的面积为( )A.36B.25C.16D.6【分析】直接根据勾股定理进行解答即可.【解答】解:由图可知,△DEF是直角三角形,∴DE2+DF2=EF2,∵正方形B的面积=DF2,正方形C的面积=EF2,正方形A的面积=DF2,正方形B的面积为64,正方形C的面积为100,∴正方形A的面积=100﹣64=36.故选:A.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.【变式3-1】(2022秋•渠县期末)如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A、C、D的面积依次为4、6、18,则正方形B的面积为( )A.8B.9C.10D.12【分析】根据勾股定理、正方形的面积公式计算即可.【解答】解:由勾股定理,得正方形E的面积=正方形C的面积+正方形D的面积,正方形E的面积=正方形A的面积+正方形B的面积,则正方形B的面积=18﹣6﹣4=8,故选:A.【点评】本题考查了勾股定理,要熟悉勾股定理的几何意义,知道直角三角形两直角边的平方和等于斜边的平方.【变式3-2】(2022秋•南京期末)如图,在等腰Rt△ACB中,∠ACB=90°,AC=BC,且AB=AB、AC、BC为直径画半圆,其中所得两个月形图案AFCD和BGCE(图中阴影部分)的面积之和等于( )A.8B.4C.2D.【分析】由等腰三角形的性质及勾股定理可求解AC=CB=2,进而可求得S△ACB=2,再利用阴影部分的面积=以AC为直径的圆的面积+△ACB的面积﹣以AB为直径的半圆的面积计算可求解.【解答】解:在等腰Rt △ACB 中,∠ACB =90°,AC =BC ,AB =∴AC 2+BC 2=AB 2=8,∴AC =CB =2,∴S △ACB =12AC •BC =2,∴S 阴影=π(AC 2)2+S △ACB ―12π(AB 2)2=π+2﹣π=2,故选:C .【点评】本题主要考查等腰直角三角形,勾股定理,理清阴影部分的面积=以AC 为直径的圆的面积+△ACB 的面积﹣以AB 为直径的半圆的面积是解题的关键.【变式3-3】如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中S A =4,S B =2,S c =2,S D =1,则S =( )A .25B .20C .9D .5【分析】根据正方形的性质和勾股定理的几何意义解答即可.【解答】解:如图,根据勾股定理的几何意义,可知:S=S F+S G=S A+S B+S C+S D=4+2+2+1=9;即S=9;故选:C.【点评】本题考查了正方形的性质、勾股定理的几何意义,关键是掌握两直角边的平方和等于斜边的平方.【变式3-4】如图,Rt△ABC中,分别以这个三角形的三边为边长作正方形,面积分别记为S1、S2、S2.如果S2+S1﹣S3=18,则阴影部分的面积为 .【分析】由勾股定理得出S2﹣S3=S1,再根据S2+S1﹣S3=18即可得出S1的值,即为图中阴影部分的面积.【解答】解:由勾股定理得,BC2﹣AC2=AB2,即S2﹣S3=S1,∵S2+S1﹣S3=18,∴S 1=9,由图形可知,阴影部分的面积=12S 1,∴阴影部分的面积=92,故答案为:92.【点评】本题考查了勾股定理,由勾股定理得出S 2﹣S 3=S 1,是解题的关键.【变式3-5】(2022秋•绿园区校级期末)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为16cm ,则正方形A ,B ,C ,D 的面积之和为 cm 2.【分析】如图根据勾股定理有S 正方形2+S 正方形3=S 正方形1,S 正方形C +S 正方形D =S 正方形3,S 正方形A +S 正方形B =S 正方形2,等量代换即可求四个小正方形的面积之和.【解答】解:如右图所示,根据勾股定理可知,S 正方形2+S 正方形3=S 正方形1,S 正方形C +S 正方形D =S 正方形3,S 正方形A +S 正方形B =S 正方形2,∴S 正方形C +S 正方形D +S 正方形A +S 正方形B =S 正方形2+S 正方形3=S 正方形1=162=256(cm 2).故答案为:256.【点评】本题考查了勾股定理的几何意义,关键是掌握两直角边的平方和等于斜边的平方.【变式3-6】如图,直角三角形ACB,直角顶点C在直线l上,分别过点A、B作直线l的垂线,垂足分别为点D和点E.(1)求证:∠DAC=∠BCE;(2)如果AC=BC.①求证:CD=BE;②若设△ADC的三边分别为a、b、c,试用此图证明勾股定理.【分析】(1)根据直角三角形的定义和垂直的定义,可以证明结论成立;(2)①根据AAS可以证明结论成立;②根据S梯形ADEB=S△ADC+S△ACB+S△CEB,代入字母计算即可证明结论成立.【解答】证明:(1)∵∠ACB=90°,AD⊥DE于点D,∴∠DAC+∠ACD=90°,∠ADC+∠BCE=90°,∴∠DAC=∠BCE;(2)①∵AD⊥DE于点D,BE⊥DE于点E,∴∠ADC=∠CEB=90°,由(1)知:∠DAC=∠BCE,在△ADC和△CEB中,∠ADC=∠CEB∠DAC=∠ECB,AC=CB∴△ADC≌△CEB(AAS),∴CD=BE;②由图可知:S 梯形ADEB =S △ADC +S △ACB +S △CEB ,∴(a b )(a b )2=ab 2+c 22+ab 2,化简,得:a 2+b 2=c 2.【点评】本题考查勾股定理的证明,解答本题的关键是明确题意,利用数形结合的思想解答.【例题4】(2022秋•门头沟区期末)已知:如图,在△ABC 中,AB =AC =5,BC =8.求BC 边上的高的长.【分析】过点A 作AD ⊥BC 于点D ,根据等腰三角形的性质求出BD =12BC =4,根据勾股定理求出AD 的长即可.【解答】解:如图,过点A 作AD ⊥BC 于点D ,∵AB =AC =5,BC =8,AD ⊥BC ,∴BD =CD =12BC =4,∴AD==3,即BC 边上的高的长为3.【点评】此题考查了等腰三角形的性质、勾股定理等知识,熟练掌握等腰三角形的性质、勾股定理是解题的关键.【变式4-1】如图,在△ABC中,∠C=90°,DE垂直平分AB,分别交AB,BC于D,E两点,若BE=5,CE=3,则AC的长为 .【分析】先根据线段垂直平分线的性质可得BE=AE=5,然后在Rt△ACE中,利用勾股定理进行计算,即可解答.【解答】解:连接AE,∵DE垂直平分AB,∴BE=AE=5,∵∠C=90°,CE=3,∴AC==4,故答案为:4.【点评】本题考查了勾股定理,线段垂直平分线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【变式4-2】(2021春•齐齐哈尔月考)已知:△ABC中,AC=2,∠C=30°,∠B=45°,求AB和BC的长.【分析】作AD⊥BC,得∠ADC=∠ADB=90°,根据勾股定理和直角三角形30°所对的直角边是斜边的一半计算即可.【解答】解:作AD⊥BC,∴∠ADC=∠ADB=90°,∵∠C=30°,∴AD=12AC=1,在Rt△ACD,根据勾股定理得,CD=∵∠B=45°,∴∠DAB=∠B=45°,∴BD=AD=1,则BC=1∴AB=【点评】本题考查了解直角三角形,熟练掌握勾股定理和直角三角形中30°所对的直角边是斜边的一半,这两个定理的应用是解题关键.【变式4-3】(2022春•阳新县期末)△ABC中,AB=13,AC=15,高AD=12,则BC的长为( )A.14B.4C.14或4D.以上都不对【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ABD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC=BD+DC=9+5=14;(2)钝角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ACD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC的长为DC﹣BD=9﹣5=4.故选:C.【点评】本题考查了勾股定理,把三角形边的问题转化到直角三角形中用勾股定理解答.【变式4-4】如图,Rt△ABC中,AC⊥CB,AC=15,AB=25,点D为斜边上动点.连接CD,在点D的运动过程中,当△ACD 为等腰三角形时,AD 的长为 .【分析】分三种情况讨论,利用等腰三角形的性质,分别求解即可解决问题.【解答】解:①当AD =AC 时,△ACD 为等腰三角形,∵AC =15,∴AD =AC =15.②当CD =AD 时,△ACD 为等腰三角形,∵CD =AD ,∴∠DCA =∠CAD ,∵∠CAB +∠B =90°,∠DCA +∠BCD =90°,∴∠B =∠BCD ,∴BD =CD ,∴CD =BD =DA =12.5;③当CD =AC 时,△ACD 为等腰三角形,如图,作CH ⊥BA 于点H ,则12×AB ×CH =12×AC ×BC ,∵AC =15,BC =20,AB =25,∴CH =12,在Rt △ACH 中,AH =9,∵CD =AC ,CH ⊥BA ,∴DH =HA =9,∴AD =18,综上所述:AD 的值为15或12.5或18.故答案为:15或12.5或18.【点评】本题考查解直角三角形的应用,等腰三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.【例题5】如图,阴影部分表示以Rt △ABC 的各边为直径的三个半圆所组成的两个新月形,面积分别记作S 1和S 2.若S 1+S 2=7,AB =6,则△ABC 的周长是( )A .12.5B .13C .14D .15【分析】根据勾股定理得到AC 2+BC 2=AB 2,根据扇形面积公式、完全平方公式计算即可.【解答】解:由勾股定理得,AC 2+BC 2=AB 2,∵S 1+S 2=7,∴12×π×(AC 2)2+12×π×(BC 2)2+12×AC ×BC ―12×π×(AB 2)2=7,∴AC ×BC =14,∴(AC +BC )2=AC 2+BC 2+2AC •BC =62+2×14=64,∴AC +BC =8(负值舍去),∴△ABC 的周长=AB +AC +BC =8+6=14,故选:C .【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.【变式5-1】如图,三角形ABC中,∠C=90°,∠BAC的平分线交BC于D,DE⊥AB于E,已知CD=3,BD=5,求三角形ABC的周长.【分析】根据角平分线的性质得到DE=CD=3,根据勾股定理求出BE的长,再根据勾股定理列出方程,解方程得到答案.【解答】解:∵AD是∠BAC的平分线,∠C=90°,DE⊥AB,∴DE=CD=3,AC=AE,∵DE⊥AB,DE=3,BD=5,根据勾股定理得,BE=4,∴AC2+82=(AE+4)2,解得AE=6,则AC=6,∴三角形ABC的周长=AC+AB+BC=24.【点评】本题考查的是角平分线的性质和勾股定理的应用,掌握角的平分线上的点到角的两边的距离相等是解题的关键.【变式5-2】如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于E,若AB=10cm,AC=6cm,则△BED周长为( )A.10cm B.12cm C.14cm D.16cm【分析】根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△ACD和Rt△AED全等,根据全等三角形对应边相等可得AC=AE,可求出BE,再利用勾股定理列式求出BC,最后根据三角形的周长列式计算即可得解.【解答】解:∵AD是∠CAB的平分线,∠C=90°,DE⊥AB于E,∴CD=DE,在Rt△ACD和Rt△AED中,AD=ADDC=DE,∴Rt△ACD≌Rt△AED(HL),∴AC=AE=6,∴BE=AB﹣AE=10﹣6=4,由勾股定理得,BC==8,∴△BDE的周长=BE+BD+CD=BE+BD+CD=BE+BC=4+8=12(cm).故选:B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,勾股定理,熟记性质并求出三角形全等是解题的关键.【变式5-3】在四边形ABCD中,∠ABC=∠ADC=90°,连接AC,点E为AC的中点,连接BE,DE.若DE=132,BC=12,则△ABE的周长为 .【分析】根据直角三角形斜边上的中线等于斜边的一边得到AC=2BE=2DE=2AE=13,再利用勾股定理求出AB=5即可得到答案.【解答】解:∵∠ABC=∠ADC=90°,点E为AC的中点,∴AC=2BE=2DE=2AE=13,∵BC=12,∴AB=5,∴△ABE的周长为AE+BE+AB=5+2×132=18,故答案为:18.【点评】本题主要考查了直角三角形斜边上的中线的性质,勾股定理,熟知直角三角形斜边上的中线等于斜边的一半是解题的关键.【例题6】(2022春•范县期中)如图,正方形ABCD中,AE⊥BE,且AE=3,AB=5,则阴影部分的面积是( )A.13B.15C.18D.19【分析】利用正方形的面积减去三角形的面积即可求出阴影部分的面积.【解答】解:∵AE⊥BE,且AE=3,AB=5,∴BE=4,∴S△ABE=12AE⋅BE=12×3×4=6,∵四边形ABCD是正方形,AB=5,∴S正=5×5=25,∴S阴影=S正﹣S△ABE=25﹣6=19.故选:D.【点评】本题主要考查正方形的性质与勾股定理,解题的关键是用割补法求阴影部分的面积.【变式6-1】如图,在△ABC中,AC=BC=17,AB=16,求△ABC的面积.【分析】过C作CD⊥AB于D,根据等腰三角形的性质和勾股定理,以及三角形的面积公式即可得到结论.【解答】解:过C作CD⊥AB于D,∵AC=BC=17,AB=16,∴AD=BD=12AB=8,∵AD2+CD2=AC2,∴CD=15,∴S△ABC =12AB•CD=12×16×15=120.【点评】本题考查了勾股定理,三角形的面积的计算,等腰三角形的性质,熟练掌握勾股定理是解题的关键.【变式6-2】(2022春•桐城市期末)如图2,在△ABC 中,AC =8,AB =4,∠BAC =120°,求△ABC 的面积.【分析】过点C 作CD ⊥AB ,交BA 的延长线于点D ,由勾股定理求出CD 的长,利用三角形面积公式可求出答案.【解答】解:过点C 作CD ⊥AB ,交BA 的延长线于点D ,∵∠BAC =120°,∴∠DAC =60°,∴∠ACD =30°,∵AC =8,∴AD =12AC =4,∴CD =∴S △ABC =12AB •CD =12×=【点评】此题主要考查了勾股定理,三角形面积公式,求得出AB ,CD 的长是解题的关键.【变式6-3】如图在四边形ABCD 中,∠ABC =120°,AB ⊥AD ,BC ⊥CD ,AB =4,CD =5,求该四边形的面积.【分析】延长DA 和CB 交于O ,求出∠O =30°,根据含30度角的直角三角形性质求出OB 和OD ,根据勾股定理求出OA 和OC ,根据三角形面积公式求出即可.【解答】解:延长DA 和CB 交于O ,∵AB ⊥AD ,BC ⊥CD ,∴∠DAB =∠C =∠OAB =90°,∵∠D =60°,∴∠O =30°,∵AB =4,DC =5,∴OB =2AB =8,OD =2DC =10,由勾股定理得:OA ==OC =∴四边形ABCD 的面积是:S △OCD ﹣S △OAB =12×OC ×CD ―12×OA ×AB =12×5―12×【点评】本题考查了含30度角的直角三角形性质,勾股定理,三角形的面积的应用,注意:在直角三角形中,两直角边的平方和等于斜边的平方.【变式6-4】如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =4,BD =10,BC =8,求四边形ABCD 的面积.【分析】过点D 作DE ⊥BA 的延长线于点E ,利用勾股定理和角平分线的性质可得出DE =DC =6,再利用三角形的面积公式结合S 四边形ABCD =S △ABD +S △BCD 可求出四边形ABCD 的面积.【解答】解:过点D 作DE ⊥BA 的延长线于点E ,如图所示.∵∠BCD=90°,BD=10,BC=8,∴BD=6,∵BD平分∠ABC,∴DE=DC=6,∴S四边形ABCD =S△ABD+S△BCD,=12AB•DE+12BC•CD,=12×4×6+12×8×6,=36.【点评】本题考查了角平分线的性质以及三角形的面积,利用角平分线的性质,找出DE=8是解题的关键.【例题7】如图,在四边形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2.(1)求证:AB=BC;(2)当BE⊥AD于E时,试证明:BE=AE+CD.【分析】(1)根据勾股定理AB2+BC2=AC2,得出AB2+BC2=2AB2,进而得出AB=BC;(2)首先证明CDEF是矩形,再根据△BAE≌△CBF,得出AE=BF,进而证明结论.【解答】证明:(1)连接AC.∵∠ABC=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2,∴BC2=AB2,∵AB>0,BC>0,∴AB=BC.(2)过C作CF⊥BE于F.∵BE⊥AD,CF⊥BE,CD⊥AD,∴∠FED=∠CFE=∠D=90°,∴四边形CDEF是矩形.∴CD=EF.∵∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∴在△BAE与△CBF中∴∠AEB=∠BFC ∠BAE=∠CBF AB=BC,∴△BAE≌△CBF.(AAS)∴AE=BF.∴BE=BF+EF=AE+CD.【点评】此题主要考查了勾股定理的应用以及三角形的全等证明,根据已知得出四边形CDEF是矩形以及△BAE≌△CBF是解决问题的关键.【变式7-1】已知AD是△ABC的中线,∠C=90°,DE⊥AB于点E,试说明AC2=AE2﹣BE2.【分析】根据直角三角形的性质和勾股定理可得AE2﹣BE2=(AD2﹣DE2)﹣(BD2﹣DE2)=AD2﹣BD2=AD2﹣CD2=AC2,从而证明结论.【解答】证明:∵AD是△ABC的中线,∴BD=CD.∵∠C=90°,DE⊥AB于E,∴AE2﹣BE2=(AD2﹣DE2)﹣(BD2﹣DE2)=AD2﹣BD2=AD2﹣CD2=AC2.故AC2=AE2﹣BE2.【点评】考查了直角三角形的性质和勾股定理,注意线段相互间的转化.【变式7-2】已知,如图,△ABC中,AB>AC,AD为BC边上的高,M是AD边上任意一点.求证:AB2﹣AC2=MB2﹣MC2.。
2023中考数学几何专题:勾股定理的应用(解析版)1. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( )A .600米 B. 800米 C. 1000米 D. 不能确定【解析】速度一定且相同,路程比=时间比.再用勾股定理,直线距离应该是25分钟的路程.选C.【答案】C2. 一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动( )A. 9分米B. 15分米C. 5分米D. 8分米 【解析】在初始和结束两个状态下,选定直角三角形,应用勾股定理. 初始时,经计算,可知,梯顶距墙底端24分米.结束时,经计算,可知,梯足距离墙底端15分米.选D. 【答案】D3. 如图,点P 是AOB ∠的角平分线上一点,过点P 作//PC OA 交OB 于点C .若60,4AOB OC ∠==,则点P 到OA 的距离PD 等于__________.【解析】过P 点作PE OB ⊥,并交OB 于点E .∵60,AOB OP ∠=是AOB ∠的角平分线, ∴630BOP ∠==. 又∵//PC OA ,∴60PCB AOB ∠=∠=.∴30OPC BOP BPC ∠==∠=∠.∴14,22PC OC EC PC ====.∴PB =.【答案】4. 将一根长为24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设筷子露在杯子外边的长度为cm h ,则h 的取值范围为PODC B A EP ODC BA【答案】2.3cm5. 如图,是一块直角三角形的土地,现在要在这块地上挖一个正方形蓄水池AEDF ,已知剩余的两直角三角形(阴影部分)的斜边长分别为20cm 和30cm ,则剩余的两个直角三角形(阴影部分)的面积和...为 2cm .【解析】cm AE x =,cm BE a =,cm CF b =,在Rt BDE ∆中,22230900a x +== ① 在Rt CDF ∆中,22220400b x +== ②在Rt ABC ∆中,()()222502500a x b x +++==,即2222222500a ax x b bx x +++++= ③③-①-②得,221200ax bx +=,3002ax bx+=最简单的方法为两个小的直角三角形旋转合并成一个大的直角三角形(正方形的边重合)故130203002⨯⨯=.【答案】3006. 如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.【解析】直接应用勾股定理可知,少走了5m.又知2步为1米,所以少走了10步. 【答案】107. 蚂蚁沿图中的折线从A 点爬到D 点,一共爬了多少厘米?(小方格的边长为1厘米)【解析】把折线从A 到D,分三段计算.第1段长为5,第2段长为13,第3段长为10,进行加法计算,所以蚂蚁一共爬了28cm .【答案】28cm8. 在Rt ABC ∆中,90C ∠=︒,若54a b c +==,,则ABC S ∆= . 【解析】 在Rt ABC ∆中,由勾股定理得,222a b c +=. 又有()2222a b a b ab +=++, 所以 ()222a b c ab +-=所以1924ABC S ab ∆==.【答案】94ABC S ∆=9. 如图,Rt ABC ∆中,90CAB ∠=︒,AB AC =,E 、F 为BC 上的点,且45EAF ∠=︒,求证:222EF BE FC =+.【解析】过点A 作线段AD ,使CAF BAD ∠=∠,且AD AF =.在ACF ∆和ABD ∆中, AC AB CAF BAD AF AD =⎧⎪∠=∠⎨⎪=⎩∴ACF ABD ∆∆≌ ∴CF BD =,DBA FCA ∠=∠90DBE DBA ABE FCA ABE ∠=∠+∠=∠+∠=︒ 在ADE ∆和AFE ∆中, 45AE AE EAF EAD AD AF =⎧⎪∠=∠=︒⎨⎪=⎩∴ADE AFE ∆∆≌ ∴ED EF =在Rt BDE ∆中,222DE BD BE =+,∴222EF BE FC =+.【答案】见解析F E C B ADF E CB ACBAD10. 如图,已知Rt △ABC 的周长为26+,其中斜边2AB =,求这个三角形的面积.【解析】在Rt △ABC 中,根据勾股定理,得2222a b +=,即2()24a b ab +-=。
一、选择题1.已知长方体的长2cm 、宽为1cm 、高为4cm ,一只蚂蚁如果沿长方体的表面从A 点爬到B′点,那么沿哪条路最近,最短的路程是( )A .29cmB .5cmC .37cmD .4.5cm2.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④3.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由三角形较长直角边长为a ,较短直角边长为b ,若(a +b )2=21,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .64.如图,在Rt ABC 中,90BAC ︒∠=,以Rt ABC 的三边为边分别向外作等边三角形'A BC ,'AB C △,'ABC △,若'A BC ,'AB C △的面积分别是10和4,则'ABC △的面积是( )A .4B .6C .8D .95.如图中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A .3cmB .14cmC .5cmD .4cm6.如图,正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上的一动点,则DN+MN 的最小值是( )A .8B .9C .10D .127.勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( )A .B .C .D .8.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB=3(如图).以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数介于( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间 9.一个直角三角形的两条边的长度分别为3和4,则它的斜边长为( ) A .5 B .4 C 7D .4或5 10.下列条件中,不能..判定ABC 为直角三角形的是( ) A .::5:12:13a b c =B .A BC ∠+∠=∠ C .::2:3:5A B C ∠∠∠=D .6a =,12b =,10c =二、填空题11.如图,RT ABC ,90ACB ∠=︒,6AC =,8BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E 、F ,则B FC '△的面积为______.12.如图,这是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为 1S ,2S ,3S ,若123144S S S ++=,则2S 的值是__________.13.如图,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的下底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的C 点处的食物,需要爬行的最短路程是___________________(π的值取3).14.如图,Rt ABC 中,90A ∠=︒,8AC =,6AB =,DE AC ⊥,13CD BC =,13CE AC =,P 是直线AC 上一点,把CDP 沿DP 所在的直线翻折后,点C 落在直线DE 上的点H 处,CP 的长是__________15.在△ABC 中,AB =6,AC =5,BC 边上的高AD =4,则△ABC 的周长为__________.16.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.17.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________18.如图,在△ABC 中,∠C =90°,∠ABC =45°,D 是BC 边上的一点,BD =2,将△ACD 沿直线AD 翻折,点C 刚好落在AB 边上的点E 处.若P 是直线AD 上的动点,则△PEB 的周长的最小值是________.19.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是___________.20.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.三、解答题21.(1)计算:1312248233⎛⎫-+÷ ⎪ ⎪⎝; (2)已知a 、b 、c 满足2|23|32(30)0a b c +-+--=.判断以a 、b 、c 为边能否构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.22.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.23.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.(1)如图1,点D 在边BC 上,1CD =,5AD =ABD ∆的面积.(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.24.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述);(2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.25.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.26.如图1, △ABC 和△CDE 均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a ,且点A 、D 、E 在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM ⊥AE 于E.若CM=7, BE=10, 试求AB 的长.(3)如图3,若a=120°, CM ⊥AE 于E, BN ⊥AE 于N, BN=a, CM=b,直接写出AE 的值(用a, b 的代数式表示).27.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在ABC ∆的外部,32=AD 30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .(1)求点A的坐标;(2)判断DF与OE的数量关系,并说明理由;的周长.(3)直接写出ADG28.已知:四边形ABCD是菱形,AB=4,∠ABC=60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD的顶点A重合,两边分别射线CB、DC相交于点E、F,且∠EAP=60°.(1)如图1,当点E是线段CB的中点时,请直接判断△AEF的形状是.(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.29.(已知:如图1,矩形OACB的顶点A,B的坐标分别是(6,0)、(0,10),点D 是y轴上一点且坐标为(0,2),点P从点A出发以每秒1个单位长度的速度沿线段AC﹣CB方向运动,到达点B时运动停止.(1)设点P运动时间为t,△BPD的面积为S,求S与t之间的函数关系式;(2)当点P运动到线段CB上时(如图2),将矩形OACB沿OP折叠,顶点B恰好落在边AC上点B′位置,求此时点P坐标;(3)在点P运动过程中,是否存在△BPD为等腰三角形的情况?若存在,求出点P坐标;若不存在,请说明理由.30.如图1,已知△ABC是等边三角形,点D,E分别在边BC,AC上,且CD=AE,AD与BE相交于点F.(1)求证:∠ABE=∠CAD;(2)如图2,以AD为边向左作等边△ADG,连接BG.ⅰ)试判断四边形AGBE的形状,并说明理由;ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答.【详解】解:根据题意,如图所示,最短路径有以下三种情况:(1)沿AA',A C'',C B'',B B'剪开,得图1:22222AB AB BB'=+'=++=;(21)425(2)沿AC,CC',C B'',B D'',D A'',A A'剪开,得图2:22222'=+'=++=+=;AB AC B C2(41)42529DD,B D'',C B'',C A'',AA'剪开,得图3:(3)沿AD,'22222'=+'=++=+=;AB AD B D1(42)13637综上所述,最短路径应为(1)所示,所以225AB '=,即5cm AB '=.故选:B .【点睛】此题考查最短路径问题,将长方体从不同角度展开,是解决此类问题的关键,注意不要漏解.2.A解析:A【分析】先判断△DBE 是等腰直角三角形,根据勾股定理可推导得出BE ,故①正确;根据∠BHE 和∠C 都是∠HBE 的余角,可得∠BHE=∠C ,再由∠A=∠C ,可得②正确;证明△BEH ≌△DEC ,从而可得BH=CD ,再由AB=CD ,可得③正确;利用已知条件不能得到④,据此即可得到选项.【详解】解:∵∠DBC=45°,DE ⊥BC 于E ,∴在Rt △DBE 中,BE 2+DE 2=BD 2,BE=DE ,∴BE ,故①正确;∵DE ⊥BC ,BF ⊥DC ,∴∠BHE 和∠C 都是∠HBE 的余角,∴∠BHE=∠C ,又∵在▱ABCD 中,∠A=∠C ,∴∠A=∠BHE ,故②正确;在△BEH 和△DEC 中,BHE C HEB CED BE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BEH ≌△DEC ,∴BH=CD ,∵四边形ABCD 为平行四边形,∴AB=CD ,∴AB=BH ,故③正确;利用已知条件不能得到△BCF ≌△DCE ,故④错误,故选A.【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定与性质、勾股定理、全等三角形的判定与性质等,熟练掌握相关性质与定理是解题的关键.3.C解析:C【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知2()a b + =21,大正方形的面积为13,可以得以直角三角形的面积,进而求出答案。
专题01勾股定理(基础30题3种题型)一、探索勾股定理1.(2023春·黑龙江佳木斯·八年级校考期中)在Rt ABC △中,90C ,12a ,16b ,则c 的长为()A .26B .18C .20D .21【答案】C【分析】根据勾股定理222 a b c ,即可.【详解】∵在Rt ABC △中,90C ,12a ,16b ∴2222121620c a b 故选:C .【点睛】本题考查勾股定理的知识,解题的关键是掌握勾股定理的运用.2.(2022秋·江苏扬州·八年级仪征市第三中学校考阶段练习)下列各组数中,是勾股数的为()A .1,2,3B .4,5,6C .6,8,10D .7,8,9【答案】C【分析】根据勾股定理的逆定理分别进行分析,从而得到答案.【详解】解:A 、221236 ∵, 这组数不是勾股数;B 、222456+¹Q , 这组数不是勾股数;C 、2226810 ∵, 这组数是勾股数;D 、222789 ∵, 这组数不是勾股数,故选:C .【点睛】此题主要考查了勾股数的定义,解答此题要用到勾股定理的逆定理:已知三角形ABC 的三边满足222 a b c ,则ABC 是直角三角形.3.(2023春·河北廊坊·八年级廊坊市第四中学校考期中)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则正方形E 的面积是()A .47B .37C .34D .13【答案】A 【分析】根据勾股定理:两条直角边的平方和等于斜边的平方,而正方形的面积等于边长的平方,故可得到以斜边为边长的正方形的面积等于两个以直角边为边长的面积之和.【详解】解:由勾股定理得:正方形F 的面积 正方形A 的面积 正方形B 的面积223534 ,同理,正方形G 的面积 正方形C 的面积 正方形D 的面积222313 ,∴正方形E 的面积 正方形F 的面积 正方形G 的面积341347 .故选:A .【点睛】此题考查的是勾股定理,掌握以直角三角形斜边为边长的正方形的面积等于两个以直角边为边长的正方形面积之和是解决此题的关键.4.(2023春·福建福州·八年级统考期中)在ABC 中,90C ,若3AB ,则222AB BC AC .【答案】6【分析】利用勾股定理得222BC AC AB ,再代入计算即可.【详解】解:在ABC 中,90C ∵,222BC AC AB ,2222222(3)6AB BC AC AB ,故答案为:6.【点睛】本题主要考查了勾股定理,熟练掌握勾股定理解题的关键.5.(2023·北京丰台·二模)如图所示,正方形网格中,三个正方形A ,B ,C 的顶点都在格点上,用等式表示三个正方形的面积A B C S S S ,,之间的关系.【答案】A B CS S S 【分析】根据勾股定理以及正方形的面积公式即可得到结论.【详解】解:239A S ,2525B S ,正方形C 的边长为223534 ,∴ 23434C S ,∴A B C S S S ,,之间的关系为A B C S S S ,故答案为:A B C S S S ,【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.6.(2022秋·七年级单元测试)数组3、4、5;5、12、13;7、24、25;9、40、41;……都是勾股数,若n 为直角三角形的一较长直角边,用含n 的代数式表示斜边为.【答案】1n /1n【分析】首先确定各勾股数中的较长直角边、斜边,认真观察,总结规律,不难得出.【详解】解:因为3、4、5中较长直角边是4、斜边是541 ;5、12、13中较长直角边是12、斜边是13121 ;7、24、25中较长直角边是24、斜边是25241 ;9、40、41中较长直角边是40、斜边是41401 ;…∴若n 为直角三角形的一较长直角边,用含n 的代数式表示斜边为1n .【点睛】此题考查勾股数之间的规律,认真观察是关键.7.(2023春·陕西安康·八年级统考期末)已知在ABC 中,906cm 2cm ACB AC BC ,,,求AB 的长.【答案】210cm【分析】利用勾股定理进行求解即可.【详解】解:∵在ABC 中,906cm 2cm ACB AC BC ,,,∴由勾股定理得222262210cm AB AC BC .【点睛】本题主要考查了勾股定理,熟知勾股定理是解题的关键.8.(2023春·山东聊城·八年级统考期中)如图,某人从A 地到B 地共有三条路可选,第一条路是从A 地沿AB 到达B 地,AB 为10米,第二条路是从A 地沿折线AC CB 到达B 地,AC 为8米,BC 为6米,第三条路是从A 地沿折线AD DB 到达B 地共行走26米,若,,C B D 刚好在一条直线上.(1)求证:90C ;(2)求AD 和BD 的长.【答案】(1)见解析(2)AD 的长为17米,BD 的长为9米【分析】(1)通过计算得出222AC BC AB ,再根据勾股定理的逆定理即可证明.(2)先设一条线段长x ,根据已知条件及勾股定理可列出关于x 的方程,然后求解即可.【详解】(1)证明:∵8AC 米,6BC 米,10AB 米,∴222AC BC AB ,∴ABC 是直角三角形,即90C ;(2)解:设AD x 米,则 26BD x 米,∴ 62632CD BC BD x x (米),在Rt ACD 中,由勾股定理得:2228(32)x x ,解得:17x ,则2626179x .答:AD 的长为17米,BD 的长为9米.【点睛】本题考查了勾股定理及其逆定理的应用,设未知数、运用方程解题是本题的关键所在.9.(2022秋·吉林长春·八年级统考期中)如图①、图②均为43 的正方形网格,每个小正方形的顶点称为格点,边长均为1.在图①、图②中按下列要求各画一个三角形.(1)与ABC 全等,以点B 为一个顶点,另外两个顶点也在格点上.(2)与ABC 全等,且不与ABC 重合.【答案】(1)见解析(2)见解析【分析】(1)根据题意画出符合题意的格点三角形即可;(2)根据题意画出对应的全等三角形即可.【详解】(1)解:如图①中,BCE 即为所求,(2)解:如图②所示,BFK 即为所求;【点睛】本题主要考查了画格点三角形,画全等三角形,正确理解题意是解题的关键.10.(2022春·黑龙江哈尔滨·八年级哈尔滨市虹桥初级中学校校考阶段练习)如图所示,在△ABC 中,CD ⊥AB 于D ,AC =4,BC =3,165AD ,求CD 、BD 的长.【答案】CD 的长为125,BD 的长为95【分析】在Rt △ACD 中,利用勾股定理列式求出CD ,在Rt △BCD 中,利用勾股定理列式计算即可求出BD .【详解】解:∵CD ⊥AB ,∴∠ADC =∠BDC =90°,∴△ADC 和△BDC 是直角三角形,在Rt △ACD 中,222AC AD CD ,∴22221612455CD AC AD ,在Rt △BCD 中,222BC CD BD ,∴2222129355BD BC CD ,答:CD 的长为125,BD 的长为95.【点睛】本题考查了勾股定理,根据图形判断出所求的边所在的直角三角形是解题的关键.11.(2023·山西忻州·统考模拟预测)如图是3世纪我国汉代的赵爽在注解《周髀算经》时给出的“赵爽弦图”.他通过对图形的切割、拼接,巧妙地利用面积关系证明的重要数学定理是()A .三角形内角和定理B .勾股定理C .勾股定理的逆定理D .斜边、直角边定理【答案】B 【分析】“赵爽弦图”通过对图形的切割、拼接,巧妙地利用面积关系证明了勾股定理.【详解】解:由勾股定理相关的数学背景可知:“赵爽弦图”是对勾股定理的验证故选:B【点睛】本题考查了勾股定理的数学背景.熟知相关数学史即可.12.(2023春·山西吕梁·八年级统考期末)如图,毕达哥拉斯用图1,图2证明了.个重要的数学定理,他的思路是图1中拼成的正方形与图2中拼成的正方形面积相等,通过面积相等可以得到:222114422a b ab c ab ,整理得222 a b c .证明的这个定理是()A .勾股定理B .勾股定理的逆定理C .祖暅原理D .费马定理【答案】A 【分析】根据勾股定理作答即可.【详解】解:由222114422a b ab c ab ,整理得222 a b c .而a 、b 、c 是直角三角形的三边,∴证明的定理是勾股定理,故选:A .【点睛】本题主要考查了勾股定理,熟记勾股定理的内容是解题的关键.13.(2023春·河南驻马店·八年级统考期中)我国是最早了解勾股定理的国家之一.早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于下列哪部著名数学著作中()A .《周髀算经》B .《九章算术》C .《海岛算经》D .《几何原本》【答案】A【分析】加强教材的阅读,熟记相关知识的来源与出处.【详解】解:早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中.故选:A .【点睛】本题考查了勾股定理的历史渊源,仔细阅读教材,熟记知识是解题的关键.14.(2023春·黑龙江绥化·八年级校考期中)如下图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为2cm .【答案】49【分析】根据勾股定理计算即可【详解】解:最大的正方形的面积为22749cm ,由勾股定理得,正方形E 、F 的面积之和为249cm ,∴正方形A 、B 、C 、D 的面积之和为249cm ,故答案为49.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222 a b c .15.(2023秋·全国·八年级专题练习)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形密铺构成的大正方形.如图,设勾3a ,弦5c ,则小正方形ABCD 的边长..是.【分析】根据勾股定理计算即可解题.【详解】解:根据勾股定理可得2222534b c a ,∴小正方形ABCD 的边长为431 ,故答案为:1.【点睛】本题考查勾股定理,掌握勾股定理是解题的关键.16.(2023春·湖北宜昌·八年级校考期中)如图,数轴上点A 所表示的数为a ,求 a .【答案】15 /51【分析】根据勾股定理算出斜边长度解题即可,注意是从-1开始.【详解】解:如图,由勾股定理得221115BC CA .∵点C 表示-1,∴点A 表示的数是15a .故答案为:15 .【点睛】本题主要考查了数轴的意义和勾股定理,理解数轴的意义的是解答关键.17.(2023秋·全国·八年级专题练习)如图,将两个全等的直角三角形按照如下的位置摆放,使点A ,E ,D 在同一条直线上,90A D ,AE CD a ,AB ED b ,BE CE c .(1)填空:BEC ______ ,根据三角形面积公式,可得BEC 的面积 ______;根据割补法,由梯形的面积减去阴影部分的面积,可得BEC 的面积 ______.(2)求证:222 a b c .【答案】(1)90,212c ,212c【分析】(1)根据全等三角形的判定和性质以及三角形的面积公式即可得到结论;(2)用两种不同的方法表示梯形ABCD 的面积,计算化简后,即可得出222 a b c .【详解】(1)解:AE CD a ∵,AB ED b ,BE CE c ,BAE ≌ SSS EDC ,ABE DEC ,90ABE AEB ∵,90AEB DEC ,90BEC ,BEC 的面积21122BE CE c,由梯形的面积减去阴影部分的面积,可得BEC 的面积22222111112222222a b a b ab a ab b ab a b ab ab c ,故答案为:90,212c ,212c ;(2)证明:Rt ABE ∵ ≌Rt DEC △,AEB DCE ,BE EC c ,90D ∵,90DCE DEC ,90AEB DEC ,90BEC ,BEC 是等腰直角三角形,Rt ABE Rt CDE Rt BEC ABCD S S S S ∵梯形,2222AB CD AD AE AB ED DC BE EC,即2222a b a b ab ba ca ,2222222a ab bc ab ,222a b c .【点睛】本题考查了梯形,勾股定理的证明,用两种不同的方法表示同一个图形的面积是解决问题的关键.18.(2021秋·黑龙江绥化·八年级校考阶段练习)已知某开发区有一块四边形空地ABCD ,如图所示,现计划在空地上种植草皮,经测量∠A =90°,∠CBD =90°,DB =5m ,CD =13m ,DA =4m ,若每平方米草皮需要200元,问需要多少投入【答案】需要投入资金为7200元【分析】仔细分析题目,需要求得四边形的面积才能求得结果,连接BD,在直角三角形CBD中由勾股定理可求BC的长,在直角三角形ABD中可求得BA的长,由此看,四边形ABCD由Rt△ABD和Rt△DBC 构成,则容易求解.【详解】证明:连接BD∵∠A=90°,∠CBD=90°,∴△CBD,△ABD为直角三角形,在Rt△CBD中,BC2=CD2-BD2∴222213512BC CD BDm在△ABD中,AB2=BD2-AD2∴AB=2222543BD ADm∴四边形ABCD面积=S△BAD十S∆DBC=12∙AD∙AB+12∙DB∙BC=1143+512=6+30=3622m2,36×200=7200(元)所以需要投入资金为7200元.【点睛】此题主要考查了勾股定理的应用,得出△CBD,△ABD为直角三角形,用勾股定理求出BC,AB 的长是解题的关键.19.(2022春·八年级单元测试)洋洋想知道学校旗杆的高度,他发现旗杆顶端的绳子垂到地面还多2米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度.【答案】214米【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+2)米,根据勾股定理即可求得旗杆的高度.【详解】解:设旗杆的高度为x米,则绳子的长度为(x+2)米,根据勾股定理可得:x2+52=(x+2)2,解得,x=21 4.答:旗杆的高度为214米.【点睛】此题考查学生利用勾股定理解决实际问题的能力,关键是利用勾股定理即可求得AB的长.20.(2022秋·全国·八年级专题练习)如图,请在数轴上找到表示17的P点.(保留作图痕迹,不写作法)【答案】见解析【分析】因为17=16+1,则首先作出以1和4为直角边的直角三角形,则其斜边的长即是17,再以原点为圆心,以17为半径画弧,和数轴的正半轴交于一点即可.【详解】解:如图,点P即为所求.【点睛】本题考查运用数轴上的点来表示一个无理数,比较基础.21.(2023春·重庆忠县·八年级统考期末)把5米长的梯子斜靠在墙上,若梯子底端离墙4米,则梯子顶端到离地面()A.2米B.3米C.4米D.4.5米【答案】B【分析】根据勾股定理求解即可.【详解】解:∵梯子的长度为5米,梯子底端离地面4米,将梯子长度看作直角三角形的斜边,梯子底端离地面距离看作一条直角边,梯子顶端到地面的距离为:22543 (米),故选B .【点睛】本题考查勾股定理的实际应用,理解题意将实际问题转化为数字问题是解题的关键.22.(2023·浙江·八年级假期作业)如图,垂直地面的旗杆在离地3m 处断裂,旗杆顶部落地点离旗杆底部4m ,则旗杆折断前的高度为()A .6B .7C .8D .9【答案】C 【分析】根据勾股定理两个直角边的平方和等于斜边的平方.此题要求斜边和直角边的长度,解直角三角形即可.【详解】解:旗杆折断后,落地点与旗杆底部的距离为4m ,旗杆离地面3m 折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为 22345m ,所以旗杆折断之前高度为3m 5m 8m .故选:C .【点睛】本题考查了勾股定理在解实际问题中的运用,弄清勾股定理存在的条件是重点,解题的关键是理解文字语言的含义.23.(2023秋·八年级课前预习)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC 为0.7m ,梯子顶端到地面的距离AC 为2.4m .如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A D 为1.5m ,则小巷的宽为().A .2.4mB .2mC .2.5mD .2.7m【答案】D【分析】,ACB A BD △△是直角三角形,根据勾股定理即可求解.【详解】解:根据题意可知,,ACB A BD △△是直角三角形,在Rt ABC △中, 2.4AC ,0.7BC ,∴22222(2.4)(0.7) 5.760.49 6.25AB AC BC , 2.5AB ,在Rt A BD 中, 2.5A B AB , 1.5A D ,则2 2.25A D ,∴22 6.25 2.252BD A B A D,∴小巷的宽为0.72 2.7m CB BD ,故选:D .【点睛】本题主要考查勾股定理的运用,掌握勾股定理的运算方法是解题的关键.24.(2023秋·八年级课前预习)如图,一个圆桶底面直径为5cm ,高12cm ,则桶内所能容下的最长木棒为cm .【答案】13【分析】根据题意画出示意图,再根据勾股定理求解,即可.【详解】解:如图,AC 为圆桶底面直径,BC 为圆桶的高,∵5cm AC ,12cm BC ,∴2222512=13cm AB AC BC ,∴桶内所能容下的最长木棒为:13cm .故答案为:13.【点睛】本题考查勾股定理的运用,解题的关键是将实际问题转化为数学问题,灵活运用勾股定理.25.(2023春·新疆乌鲁木齐·八年级校考期中)已知,一轮船以4海里/时的速度从港口A 出发向东北方向航行,另一轮船以3海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,两船相距海里.【答案】10【分析】根据方位角可知两船所走的方向正好构成了直角,然后根据路程=速度×时间,得两条船分别走了8海里和6海里,再根据勾股定理,即可求得两条船之间的距离.【详解】解:∵两船行驶的方向是东北方向和东南方向,∴90BAC ,两小时后,两艘船分别行驶了428 ,326 海里,根据勾股定理得:228610 (海里).故答案为:10.【点睛】本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.26.(2023秋·全国·八年级专题练习)如图,台阶A 处的蚂蚁要爬到B 处搬运食物,则它爬行的最短距离为.【答案】13m/13米【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【详解】解:如图所示,台阶平面展开图为长方形,5AC ,9312BC ,则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.由勾股定理得:222AB AC BC ,13AB ,故答案为:13m .【点睛】本题主要考查了平面展开图—最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.27.(2023秋·全国·八年级专题练习)已知一架5m 长的梯子斜靠在一竖直的墙上,这时梯足距墙脚3m ,若梯子的顶端下滑1m ,则梯足将滑动多远?【答案】1米【分析】根据勾股定理求解即可.【详解】解:在直角三角形ABO 中,根据勾股定理可得,22534m OA ,如果梯子的顶度端下滑1米,则413m OA .在直角三角形A B O 中,根据勾股定理得到:4m OB ,则梯子滑动的距离就是431m OB OB .【点睛】本题考查的知识点是勾股定理的应用,掌握勾股定理是解题的关键.28.(2023春·河北廊坊·八年级统考期末)《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根三尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?【答案】9120尺【分析】设折断处离地的高度为x 尺,利用勾股定理建立方程,解方程即可得.【详解】解:设折断处离地的高度为x 尺,由勾股定理得: 222310x x ,解得9120 x ,答:折断处离地的高度为9120尺.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.29.(2023秋·全国·八年级专题练习)如图,点O是位于东西海岸线的一个港口,A,B两艘客轮从港口O 同时出发,A客轮沿北偏东75°航行,航速是每小时18海里,B客轮沿北偏西15°方向航行,航速是每小时24海里,请计算3小时之后两客轮之间的距离.【答案】90海里【分析】根据题意得:∠AOB=75°+15°=90°,OA=18×3=54(海里),OB=24×3=72(海里),再由勾股定理,即可求解.【详解】解:根据题意得:∠AOB=75°+15°=90°,OA=18×3=54(海里),OB=24×3=72(海里),根据勾股定理得:2222547290AB AO BO海里,即3小时之后两客轮之间的距离90海里.【点睛】本题主要考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.30.(2023秋·全国·八年级专题练习)如图是一个棱长为6cm的正方体的有盖纸盒,一只蚂蚁想从盒底的A 点爬到盒顶的B点,其中BC=2cm,那么蚂蚁爬行的最短行程是多少?【答案】10cm【分析】将正方体侧面展开图展开,由勾股定理计算即可.【详解】解:如图所示.∵BC=2cm,棱长为6cm,∴AD=6+2=8(cm),BD=6cm由勾股定理得,AB=2222=10(cm),BD AD86答:蚂蚁爬行的最短行程是10cm.【点睛】此题考查了平面展开一最短路径问题,利用勾股定理是解题的关键.。
专题01 勾股定理的基本应用题型一 求面积1.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设“赵爽弦图”中直角三角形较长直角边长为a ,较短直角边长为b ,若2()24a b +=,大正方形的面积为14,则小正方形的面积为( )A .2B .3C .4D .5【解答】解:设大正方形的边长为c ,则22214c a b ==+,2()24a b +=Q ,22224a ab b \++=,解得5ab =,\小正方形的面积是:1441425141042ab -´=-´=-=,故选:C .2.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A 、B 、D 的面积依次为6、10、24,则正方形C 的面积为( )A .4B .6C .8D .12【解答】解:由题意:A B E S S S +=正方形正方形正方形,D C E S S S -=正方形正方形正方形,A B D CS S S S \+=-正方形正方形正方形正方形Q 正方形A 、B 、D 的面积依次为6、10、24,24610C S \-=+正方形,8C S \=正方形.故选:C .3.如图,点C 是线段AB 上的一点,分别以AC 、BC 为边向两侧作正方形.设6AB =,两个正方形的面积和1220S S +=,则图中BCD D 的面积为( )A .4B .6C .8D .10【解答】解:设AC a =,BC b =,由题意得:6a b +=,2220a b +=,222()2a b a b ab +=+-Q ,22062ab \=-,8ab \=,BCD \D 的面积118422ab ==´=.图中BCD D 的面积为4.故选:A .4.正方形ABCD 的边长为1,其面积记为1S ,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为2S ,L 按此规律继续下去,则2022S 的值为( )A .20221()2B .20211()2C .2022D .2021【解答】解:在图中标上字母E ,如图所示.Q 正方形ABCD 的边长为1,CDE D 为等腰直角三角形,222DE CE CD \+=,DE CE =,221S S S \+=.观察,发现规律:2111S ==,211122S S ==,321124S S ==,431128S S ==,¼,11()2n n S -\=.当2022n =时,202212021202211()()22S -==,故选:B .5.如图,以正方形ABCD 的边AD 为直径作一个半圆,点M 是半圆上一个动点,分别以线段AM 、DM 为边各自向外作一个正方形,其面积分别为1S 和2S ,若正方形的面积为10,随点M 的运动12S S +的值为( )A .大于10B .小于10C .等于10D .不确定【解答】解:AB Q 为半圆的直径,90AMD \Ð=°,22210AM DM AD \+==,21S AM =Q ,22S DM =,1210S S \+=.故选:C .6.如图,在四边形ABDE 中,//AB DE ,AB BD ^,点C 是边BD 上一点,BC DE a ==,CD AB b ==,AC CE c ==.下列结论:①ABC CDE D @D ;②90ACE Ð=°;③四边形ABDE 的面积是21()2a b +;④22111()2222a b c ab +-=´;⑤该图可以验证勾股定理.其中正确的结论个数是( )A .5B .4C .3D .2【解答】解://AB DE Q ,AB BD ^,DE BD \^,90B D \Ð=Ð=°.在ABC D 和CDE D 中,90AB CD B D BC DE =ìïÐ=Ð=°íï=î,()ABC CDE SAS \D @D,A DCE \Ð=Ð,ACB E Ð=Ð.90A ACB Ð+Ð=°Q ,90DCE ACB \Ð+Ð=°.180DCE ACB ACE Ð+Ð+Ð=°Q ,90ACE \Ð=°,故①②正确;//AB DE Q ,AB BD ^,\四边形ABDE 的面积是21()2a b +;故③正确;Q 梯形ABDE 的面积-直角三角形ACE 的面积=两个直角三角形的面积,\22111()2222a b c ab +-=´,222a b c \+=.故③④⑤都正确.故选:A .7.如图,Rt ABC D 中,90C Ð=°,AD 平分BAC Ð,交BC 于点D ,6CD =,12AB =,则ABD D 的面积是( )A .18B .24C .36D .72【解答】解:作DH AB ^于D ,如图,AD Q 平分BAC Ð,DH AB ^,DC AC ^,6DH DC \==,1126362ABD S D \=´´=.故选:C .8.如图,Rt ABC D 中,90C Ð=°,5AC =,12BC =,分别以AB 、AC 、BC 为边在AB 的同侧作正方形ABEF 、ACPQ 、BCMN ,四块阴影部分的面积分别为1S 、2S 、3S 、4S ,则1234S S S S +++等于( )A .60B .80C .90D .120【解答】解:连接PF ,过点F 作FD AK ^于点D ,AB EB =Q ,90ACB ENB Ð=Ð=°,而90CBA CBE EBN CBE Ð+Ð=Ð+Ð=°,CBA EBN \Ð=Ð,()CBA NBE AAS \D @D ,故4ABC S S D =;同理ADF ABC D @D ,AC DF AQ CP \===,90QAC KDF PCD Ð=Ð=Ð=°Q ,//AQ DF \,\四边形CDFP 是矩形,90CPF \Ð=°,180QPC CPF \Ð+Ð=°,Q \,P ,F 三点共线,又FA AB =Q ,90FDA ACB Ð=Ð=°,而90FAD CAB CAB ABC Ð+Ð=Ð+Ð=°,FAD ABC \Ð=Ð,()FAD ABC AAS \D @D ,同理可证ACT FDK D @D ,2FDA ABC S S S D D \==,同理可证TPF KME D @D ,AQF ABC D @D ,13ADF ABC S S S S D D \+==,综上所证:1234133125902ABC S S S S S D +++==´´´=.故选:C .9.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为4和10,则b 的面积为 14 .【解答】解:如图,a Q 、b 、c 都为正方形,BC BF \=,90CBF Ð=°,24AC =,210DF =,1290Ð+Ð=°Q ,2390Ð+Ð=°,13\Ð=Ð,在ABC D 和DFB D 中,13BAC FDB BC FB Ð=ÐìïÐ=Ðíï=î,ABC DFB \D @D ,AB DF \=,在ABC D 中,2222241014BC AC AB AC DF =+=+=+=,b \的面积为14.故答案为14.10.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,90BAC Ð=°,3AB =,4AC =,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则空白部分的面积为 60 .【解答】解:如图,延长AB 交KF 于点O ,延长AC 交GM 于点P ,所以,四边形AOLP 是正方形,90BAC Ð=°Q ,3AB =,4AC =,347AO AB AC \=+=+=,3710KL \=+=,4711LM =+=,因此,矩形KLMJ 的面积为1011110´=,\空白部分的面积为22211034560---=,故答案为:60.11.我国古代著作《周髀算经》中记载了“赵爽弦图”.如图,若勾6AE =,弦10AD =,则小正方形EFGH 的面积是 4 .【解答】解:如图,Q 勾6AE =,弦AD =弦10AB =,\股8BE ==,\小正方形的边长862=-=,\小正方形的面积224==.故答案是:4.12.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A 、C 、D 的面积依次为4、6、18,则正方形B 的面积为 8 .【解答】解:由题意:A B E S S S +=正方形正方形正方形,D C E S S S -=正方形正方形正方形,A B D CS S S S \+=-正方形正方形正方形正方形Q 正方形A 、C 、D 的面积依次为4、6、18,4186B S \+=-正方形,8B S \=正方形.故答案为:8.13.如图,在同一平面内,直线l 同侧有三个正方形A ,B ,C ,若A ,C 的面积分别为9和4,则阴影部分的总面积为 6 .【解答】解:如图,作LM FE ^交FE 的延长线于点M ,交JI 的延长线于点N ,Q 四边形A 、B 、C 都是正方形,且正方形A 、C 的面积分别为9、4,90EKI EDR IHG \Ð=Ð=Ð=°,29DE =,24HI =,3DE \=,2HI =,1809090EDK KHI Ð=Ð=°-°=°Q ,90DKE KHI HIK \Ð=°-Ð=Ð,在EDK D 和KHI D 中,EDK KHI DKE HIK EK KI Ð=ÐìïÐ=Ðíï=î,()EDK KHI AAS \D @D ,2DK HI \==,3DE HK ==,13232EDK KHI S S D D \==´´=;90DEF HIJ Ð=Ð=°Q ,18090DEM DEF \Ð=°-Ð=°,18090HIN HIJ Ð=°-Ð=°,90KEL KIL Ð=Ð=°Q,90MEL DEK KEM \Ð=Ð=°-Ð,90NIL HIK KIN Ð=Ð=°-Ð,//EF l Q ,//IJ l ,//EF IJ \,90EML EMN N \Ð=Ð=Ð=°,在EML D 和EDK D 中,MIL DEK EML EDK EL EK Ð=ÐìïÐ=Ðíï=î,()EML EDK AAS \D @D ,EM ED EF \==,3EFL EML EDK S S S D D D \===;在LNI D 和KHI D 中,NIL HIK N KHI IL IK Ð=ÐìïÐ=Ðíï=î,()LNI KHI AAS \D @D ,IN IE IJ ==Q ,3LJI LNI KHI S S S D D D \===,336EFL LJI S S D D \+=+=,\阴影部分的总面积为6.14.如图,正方形ABDE 、CDFI 、EFGH 的面积分别为25、9、16,AEH D 、BDC D 、GFI D 的面积分别为1S 、2S 、3S ,则123S S S ++= 18 .【解答】解:DF DC =Q ,DE DB =,且180EDF BDC Ð+Ð=°,过点A 作AJ EH ^,交HE 的延长线于点J ,90J DFE \Ð=Ð=°,90AEJ DEJ DEJ DEF Ð+Ð=Ð+Ð=°Q ,AEJ DEF \Ð=Ð,AE DE =Q ,()AEJ DEF AAS \D @D ,AJ DF \=,EH EF =Q ,AHE DEF S S D D \=,同理:BDC GFI DEF S S S D D D ==,1233AHE BDC GFI DEF S S S S S S S D D D D ++=++=´,13462DEF S D =´´=,12318S S S \++=.故答案为:18.题型二 求线段长15.一个大正方形,被两条线段分割成两个小正方形和两个小长方形,若两个小正方形的面积分别为10和6,则小长方形的对角线AB 的长为( )A .4B .6C .10D .16【解答】解:如图,Q 两个小正方形的面积分别为10和6,26AC \=,210BC =,由勾股定理得,4AB ===.故选:A .16.如图,在Rt ABC D 中,90ABC Ð=°,以AB 为边在ABC D 外作正方形,其面积为9,以BC 为斜边在ABC D 外作等腰直角三角形,其面积为4,过点B 作BD AC ^交AC 于点D ,则(AD = )A .85B .94C .95D .2【解答】解:Q 以AB 为边的正方形的面积为9,29AB \=,Q 以BC 为斜边的等腰直角三角形的面积为4,\等腰直角三角形的腰长为216BC \=,在Rt ABC D 中,90ABC Ð=°,则5AC ===,1122ABC S AB AC AC BD D =´´=´´Q ,\1134522BD ´´=´´,解得:125BD =,由勾股定理得:95AD ===,故选:C .17.如图,在Rt ABC D 中,90ACB Ð=°,CD AB ^于D .已知15AB =,Rt ABC D 的周长为15+,则CD 的长为( )A .5BC .D .6【解答】解:如图所示:Rt ABC D Q 的周长为15+,90ACB Ð=°,15AB =,AC BC \+=,222215225AC BC AB +===,22()AC BC \+=,即222405AC AC BC BC +´+=,2405225180AC BC \´=-=,90AC BC \´=,Q 1122AB CD AC BC ´=´,90615AC BC CD AB ´\===;故选:D .18.若ABC=,高24=,则BC的长为( )cm.AD cmAC cmD中,30AB cm=,26A.28或8B.8C.28D.以上都不对Q为边BC上的高,【解答】解:AD\Ð=Ð=°.90ADB ADCBD===,在Rt ABDD中,18CD===.在Rt ACDD中,10当点D在线段BC上时,如图1,181028=+=+=;BC BD CD当点D在线段CB的延长线上时,如图2,18108=-=-=.BC BD CD\的长为28或8.BC故选:A.19.如图,在ABCBC=,6AB=,4AC=,则DE的^于D,且5D中,CE是AB边上的中线,CD AB长 2 .【解答】解:设BD x=-,=,则5AD x在Rt ACD D 中,222CD AC AD =-,在Rt BCD D 中,222CD BC BD =-,2222AC AD BC BD \-=-,即22226(5)4x x --=-,解得,12x =,则12BD =,2DE BE BD \=-=,贵答案为:2.20.如图,锐角三角形ABC 中,2C B Ð=Ð,AB =,8BC CA +=,则ABC D 的面积为 【解答】解:过A 作AE BC ^于E ,延长BC 到D 使CD AC =,则CAD D Ð=Ð,ACB D CAD Ð=Ð+ÐQ ,2ACB D \Ð=Ð,2C B Ð=ÐQ ,B D \Ð=Ð,AB AD \=,BE DE \=,8BC CA +=Q ,8BD BC CD BC AC \=+=+=,4BE \=,AE \==,222AE CE AC \+=,即228(4)(8)BC BC +-=-,解得:5BC =,ABC \D 的面积11522BC AE ==´´=g故答案为:.21.如图所示,ABC D 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD AC ^于点D ,则BD 的长为 3 .【解答】解:由图形可知,5BC =,BC 边上的高为3,ABC \D 的面积1155322=´´=,由勾股定理得,5AC ==,则115522BD ´´=,解得,3BD =,故答案为:3.22.如图,在Rt ABC D 中,90B Ð=°,3AB =,6BC =,AC 的中垂线DE 交AC 于点D ,交BC 于点E .延长DE 交AB 的延长线于点F ,连接CF .(1)求出CD 的长;(2)求出CF 的长.【解答】解:(1)在Rt ABC D 中,90B Ð=°,3AB =,6BC =,则AC ===,DE Q 是AC 的中垂线,12CD AC \==(2)DF Q 是AC 的中垂线,FA FC \=,3AB =Q ,33FB FA CF \=-=-,在Rt FBC D 中,222CF BC FB =+,即2226(3)CF CF =+-,解得:152CF =.23.如图,在ABC D 中,AB AC =,AD BC ^于点D ,45CBE Ð=°,BE 分别交AC ,AD 于点E 、F .(1)如图1,若13AB =,10BC =,求AF 的长度;(2)如图2,若AF BC =,求证:222BF EF AE +=.【解答】(1)解:如图1,AB AC =Q ,AD BC ^,BD CD \=,10BC =Q ,5BD \=,Rt ABD D 中,13AB =Q ,12AD \==,Rt BDF D 中,45CBE Ð=°Q ,BDF \D 是等腰直角三角形,5DF BD \==,1257AF AD DF \=-=-=;(2)证明:如图2,在BF 上取一点H ,使BH EF =,连接CF 、CH 在CHB D 和AEF D 中,Q 45BH EFCBH AFE BC AF=ìïÐ=Ð=°íï=î,()CHB AEF SAS \D @D ,AE CH \=,AEF BHC Ð=Ð,CEF CHE \Ð=Ð,CE CH \=,BD CD =Q ,FD BC ^,CF BF \=,45CFD BFD \Ð=Ð=°,90CFB \Ð=°,EF FH \=,Rt CFH D 中,由勾股定理得:222CF FH CH +=,222BF EF AE \+=.24.如图,在ABC D 中,AD BC ^,垂足为点D ,13AB =,5BD =,15AC =.(1)求AD 的长;(2)求BC的长.【解答】解:(1)AD BC ^Q ,90ADB CDA \Ð=Ð=°.在Rt ADB D 中,90ADB Ð=°Q ,222AD BD AB \+=,222144AD AB BD \=-=.0AD >Q ,12AD \=.(2)在Rt ADC D 中,90CDA Ð=°Q ,222AD CD AC \+=,22281CD AC AD \=-=.0CD >Q ,9CD \=.5914BC BD CD \=+=+=.题型三 通过勾股定理设方程25.如图,四个全等的直角三角形围成正方形ABCD 和正方形EFGH ,即赵爽弦图.连接AC ,分别交EF 、GH 于点M ,N ,连接FN .已知3AH DH =,且21ABCD S =正方形,则图中阴影部分的面积之和为( )A .214B .215C .225D .223【解答】解:21ABCD S =Q 正方形,221AB \=,设DH x =,则33AH DH x ==,22921x x \+=,22110x \=,根据题意可知:AE CG DH x ===,3CF AH x ==,32FE FG CF CG x x x \==-=-=,2FGN CGNS S D D \=AEM CGN S S D D =Q ,FGN AEM CGN S S S D D D \=+,\阴影部分的面积之和为:()12NGFM S NG FM FG =+×梯形1()2EM MF FG =+×12FE FG =×21(2)2x =´22x =215=.故选:B .26.如图,在ABC D 中,90C Ð=°,点M 是AB 的中点,点N 在AC 上,MN AB ^.若8AC =,4BC =,则NC 的长为( )A .3B .4C .5D .【解答】解:如图,连接BN ,AB Q 的垂直平分线交AB 、AC 于点M 、N ,AN BN \=,设NC x =,则8AN BN x ==-,在Rt BCN D 中,由勾股定理得:222BN BC CN =+,即222(8)4x x -=+,解得:3x =,即3NC =,故选:A .27.如图,由四个全等的直角三角形拼成的图形,设CE a =,HG b =,则斜边BD 的长是()A B C .a b +D .a b-【解答】解:设CD x =,则DE a x =-,HG b =Q ,AH CD AG HG DE HG a x b x \==-=-=--=,2a bx -\=,22a b a bBC DE a -+\==-=,2222222()()222a b a b a b BD BC CD +-+\=+=+=,BD \=,故选:B .28.在长方形ABCD 中,52AB =,4BC =,CE CF =,延长AB 至点E ,连接CE ,CF 平分ECD Ð,则BE = 76 .【解答】解:如图,延长CF ,BA 交于点G ,连接EF ,过点F 作FH CE ^于H ,过点E 作EM CF ^于M ,Q 四边形ABCD 是矩形,且52AB =,4BC =,//AB CD \,52AB CD ==,90D ABC CBE Ð=Ð=Ð=°,DCF G \Ð=Ð,CF Q 平分ECD Ð,DCF FCE \Ð=Ð,FH DF =,G ECF \Ð=Ð,EC EG \=,ECG \D 是等腰三角形,CM MG \=,CE CF =Q ,ECF \D 是等腰三角形,EM CF ^Q ,FH CE ^,EM \和FH 是等腰三角形腰上的高,EM FH DF \==,Rt CDF Rt CME(HL)\D @D ,52CM CD \==,5CG \=,Rt CBG D 中,3BG ===,设BE x =,则3EC EG x ==+,Rt CBE D 中,222(3)4x x +=+,解得:76x =,76BE \=.故答案为:76.29.如图是“赵爽弦图”, ABH D ,BCG D ,CDF D 和DAE D 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,如果10AB =,且:3:4AH AE =.那么AH 等于 6 .【解答】解:10AB =Q ,:3:4AH AE =,设AH 为3x ,AE 为4x ,由勾股定理得:222222(3)(4)(5)AB AH AE x x x =+=+=,510x \=,2x \=,6AH \=,故答案为:6.30.[阅读理解]如图,在ABC D 中,4AB =,6AC =,7BC =,过点A 作直线BC 的垂线,垂足为D ,求线段AD 的长.解:设BD x =,则7CD x =-.AD BC ^Q ,90ADB ADC \Ð=Ð=°.在Rt ABD D 中,222AD AB BD =-,在Rt ACD D 中,222AD AC CD =-,2222AB BD AC CD \-=-.又4AB =Q ,6AC =,222246(7)x x \-=--.解得2914x =,2914BD \=.AD \==.[知识迁移](1)在ABC D 中,13AB =,15AC =,过点A 作直线BC 的垂线,垂足为D .)i 如图1,若14BC =,求线段AD 的长;)ii 若12AD =,求线段BC 的长.(2)如图2,在ABC D 中,AB =,AC =,过点A 作直线BC 的垂线,交线段BC 于点D ,将ABD D 沿直线AB 翻折后得到对应的ABD D ¢,连接CD ¢,若252AD =,求线段CD ¢的长.【解答】解:(1))i 设BD x =,则14CD x =-,AD BC ^Q ,90ADB ADC \Ð=Ð=°,在Rt ABD D 中,222AD AB BD =-,在Rt ACD D 中,222AD AC CD =-,2222AB BD AC CD \-=-,13AB =Q ,15AC =,22221315(14)x x \-=--,5x \=,5BD \=,12AD \===;)ii 在Rt ABD D 中,5BD ===,在Rt ACD D 中,9CD ===,当ABC Ð为锐角时,如图11-,5914BC BD CD =+=+=,当ABC Ð为钝角时,如图12-,954BC BD CD =-=-=;(2)如图2,连接DD ¢交AB 于点N ,则DD AB ¢^,过点D ¢作D H BD ¢^于H ,在Rt ABD D 中,254BD ==;在Rt ACD D 中,5CD ==,AB Q 垂直平分DD ¢,254D B DB ¢\==,2D D DN ¢=,1122ABD S AD BD AB DN D =×=×Q ,\252524DN ´=,DN \=2D D DN ¢\==,设HB m =,则254HD HB BD m =+=+,22222D H D D HD D B HB ¢¢¢=-=-Q ,22222525(()44m m \-+=-,154m \=,154HB \=,152541544HC HB BD CD \=++=++=,5D H ¢===,D C ¢\===.。
专题01 用勾股定理解三角形一、单选题1.如图,在ABC 中,90C ∠=︒,13AB =,5AC =,D 、E 分别是AC 、AB 的中点,则DE 的长是( )A .6.5B .6C .5.5D .2【答案】B 【分析】根据勾股定理可先求出BC ,然后结合中位线定理得出结论. 【解析】由勾股定理得:12BC =,∵D 、E 分别是AC 、AB 的中点, ∵DE 是ABC 的中位线, 则162DE BC ==, 故选:B . 【小结】本题考主要考查三角形的中位线定理,熟记并灵活运用基本定理是解题关键. 2.直角三角形的直角边长分别为3,4,则直角三角形的周长为( )A .5B .12C .12或7D .7【答案】B 【分析】先根据勾股定理求出直角三角形的斜边,继而即可求出三角形的周长. 【解析】根据勾股定理可知:斜边=5,∵三角形周长=3+4+5=12,故选:B.【小结】本题考查的是勾股定理的应用,难度适中,解题关键是根据勾股定理求出斜边的长.3.如图,在∵ABC中,∵ACB=90°,CD是高,∵A=30°,AB=4,则下列结论中不正确的是()A.BC=2B.BD=1C.AD=3D.CD=2【答案】D【分析】根据含30°角的直角三角形的性质及勾股定理求出各线段的长度,即可判断.【解析】∵∵ACB=90°,∵A=30°,∵BC=12AB=2,∵B=60°,∵CD∵AB,∵∵CDB=∵CDA=90°,∵BCD=30°,∵BD=12BC=1,∵AD=AB-BD=4-1=3,CD==∵不正确的是D.故选:D.【小结】本题考查的是直角三角形的性质,勾股定理,掌握直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.4.如图是2002年8月在北京召开的国际数学大会的会标,它是由四个相同的直角三角形与中间一个小正方形拼成的一个大正方形,若大正方形的边长是13cm,每个直角三角形较短的一条直角边的长是5cm,则小正方形的边长为()A.4cm B.5cm C.6cm D.7cm【答案】D【分析】先设直角三角形的两直角边分别是a cm、b cm(a>b),斜边是c cm,于是有a2+b2=c2,即a2+52=132,易得a=12 cm,a-b即可得小正方形的边长.【解析】设大直角三角形的两直角边分别是a cm、b cm(a>b),斜边是c cm,那么有a2+b2=c2,∵大正方形的边长是13cm,每个直角三角形较短的一条直角边的长是5cm,∵a2+52=132,解得a= 12(舍去负值),即a=12 cm,∵小正方形的边长为:a-b=12-5=7 cm.故选:D.【小结】本题考查了勾股定理,解题的关键是知道小正方形的边长等于直角三角形较长直角边减去较小直角边.5.已知一个直角三角形三边的平方和为800,则这个直角三角形的斜边长为()A.20B.40C.80D.100【答案】A【分析】直角三角形中两直角边的平方和等于斜边的平方,已知三边的平方和可以求出斜边的平方,根据斜边的平方可以求出斜边长.【解析】∵在直角三角形中斜边的平方等于两直角边的平方和,又∵已知三边的平方和为800,则斜边的平方为三边平方和的一半,即斜边的平方为,800÷2=400,∵斜边长, 故选:A . 【小结】本题考查了勾股定理在直角三角形中的灵活应用,考查了勾股定理的定义,本题中正确计算斜边长的平方是解题的关键.6.如图,O 的直径AB 垂直于弦,CD 垂足为,22.5,2E A OC ∠=︒=,则CD 的长为( )A B .2C .D .4【答案】C 【分析】由垂径定理可得出CD=2CE ,∵CEO=90°,由∵A=22.5°,利用圆周角定理可求出∵COE=45°,进而可得出∵CEO 为等腰直角三角形,再利用等腰直角三角形的性质及OC=2可求出CE 的长(或通过解直角三角形求出CE 的长),结合CD=2CE 可求出CD 的长. 【解析】∵∵O 的直径AB 垂直于弦CD , ∵CD=2CE ,∵CEO=90°, 又∵∵COE=2∵A=45°, ∵∵CEO 为等腰直角三角形,∵CD=2CE= 故选:C . 【小结】本题考查了圆周角定理、垂径定理以及等腰直角三角形,利用等腰直角三角形的性质求出CE的长是解题的关键.7.菱形的边长是5cm,一条对角线的长为6cm,则另一条对角线的长为()A.6cm B.C.8cm D.10cm【答案】C【分析】根据菱形性质得出OB=OD=3cm,OA=OC,AC∵BD,由勾股定理求出OA,即可得出答案.【解析】如图所示:∵四边形ABCD是菱形,∵AB=5cm,OB=OD=12BD=3cm,AC∵BD,∵∵AOB=90°,由勾股定理得:OA=4cm,∵AC=2OA=8cm,故选:C.【小结】本题考查了菱形的性质和勾股定理,熟练掌握菱形的对角线互相垂直平分是解题的关键.8.若直角三角形中,斜边的长为17,一条直角边长为15,则另一条直角边长为()A.7B.8C.20D.65【答案】B【分析】根据勾股定理解答即可.【解析】∵直角三角形中,斜边的长为17,一条直角边长为15, ∵另一条直角边222171456=-=, ∵另外一边为8. 故选:B . 【小结】此题主要考查了勾股定理,正确把握勾股定理是解题关键. 9.边长为2的正方形的对角线长是( )A B .2C .D .4【答案】C 【分析】根据勾股定理,可得对角线的长,根据开方运算,可得答案. 【解析】对角线平方的长是8,边长为2的正方形的对角线长是 故选:C . 【小结】本题考查了算术平方根,利用了开方运算.10.如图,菱形ABCD 的周长为32,60ABC ∠=,点E 、F 分别为AO 、AB 的中点,则EF 的长度为( )A .B .3C D .4【答案】A 【分析】首先根据菱形的性质得出8,,AB AC BD =⊥1302ABO ABC =∠=∠︒,然后利用含30°的直角三角形的性质和勾股定理求出BO 的长度,最后利用三角形中位线的性质求解即可.【解析】∵菱形ABCD 的周长为32,60ABC ∠=︒8,,AB AC BD ∴=⊥1302ABO ABC =∠=∠︒. 142AO AB ∴==,BO ∴==.∵点E 、F 分别为AO 、AB 的中点,12EF BO ∴== 故选:A . 【小结】本题主要考查菱形的性质,含30°的直角三角形的性质和三角形中位线的性质,熟练掌握这些性质是关键. 11.若直角三角形两边长分别是6,8,则它的斜边为( ) A .8 B .10C .8或10D .以上都不正确【答案】C 【分析】分两种情况:∵6和8都是直角边,利用勾股定理求解即可;∵6是直角边,8是斜边,从而可确定答案. 【解析】∵6和810=; ∵8是斜边,综上所述,斜边为8或10, 故选:C . 【小结】本题主要考查勾股定理,分情况讨论是关键.12.如图,长为12cm 的橡皮筋放置在水平面上,固定两端A 和B ,然后把中点C 垂直向上拉升4.5cm 至点D ,则拉升后橡皮筋伸长了( )A.2cm B.3cm C.4cm D.5cm【答案】B【分析】根据勾股定理,可求出AD、BD的长,则AD BD+即为拉长后橡皮筋的长,从而减去原来的长度即可得到答案.【解析】Rt△ACD中,16cm2AC AB==, 4.5cmCD=;根据勾股定理,得:7.5cmAD=;215cmAD BD AD∴+==;15123cm∴-=;故选:B.【小结】此题主要考查了等腰三角形的性质以及勾股定理的应用.关键是根据勾股定理,可求出AD、BD的长.13.如图,AB为∵O的直径,点C为∵O上一点,连接CO,作AD//OC,若CO=52,AC=2,则AD=()A.3B.C.72D.175【答案】D【分析】根据题意,作出合适的辅助线,然后可以求得OG的长,再利用勾股定理即可得到AG的长,从而可以得到AD的长.【解析】作AE∵OC于点E,作OF∵CA于点F,作OG∵AD于点G,则EA∵OG,∵AD∵OC,∵四边形OEAG是矩形,∵OG =EA ,∵OF ∵AC ,OA =OC =52,AC =2, ∵CF =1,∵OF2=, ∵22AC OF OC AE⋅⋅=,∵522222AE ⋅=,解得5AE =, ∵OG, ∵OG ∵AD ,∵AG1710==, ∵AD =2AG =175,故选:D .【小结】本题考查圆的性质,矩形的判定与性质,勾股定理,面积等积式,掌握圆的性质,矩形的判定与性质,勾股定理,面积等积式是解题关键.14.如图,在正方形网格中,以格点为顶点的ABC 的面积等于3,则点A 到边BC 的距离为( )A B .C .4 D .3【答案】D 【分析】根据勾股定理表示出BC 的长,再根据三角形的面积为3,求出BC ,即可求出点A 到边BC 的距离. 【解析】设单位方格的边长为a ,BC a ==,ABC 的面积等于3,()211222322a a a a a ∴-⨯⨯⨯-⨯⨯=,解得a =,2BC ===, ∴点A 到边BC 的距离为2632ABC S BC ==. 故答案为:D . 【小结】此题考查了三角形的面积勾股定理的运用,关键是根据图形列出求三角形面积的算式. 15.等腰三角形底边上的高为4cm ,周长为16cm ,三角形的面积为( ) A .214cm B .212cm C .210cm D .28cm【答案】B 【分析】设等腰三角形的底边长为2x ,则有腰长为8-x ,然后根据勾股定理可得()22248x x +=-,进而问题可求解.【解析】 如图,由题意得:AD =4cm ,设等腰三角形的底边长为2x cm ,由周长为16cm 可得()8cm AB x =-, ∵在Rt ∵ADB 中,由勾股定理得()22248x x +=-,解得:3x =, ∵6BC cm =, ∵21122ABCSBC AD cm =⋅=; 故选B . 【小结】本题主要考查等腰三角形的性质及勾股定理,熟练掌握等腰三角形的性质及勾股定理是解题的关键. 16.在ABC 中,AB =AC =5,BC =6,M 是BC 的中点,MN ∵AC 于点N .则MN =( ) A .125B .61C .6D .11【答案】A 【分析】连接AM ,根据等腰三角形三线合一的性质得到AM ∵BC ,根据勾股定理求得AM 的长,再根据在直角三角形的面积公式即可求得MN 的长. 【解析】 如图,连接AM ,∵AB =AC ,点M 为BC 中点, ∵AM ∵CM ,BM =CM =12BC =3, 在Rt ∵ABM 中,AB =5,BM =3,∵AM4==,又∵S∵AMC=12MN•AC=12AM•MC,∵MN=AM CMAC=125故选:A.【小结】本题考查三角形的面积,等腰三角形的性质,勾股定理,掌握相关性质定理正确推理计算是解题关键.17.两个直角三角形拼成如图所示的图形,则2x的值为()A B.3C D.5【答案】B【分析】可设直角边都是1的直角三角形的斜边为y,根据勾股定理可求出y2=2,则再利用勾股定理可求出2x的值.【解析】在直角边都是1的直角三角形中,设斜边为y,则由勾股定理得:y2=12+12=2,同理可得:x2=y2+12=2+1=3.故选:B.【小结】此题考查了勾股定理,掌握勾股定理的应用条件及方法是解题的关键.18.一直角三角形的斜边长比其中一直角边长大3,另一直角边长为9,则斜边长为()A.15B.12C.10D.9【答案】A【分析】设斜边长为x,则一直角边长为x-3,再根据勾股定理求出x的值即可.【解析】设斜边长为x ,则一直角边长为x -3, 根据勾股定理得92+(x -3)2=x 2, 解得x=15. 故选:A . 【小结】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.19.如图,在Rt ABC △中,90C ∠=︒,D 为AC 上一点.若12DA DB ==,ABD △的面积为60,则CD 的长是( )A .5B .C .8D .10【答案】B 【分析】根据Rt ∵ABC 中,∵C =90°,可证BC 是∵DAB 的高,然后利用三角形面积公式求出BC 的长,再利用勾股定理即可求出DC 的长. 【解析】∵∵C =90°,DA =12, ∵S ∵DAB =12DA BC ⋅=60, ∵BC =10,在Rt ∵BCD 中,CD ²+BC ²=BD ²,即CD ²+10²=12²,解得:CD =, 故选:B . 【小结】本题主要考查勾股定理,解题的关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.20.一等腰三角形底边长为10cm,腰长为13cm,则腰上的高为()A.12cm B.60cm13C.12013cm D.13cm5【答案】C【分析】过点A作AD∵BC于D,过点B作BE∵AC于E,根据勾股定理求出AD,根据三角形的面积公式计算即可.【解析】如下图,在等腰三角形ABC中,底边长为BC=10cm,腰长为AB=13cm,过点A作AD∵BC于D,过点B作BE∵AC于E,∵AD∵BC于D,∵BD=DC,∵BC=10cm,∵BD=DC=5cm,在Rt∵ABD中,12AD==cm,由于1122BC AD AC BE⋅=⋅,∵10121201313BE⨯==cm,故选:C.【小结】本题考查的是勾股定理、等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.21.如图,在长方形ABCD中,AB=3,BC=6,对角线AC的垂直平分线分别交AD、AC于点M,N,连接CM,则CM的长为()A.154B.153C.-154D.-153【答案】A【分析】由线段垂直平分线的性质求出AM=CM,在Rt∵DMC中,由勾股定理得出DM2+DC2=CM2,得出方程(6-CM)2+32=CM2,求出CM即可.【解析】∵四边形ABCD是矩形,∵∵D=∵B=90°,AD=BC=6,AB=DC=3,∵MN是AC的垂直平分线,∵AM=CM,∵DM=AD-AM=AD-CM=6-CM,在Rt∵DMC中,由勾股定理得:DM2+DC2=CM2,(6-CM)2+32=CM2,解得:CM=154,故选:A.【小结】本题考查了矩形性质,勾股定理,线段垂直平分线性质的应用,关键是能得出关于CM的方程.22.如图,已知∵ABC中,∵ABC=90°,AB=BC,过∵ABC的顶点B作直线l,且点A到l的距离为2,点C到l的距离为3,则AC的长是()A B.C D.5【答案】C【分析】分别过A 、C 作AD ∵l 于D ,CE ∵l 于E ,根据锐角互余可得∵ABD =∵BCE ,∵DAB =∵CBE ,利用ASA 可证明∵ABD ∵∵CBE ,即可得BD =CE ,根据勾股定理可求出AB 的长,再利用勾股定理求出AC 的长即可. 【解析】作AD ∵l 于点D ,作CE ∵l 于点E , ∵∵ABC =90°, ∵∵ABD +∵CBE =90°, 又∵DAB +∵ABD =90°, ∵∵BAD =∵CBE , 在∵ABD 和∵BCE 中,ADB BEC BAD CBE AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∵∵ABD ∵∵BCE (AAS ), ∵BE =AD =2,DB =CE =3,在Rt ∵BCE 中,根据勾股定理,得BC在Rt ∵ABC 中,根据勾股定理,得AC=.故选:C . 【小结】本题考查全等三角形的判定与性质及勾股定理,根据三角形全等得出BD =CE 是解题关键.23.如图1,点P 从ABC 的顶点A 出发,沿A B C →→匀速运动到点,C 图2是点P 运动时线段CP 的长度y 随时间x 变化的关系图象,其中点Q 为曲线部分的最低点,则ABC 的边AB 的长度为( )A .12B .8C .10D .13【答案】C 【分析】根据图2中的曲线可得,当点P 在∵ABC 的顶点A 处,运动到点B 处时,图1中的AC =BC =13,当点P 运动到AB 中点时,此时CP ∵AB ,根据图2点Q 为曲线部分的最低点,可得CP =12,根据勾股定理可得AP =5,再根据等腰三角形三线合一可得AB 的长. 【解析】根据图2中的曲线可知:当点P 在∵ABC 的顶点A 处,运动到点B 处时, 图1中的AC =BC =13, 当点P 运动到AB 中点时, 此时CP ∵AB ,根据图2点Q 为曲线部分的最低点, 得CP =12,所以根据勾股定理,得此时AP 5. 所以AB =2AP =10. 故选:C . 【小结】本题考查了动点问题的函数图象,解决本题的关键是综合利用两个图形给出的条件.24.如图,在ABC 中,90C ∠=︒,D 是边BC 上一点,ADC 2B ∠=∠,5AD =,4AC =,则AB 的长为( )A .B .C .6D .8【答案】A 【分析】根据勾股定理求出CD ,根据三角形的外角的性质得到∵B =∵BAD ,求出BD ,计算即可. 【解析】∵∵C =90°,AC =4,AD =5, ∵CD =3,∵∵ADC =2∵B ,∵ADC =∵B +∵BAD , ∵∵B =∵BAD , ∵DB =AD =5, ∵BC =BD +CD =8,在Rt∵ABC 中,∵C =90°,AC =4,BC =8,∵AB ===故选:A . 【小结】本题考查的是勾股定理、等腰三角形判定的应用,掌握如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2是解题的关键.25.菱形CD AB 的边20AB =,面积为320,D 90∠BA <,∵O 与边AB 、D A 都相切,10AO =,则∵O 的半径长等于( )A .5B .6C .D .【答案】C 【分析】如图作DH∵AB 于H ,连接BD ,延长AO 交BD 于E .利用菱形的面积公式求出DH ,再利用勾股定理求出AH ,BD ,由∵AOF∵∵DBH ,可得=OA OFBD BH,即可解决问题. 【解析】如图作DH∵AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB=20,面积为320, ∵AB•DH=320, ∵DH=16,在Rt∵ADH 中,12=,∵HB=AB -AH=8,在Rt∵BDH 中,=设∵O 与AB 相切于F ,与AD 相切于J ,连接OF ,OJ ,则OF∵AB ,OJ∵AD ,OF=OJ , ∵OA 平分∵DAB , ∵AD=AB , ∵AE∵BD ,∵∵OAF+∵ABE=90°,∵ABE+∵BDH=90°, ∵∵OAF=∵BDH ,∵∵AFO=∵DHB=90°, ∵∵AOF∵∵DBH , ∵=OA OFBD BH,8OF=,∵OF= 故选:C . 【小结】本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.26.如图,在Rt ABC △中,90C ∠=︒,BD 平分,5cm,3cm ABC AB BC ∠==,则AD 的长等于( )A .2.5cmB .2cmC .1.5cmD .3cm【答案】A 【分析】如图(见解析),先根据角平分线的性质可得CD DE =,再根据直角三角形全等的判定定理与性质可得3cm BE BC ==,从而可得2cm AE =,然后利用勾股定理可得4cm AC =,最后在Rt ADE △中,利用勾股定理即可得. 【解析】如图,过点D 作DE AB ⊥于点E ,BD 平分ABC ∠,90C ∠=︒,DE AB ⊥, CD DE ∴=,在Rt BCD 和Rt BED 中,CD DEBD BD =⎧⎨=⎩,()Rt BCD Rt BED HL ∴≅,3cm BE BC ∴==, 5cm AB =,2cm AE AB BE ∴=-=,在Rt ABC 中,90,5cm,3cm C AB BC ∠=︒==,4cm AC ∴==,设cm AD x =,则(4)cm DE CD AC AD x ==-=-, 则在Rt ADE △中,222AE DE AD +=,即2222(4)x x +-=, 解得 2.5(cm)x =, 即 2.5cm AD =, 故选:A . 【小结】本题考查了角平分线的性质、直角三角形全等的判定定理与性质、勾股定理等知识点,通过作辅助线,利用到角平分线的性质是解题关键.27.如图,∵ABCD 的对角线AC 与BD 相交于点O ,AB ∵AC ,若AB =4,AC =6,则BO 的长为( )A .5B .8C .10D .11【答案】A 【分析】根据平行四边形的性质可得AO =CO =12AC =3,再利用勾股定理可得BO 的长. 【解析】∵四边形ABCD 是平行四边形, ∵AO =CO =12AC =3, ∵AB ∵AC ,AB =4,∵BO 5, 故选:A . 【小结】此题主要考查了平行四边形的性质和勾股定理,解题关键是掌握平行四边形的对角线互相平分.28.如图,在矩形ABCD 中,AB =5,AD =12,对角线BD 的垂直平分线分别与AD ,BC 边交于点E 、F ,则四边形BFDE 的面积为( )A.84524B.84512C.16912D.82513【答案】A【分析】根据矩形的性质和菱形的判定得出四边形BEDF是菱形,进而利用勾股定理和菱形的面积公式解答即可.【解析】∵四边形ABCD是矩形,∵AD∵BC,∵∵DEO=∵BFO,∵EDO=∵FBO,∵对角线BD的垂直平分线分别与AD,BC边交于点E、F,∵BO=DO,EF∵BD,∵∵DEO∵∵BFO(AAS),∵EO=FO,∵BO=DO,∵四边形BEDF是平行四边形,∵EF∵BD,∵平行四边形BEDF是菱形,∵BE=DE,∵AB=5,AD=12,∵A=90°,∵BD=13,设DE=x,则AE=12﹣x,在Rt∵AEB中,AB2+AE2=BE2,即52+(12﹣x)2=x2,∵x 16924=, ∵BE =DE 16924=,在Rt∵BEO 中,OE 6524===, ∵EF =2EO 6512=, ∵菱形BEDF 的面积116584513221224BD EF =⋅⋅=⨯⨯=, 故选:A . 【小结】此题考查矩形的性质、菱形的性质和判定以及勾股定理,关键是根据矩形的性质和菱形的判定和性质解答. 29.如图,D 是ABC 内一点,BD CD ⊥,6AD =,4BD =,3CD =,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是( )A .7B .9C .10D .11【答案】D 【分析】先根据勾股定理求出线段BC 的长度,再根据三角形中位线的性质定理求出 2.5EF HG ==,3EH GF ==,即可求出四边形的周长. 【解析】∵BD CD ⊥,4BD =,3CD =,由勾股定理得:5BC ==,∵E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点, ∵12HG BC EF ==,12EH FG AD ==,∵6AD =,∵ 2.5EF HG ==,3EH GF ==,∵四边形EFGH 的周长是()2 2.5311EF FG HG EH +++=⨯+=. 故选:D . 【小结】此题考查勾股定理的应用,三角形中位线的性质定理,熟记定理并正确应用是解题的关键.30.如图,在∵ABC 中,∵ACB =90°,AC =3、BC =4、P 、Q 两点分别在AC 和AB 上.且CP =BQ =1,在平面上找一点M .以A 、P 、Q 、M 为顶点画平行四边形,这个平行四边形的周长的最大值为( )A .12B .4C .6+D .8+【答案】D 【分析】先依据勾股定理以及相似三角形的性质,即可得到PQ 的长,再分三种情况,即可得到以A 、P 、Q 、M 为顶点的平行四边形的周长,进而得出周长的最大值. 【解析】由勾股定定理得:5AB =,则4AQ =; 过点Q 作QN AC ⊥,垂足为N ,则//QN BC , 则::4AN NC AQ QB ==, 则125AN =, 122255PN ∴=-=, 由::NQ BC AQ AB =,得165NQ =,再由勾股定理得:PQ =如图1:周长2()4PA PQ =+= 如图2:周长2()12PA PM =+=;如图3:周长2()8AQ PQ =+=∵84>88>即814.412>>,故周长的最大值是8故选:D . 【小结】本题主要考查了平行四边形的性质以及勾股定理的运用,关键是作辅助线构造直角三角形,利用勾股定理计算得到PQ 的长.31.如图,在Rt ABC ∆中,90,BAC BA CA ∠=︒==D 为BC 边的中点,点E 是CA 延长线上一点,把CDE ∆沿DE 翻折,点C 落在C '处,EC '与AB 交于点F ,连接BC '.当43FA EA =时,BC '的长为( )AB .CD .【答案】D 【分析】如图,连接CC ′,过点C ′作C ′H ∵EC 于H .设AB 交DE 于N ,过点N 作NT ∵EF 于N ,过点D 作DM ∵EC 于M .证明∵CC ′B =90°,求出CC ′,BC 即可解决问题. 【解析】如图,连接CC′,过点C′作C′H∵EC于H.设AB交DE于N,过点N作NT∵EF于N,过点D作DM∵EC 于M.∵∵F AE=∵CAB=90°,43 FAAE,∵EF:AF:AE=5:4:3,∵C′H∵AF,∵∵EAF∵∵EHC′,∵EC′:C′H:EH=EF:AF:AE=5:4:3,设EH=3k,C′H=4k,EC′=EC=5k,则CH=EC=EH=2k,由翻折可知,∵AEN=∵TEN,∵NA∵EA,NT∵ET,∵∵NAE=∵NTE,∵NE=NE,∵∵NEA∵∵NET(AAS),∵AN=NT,EA=ET,设AE=3m,AF=4m,EF=5m,AN=NT=x,则AE=ET=3m,TF=2m,在Rt∵FNT中,∵FN2=NT2+FT2,∵(4m-x)2=x2+(2m)2,解得x=32 m,∵AC=AB,∵CAB=90°,∵BC∵CD=BD∵DM∵CM,∵DCM=45°,∵CM=DM∵AN∵DM,∵AN EA DM EM=,∵31232mAN DMEA EM m===,∵EM,∵ECk,∵k=,∵CH C H'==,∵CC'===∵DC=DC′=DB,∵∵CC′B=90°,∵BC'===故选:D.【小结】本题考查翻折变换,解直角三角形,等腰直角三角形的性质,相似三角形的性质,全等三角形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.32.如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∵DAM=45°,点F在射线AM上,且AFBE,CF与AD相交于点G,连接EC、EF、EG.则下列结论:∵∵ECF=45°;∵∵AEG的周长为a;∵BE2+DG2=EG2;∵∵EAF的面积的最大值是a2;∵当BE=a时,G是线段AD的中点.其中正确的结论是()A.∵∵∵B.∵∵∵C.∵∵∵D.∵∵∵【答案】D【分析】∵正确:如图1中,在BC上截取BH=BE,连接EH.证明∵FAE∵∵EHC(SAS),即可解决问题;∵∵错误:如图2中,延长AD到H,使得DH=BE,则∵CBE∵∵CDH(SAS),再证明∵GCE∵∵GCH(SAS),即可解决问题;∵正确:设BE=x,则AE=a-x,,构建二次函数,利用二次函数的性质解决最值问题;∵正确:当BE=13a时,设DG=x,则EG=x13+a,利用勾股定理构建方程可得x2a=,即可解决问题.【解析】如图1中,在BC上截取BH=BE,连接EH,∵BE=BH,∵EBH=90°,∵EH,∵AF=,∵AF=EH,∵∵DAM=∵EHB=45°,∵BAD=90°,∵∵FAE=∵EHC=135°,∵BA=BC,BE=BH,∵AE=HC,∵∵FAE∵∵EHC(SAS),∵EF=EC,∵AEF=∵ECH,∵∵ECH+∵CEB=90°,∵∵AEF+∵CEB=90°,∵∵FEC=90°,∵∵ECF=∵EFC=45°,故∵正确,如图2中,延长AD到H,使得DH=BE,则∵CBE∵∵CDH(SAS),∵∵ECB=∵DCH,∵∵ECH=∵BCD=90°,∵∵ECG=∵GCH=45°,∵CG=CG,CE=CH,∵∵GCE∵∵GCH(SAS),∵EG=GH,∵GH=DG+DH,DH=BE,∵EG=BE+DG,故∵错误,∵∵AEG的周长=AE+EG+AG=AE+AH=AD+DH+AE=AE+EB+AD=AB+AD=2a,故∵错误,设BE=x,则AE=a﹣x,AF=,∵S∵AEF=12•(a﹣x)×x=1-2x2+12ax=1-2(x2﹣ax14+a214-a2)=1-2(x1-2a)218+a2,∵12-<0,∵x=12a 时,∵AEF 的面积的最大值为218a ,故∵正确, 当BE=13a 时,设DG =x ,则EG =x 13+a ,在Rt∵AEG 中,则有(x 13+a )2=(a ﹣x )2+(23a )2,解得x 2a=, ∵AG =GD ,故∵正确, 综上,∵∵∵正确, 故选:D . 【小结】本题考查正方形的性质,全等三角形的判定和性质,二次函数的应用等知识,熟练掌握并灵活运用是解题的关键.33.如图,在ABC 中,AC BC =,90ACB ∠=︒,AE 平分BAC ∠交BC 于E ,BD AE ⊥于D ,DM AC ⊥交AC 的延长线于M ,连接CD ,给出四个结论:∵45ADC ∠=︒;∵12BD AE =;∵AC BE AB +=;∵2AB BC MC -=;其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C 【分析】过E 作EQ ∵AB 于Q ,作∵ACN =∵BCD ,交AD 于N ,过D 作DH ∵AB 于H ,根据角平分线性质求出CE =EQ ,DM =DH ,根据勾股定理求出AC =AQ ,AM =AH ,根据等腰三角形的性质和判定求出BQ =QE ,进而可判断∵;根据三角形外角性质求出∵CND =45°,证∵ACN ∵∵BCD ,推出CD =CN ,进而可判断∵∵;证∵DCM ∵∵DBH ,得到CM =BH ,进一步变形即可判断∵,于是可得答案. 【解析】如图,过E 作EQ ∵AB 于Q , ∵∵ACB =90°,AE 平分∵CAB ,∵CE=EQ,∵∵ACB=90°,AC=BC,∵∵CBA=∵CAB=45°,∵EQ∵AB,∵∵EQA=∵EQB=90°,由勾股定理得:AC=AQ,∵∵QEB=45°=∵CBA,∵EQ=BQ,∵AB=AQ+BQ=AC+CE,∵BE>EQ=CE,∵∵错误;作∵ACN=∵BCD,交AD于N,∵∵CAD=12∵CAB=22.5°=∵BAD,∵∵ABD=90°﹣22.5°=67.5°,∵∵DBC=67.5°﹣45°=22.5°=∵CAD,∵∵DBC=∵CAD,∵AC=BC,∵ACN=∵BCD,∵∵ACN∵∵BCD(ASA),∵CN=CD,AN=BD,∵∵ACN+∵NCE=90°,∵∵NCB+∵BCD=90°,∵∵CND=∵CDA=45°,∵∵ACN=45°﹣22.5°=22.5°=∵CAN,∵AN=CN,∵∵NCE=∵AEC=67.5°,∵CN=NE,∵DCB=90°-67.5°=22.5°,∵BD=AN=EN=12AE,∵ADC=180°-∵DAC-∵ACD=180°-22.5°-112.5°=45°,∵∵正确,∵正确;过D作DH∵AB于H,∵∵MCD=∵CAD+∵CDA=67.5°,∵DBA=67.5°,∵∵MCD=∵DBA,∵AE平分∵CAB,DM∵AC,DH∵AB,∵DM=DH,在∵DCM和∵DBH中90 M DHB MCD DBA DM DH ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∵∵DCM∵∵DBH,∵BH=CM,由勾股定理得:AM=AH,∵AC AB AC AH BH AC AM CMAM AM AM+++++===2AMAM=2,∵AC+AB=2AM,即AC+AB=2AC+2CM,∵AB﹣AC=2CM,∵AC=CB,∵AB﹣CB=2CM,∵∵正确.综上,正确的有3个.故选:C.【小结】本题主要考查了等腰直角三角形的判定和性质、三角形的外角性质、三角形的内角和定理、等腰三角形的性质和判定、全等三角形的性质和判定以及勾股定理等知识,正确添加辅助线、能综合运用所学知识进行推理是解此题的关键.34.如图,在Rt ABC △中,90,30,ACB ABC CD ︒∠︒=∠=平分ACB ∠.边AB 的垂直平分线DE 分别交,CD AB 于点,D E .以下说法错误的是( )A .60BAC ∠=︒B .2CD BE =C .DE AC =D 12BC AB =+【答案】B 【分析】利用直角三角形的性质、三角形内角和定理、勾股定理、全等三角形的判定与性质等知识对各选项的说法分别进行论证,即可得出结论. 【解析】如图,连接BD 、AD ,过点D 作DM∵BC 于M ,DN∵CA 的延长线于N ,A 、在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒, ∵60BAC ∠=︒.故此选项说法正确; B 、∵DM∵BC ,DN∵CA ∵∵DNC =∵DMC =90°, ∵CD 平分∵ACB , ∵∵DCN =∵DCM =45°. ∵∵DCN =∵CDN =45°.∵CN=DN .则∵CDN 是等腰直角三角形.同理可证:∵CDM 也是等腰直角三角形,., ∵DM=DN= CM=CN ,∵MDN =90°. ∵DE 垂直平分AB , ∵BD=AD ,AB=2BE . ∵Rt∵BDM∵∵ADN , ∵∵BDM=∵AND .∵∵BDM+∵ADM =∵AND+∵ADM =∵MDN . ∵∵ADB=90°.=.即.∵在Rt∵AND 中,AD 是斜边,DN 是直角边,∵AD >DN . ∵2BE >CD .故此选项说法错误. C 、∵BD=AD ,∵ADB=90°, ∵∵ABD 是等腰直角三角形. ∵DE=12AB . 在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒, ∵AC=12AB . ∵DE=AC .故此选项说法正确. D 、∵Rt∵BDM∵∵ADN , ∵BM=AN .∵CN=AC+AN=AC+BM=CM . ∵BC=BM+CM=AC+2BM .,.∵AC=12 AB,12AB+BC.故此选项说法正确.故选:B.【小结】本题属于三角形综合题,考查了直角三角形的性质,全等三角形的判定与性质,勾股定理等知识,难度较大,准确作出辅助线并灵活运用所学知识是解题的关键.35.如图,在平面直角坐标系中,O为坐标原点,直线y x=-+x轴交于B点,与y轴交于A点,点C D,在线段AB上,且22CD AC BD==,若点P在坐标轴上,则满足7PC PD+=的点P的个数是()A.4B.3C.2D.1【答案】A【分析】作点C关于y轴的对称点'C,根据直线y x=-+x轴交于B点,与y轴交于A点,求出A,B两点的坐标,然后利用勾股定理求得'C D=,即'PD PC C D<+,可判断点P在x轴上,使得7PC PD+=的点P的个数是两个;作点D关于x轴的对称点'D,同理可判断点P在y轴上,使得7PC PD+=的点P 的个数是两个,据此求解即可.【解析】如图示,作点C关于y轴的对称点'C,直线y x =-+x 轴交于B 点,与y 轴交于A 点,则当0x =时,y =A 点坐标是:(0,,当0y =时,x =B 点坐标是:(0),∵OA OB ==∵8AB ,∵22CD AC BD ==,AB CD AC BD =++ ∵4CD =,2==AC BD ,由勾股定理可得:CE AE ==DF AF ==∵OE =OF =∵C 点坐标是:,D 点坐标是:( ,则'C 点坐标是:(,∵'CD <∵'7CD<, 即:'P D P C C D <+, ∵如下图示,点P 在y 轴上,使得7PC PD +=的点P 的个数是两个, 如图示,作点D 关于x 轴的对称点'D ,同理可以求得'CD = 即:'P D P C C D <+,∵点P 在y 轴上,使得7PC PD +=的点P 的个数是两个,综上所述,点P 在坐标轴上,满足7PC PD +=的点P 的个数是4个, 故选:A .【小结】本题考查了一次函数的应用、轴对称的性质、勾股定理的应用,熟悉相关性质是解题的关键. 36.在∵ABC 中,∵BAC =90°,点D 在边BC 上,AD =AB ( )A .若AC =2AB ,则∵C =30° B .若AC =2AB ,则3BD =2CD C .若∵B =2∵C ,则AC =2AB D .若∵B =2∵C ,则S ∵ABD =2∵ACD 【答案】B 【分析】根据直角三角形30°角所对边是斜边的一半,可得BC =2AB >AC ,从而可判断选项A 、C ;作AE∵BC ,根据勾股定理和等面积法克求得BC 、BD 和DC ,从而得出BD 和CD 的关系,可判断选项B ; 可先得出AD 为中线,根据三角形中线平分三角形的面积可判断选项D . 【解析】由题,∵BAC=90°,点D 在BC 边上,AD=AB ,A.若AC =2AB ,则BC ==,若∵C=30°,BC=2AB ,故A 错误;B. 若AC =2AB ,则BC ,作AE∵BC ,则1122ABCSAB AC BC AE =⋅=⋅,可得AB AC AE AB BC ⋅===, ∵AD=AB ,∵5BE DE AB ===,∵,55BD AB DC BC AB AB ==-=, ∵3BD =2CD ,故B 正确;C. 若∵B =2∵C , ∵∵BAC=90°, ∵∵B+∵C=90°, ∵∵C=30°,∵B=60°,∵BC=2AB ,AC <2AB ,故C 错误;D. 若∵B =2∵C ,由选项C 可得∵C=30°,∵B=60°, ∵AD=AB ,∵∵ABD 为等边三角形, ∵∵ADB=60°,∵∵DAC=∵ADB -∵C=30°=∵C ,∵AD=DC=BD ,即AD 为∵ABC 的中线, ∵S ∵ABD =S ∵ACD ,故D 错误. 故选:B . 【小结】本题考查等边三角形的性质和判定,勾股定理,含30°角的直角三角形.熟练掌握这些定理,能借助已知条件,选择合适的定理分析是解题关键.37.在Rt ∵ABC 中,∵C =90°,点P 在边AB 上.BC =6, AC =8, ( ) A .若∵ACP=45°, 则CP=5 B .若∵ACP=∵B ,则CP=5 C .若∵ACP=45°,则CP=245 D .若∵ACP=∵B ,则CP=245【答案】D【分析】四个选项,A、C选项CP为顶角的平分线,B、D选项CP为底边上的高线,根据直角三角形斜边上的中线可得斜边上的中线等于5,利用等面积法可得底边上的高线等于245,易得三角形不是等腰三角形,所以它斜边上的高线、中线和直角的角平分线不是同一条,可得正确的为D选项.【解析】∵∵C=90°,点P在边AB上.BC=6,AC=8,∵10AB==,当CP为AB的中线时,152CP AB==,若∵ACP=45°,如图1,则CP为直角∵ACB的平分线,∵BC≠AC,∵CP与中线、高线不重合,不等于5,故A选项错误;若∵ACP=∵B,如图2∵∵ACB=90°,∵∵A+∵B=90°,∵∵A+∵ACP =90°,∵∵APC=90°,即CP为AB的高线,∵BC≠AC,∵CP与中线不重合,不等于5,故B选项错误;当CP为AB的高线时,1122ABCS AC BC AB PC =⋅=⋅△,即11861022PC⨯⨯=⨯⋅,解得245PC=,故D选项正确,C选项错误.故选:D . 【小结】本题考查直角三角形斜边上的中线,等腰三角形三线合一,勾股定理等.能根据等面积法算出斜边上的高线的长度是解题关键.38.如图,在等腰Rt ABC 中,90ACB ∠=︒,点P 是ABC 内一点,且1CP =,BP =2AP =,以CP 为直角边,点C 为直角顶点,作等腰Rt DCP ,下列结论:∵点A 与点D ∵AP PC ⊥;∵AB =∵2APBS=,其中正确结论有是( )A .∵∵∵B .∵∵C .∵∵D .∵∵∵【答案】C 【分析】连结AD ,由等腰Rt ABC ,可得AC=BC ,等腰Rt DCP ,可得CD=CP ,由余角性质可∵DCA=∵PCB ,可证∵ADC∵∵BPC (SAS )AD BP ==∵,由勾股定理22222AD +DP =+=4=AP ,可证∵ADP 为等腰直角三角形,可判断∵,由PB 与PD 可求由勾股定理,可判断∵,由面积112122APBS PB AD ===可判断∵即可 【解析】 连结AD ,在等腰Rt ABC 中,90ACB ∠=︒, ∵AC=BC ,∵Rt DCP 是等腰三角形, ∵CD=CP ,∵∵ACD+ACP=90°,∵ACP+∵PCB=90°,。
专题01第一章 勾股定理【专题过关】类型一、用勾股定理解三角形【解惑】如图,在ABC V 中,90ABC Ð=°,12BC =,以点A 为圆心,AB 长为半径画弧,交线段AC 于点D C CD BC E 12BE CD =ABA .5B .6【答案】A 【分析】设AB AD x ==,根据12BE CD =方程即可求解.【融会贯通】B.A.8013【答案】45【分析】如图,作22,AE l CF l ^^,垂足分别为勾股定理求出2BC 即可.【详解】解:如图,作2,AE l CF ^^则90AEB BFC Ð=Ð=°,ABE BAE Ð+Ð∵点A 到直线2l 的距离是3,点C 到直线2l 的距离是6,∴3,6BF AE CF ===,∴222223645BC BF CF =+=+=,∴正方形ABCD 的面积为45;故答案为:45【点睛】本题考查了点到直线的距离、勾股定理和全等三角形的判定和性质等知识,正确理解题意、证明ABE BCF △△≌是解题的关键.4.(2023春·黑龙江黑河·八年级校考期中)如图,四边形ABCD 中,90A B Ð=Ð=°,25AB =,15AD =,10BC =,点E 是AB 上一点,且DE CE =,求AE 的长.【答案】10【分析】设AE x =,则25BE x =-,分别在Rt AED △和Rt BCE V 中,利用勾股定理求解即可.【详解】解:设AE x =,则25BE x =-,∵90A B Ð=Ð=°∴AED △、BCE V 都为直角三角形,在Rt AED △中,由勾股定理可得:2222215DE AE AD x =+=+在Rt BCE V 中,由勾股定理可得:()222222510CE BE BC x =+=-+∵DE CE=∴()2222152510x x +=-+解得10x =(1)求证:ABD △△≌(2)若3AD =,DE =【答案】(1)见解析(2)10类型二、勾股树(数)问题【解惑】如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、5、7,则最大正方形E 的面积是( )A .14B .108C .58D .72【答案】B 【分析】由勾股定理可得,直角三角形中,以斜边为边的正方形的面积等于分别以两个直角边为边的正方形的面积的和,据此求解即可.【详解】解:如图所示,由勾股定理,得22223557108E M N A B C D S S S S S S S =+=+++=+++=,故选:B .【点睛】本题考查了勾股树,掌握勾股树的特征是解题的关键.【融会贯通】1.(2023春·重庆忠县·八年级校考阶段练习)如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm ,则正方形A 、B 、C 、D 的面积的和是( )A .249cm B .225cm C .236cm D .211cm 【答案】A 【分析】如图,设正方形A 、B 、C 、D 、E 、F 的边长分别为a 、b 、c 、d 、e 、f ,根据勾股定理可得222e a b =+,222f c d =+,2227e f +=,即可得出正方形A 、B 、C 、D 的面积之和等于最大正方形G 的面积,根据正方形面积公式即可得答案.【详解】如图,设正方形A 、B 、C 、D 、E 、F 的边长分别为a 、b 、c 、d 、e 、f ,∵所有的四边形都是正方形,所有的三角形都是直角三角形,∴222e a b =+,222f c d =+,∴正方形E 、F 的面积和为正方形A 、B 、C 、D 面积的和,∵最大的正方形的边长为7,∴222497e f =+=,【答案】25【答案】26【分析】标记正方形F 210y =,222z x y =+,代入计算出【详解】解:如下图,标记正方形则由勾股定理得:26x =即最大正方形E 的面积为:则最大正方形E 的边长为故答案为:26.【答案】22【分析】根据正方形的面积公式,结合勾股定理,能够导出正方形面积.【详解】设正方形A,B,C,DQ正方形A,B,C,D的面积分别为【答案】2024【分析】根据勾股定理可得第一代勾股树中所有正方形的面积为2,再一次求出第二代、第三代勾股树中所有三角形的面积,总结出一般规律,即可进行解答.【详解】解:设第一代勾股树中间三角形的两直角边长为a 和b ,斜边长为c ,根据勾股定理可得:222+=a b c ,∵21c =,∴第一代勾股树中所有正方形的面积为222222a b c c c =++=+=;同理可得:第二代勾股树中所有正方形的面积为22222233a b c c =++==;第三代勾股树中所有正方形的面积为244c ==;第n 代勾股树中所有正方形的面积为()211n c n =+=+;∴第2023代勾股树中所有正方形的面积为2024.故答案为:2024.【点睛】本题主要考查了勾股定理,解题的关键是仔细观察图形,根据勾股定理总结出变化的一般规律.类型三、以直角三角形向外作正方形【解惑】如图,在四边形ABCD 中,90ABC ADC Ð=Ð=°,分别以四边形的四条边为边向外作四个正方形,面积依次为1S ,2S ,3S ,4S ,下列结论正确的是( )A .()34124S S S S +=+B .1234S S S S =--C .4231S S S S -=-D .241333S S S S -=-【答案】B 【分析】利用勾股定理,分别得出同一直角三角形的两直角边上的两个正方形面积和都是2AC ,即可得到答案.【详解】解:如图,连接AC ,根据勾股定理,得222222AC AB BC AC AD CD =+=+,,∴221423AC S S AC S S ++=,=,\1423S S S S +=+,\1234S S S S =--故选:B .【点睛】本题考查了勾股定理的应用,关键是发现两个直角三角形的斜边是公共边.【融会贯通】1.(2023春·新疆阿克苏·八年级校联考阶段练习)如图,以Rt ABC △的三边向外作正方形,其面积分别为123S S S ,,,且13615S S ==,,则2S = ( )A.21B【答案】C【分析】根据勾股定理求出【详解】解:由勾股定理得,A.22023B【答案】C【分析】根据勾股定理和正方形的面积公式,知面积和等于以斜边为边长的正方形的面积,即所有正方形的面积和是【点睛】本题主要考查了勾股定理在几何图形中的应用,能够根据勾股定理发现每一次得到新正方形的面积和与原正方形的面积之间的关系是解本题的关键.3.(2023春·河北保定·八年级统考期中)如图,以直角三角形的三边为边向外作正方形,其面积分别为2S 、3S ,且17S =,2S =A .3B 【答案】B 【分析】利用勾股定理易得【详解】解:Q 直角三角形的三边为边向外作正方形,其面积分别为【答案】14【分析】根据勾股定理即可求解.【详解】解:根据勾股定理可得:由图可知:26,AB AC =∴x 所在的正方形的面积为【答案】284cm 【分析】根据勾股定理得出空白正方形的面积,进而得出其边长,再根据勾股定理求出度,最后根据三角形面积公式即可求解.【详解】解:∵②为直角三角形,阴影部分是两个正方形,【点睛】本题主要考查了勾股定理,解题的关键是掌握直角三角形两直角边平方和等于斜边平方.类型四、勾股定理与折叠问题【解惑】如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =,现将直角边AC 沿AD 折叠,使它落在斜边AB 上,则BD 等于( )A .2cmB .【答案】D 【分析】先根据勾股定理求出后利用勾股定理解Rt DEB △Q由折叠的性质,可得()8cm DE CD x ==-,90AED ACD Ð=Ð=°,在Rt DEB △中,222DE BE BD +=,\()22284x x -+=,解得5x =,\BD 等于5cm .故选D .【点睛】本题考查勾股定理与折叠的性质,解题的关键是掌握折叠前后对应边相等,对应角相等.【融会贯通】【答案】2或5/5或2【分析】当90B ED Т=°时,先求出时,作AH BC ^,证明出ADH V 【详解】解:当90B ED Т=°时,如图,AB AC =Q ,AE BC ^,8BE CE \==,10AB =Q ,90Q,Т=°B DEADB ADB\Ð=Т=°,135ADH\Ð=°,45\==,6DH AHCD AB \^,=90ACB аQ ,AC =223AB AC BC \=+=1122AB CD AC BC ××=Q 1153422CD \´´´=,12作DG BC ^于点G ,1122AC DH BC DG ×+×Q【答案】25cm 4【分析】根据折叠的性质,则【详解】由题意得,DB=DE=【答案】5【分析】由四边形用勾股定理求出BDx类型五、利用勾股定理求两条线段的平方和(差)【解惑】在△ABC 中,∠C =90°,AB =3,则AB 2+BC 2+AC 2的值为( )A .6B .9C .12D .18【答案】D【分析】根据90C Ð=°,利用勾股定理可得222AB BC AC =+,据此求解即可.【详解】解:如图示,90C Ð=°∴在Rt ABC V 中,222AB BC AC =+∴222222222318AB BC AC AB AB AB =+==+=+´,【点睛】本题主要考查了勾股定理的性质,掌握直角三角形中,三角形的三边长a ,b ,c 满足222+=a b c 是解题的关键.【融会贯通】【答案】8【分析】根据常见的“手拉手全等模型【详解】解:连接BD因为ABC V 和ECD V 都是等腰直角三角形,,ACB ECD E \Ð=ÐÐ=90Ð=Ð=°Q ACB ECD【答案】69【点睛】此题考查了勾股定理的知识,解题的关键是熟练掌握勾股定理,分别两次运用勾股定理求出(1)求证:22AF BE +=(2)若7AC =,5BC =【答案】(1)见解析(2)177AF =【分析】(1)延长EDAG AC ^Q ,90CAG °\Ð=,9090180CAG ACB °°°\Ð+Ð=+=,AG BE \P ,AGD DEB \Ð=Ð,在AGD △和BED V 中,AGD DEB ADG BDE AD BD Ð=ÐìïÐ=Ðíï=î,()AGD BED AAS \△≌△,AG BE \=,DG DE =,DF EG ^Q ,FG EF \=,90FAG °Ð=Q ,222AF AG FG \+=,222AF BE EF \+=,(2)解:设AF x =,7AC =Q ,5BC =,1CE =,则7CF AC AF x =-=-,4BE BC CE =-=,90C Ð=°Q ,222CF CE EF \+=,即:22(7)1EF x =-+,由(1)知:MF EF =,90BAF Ð=°,AM BE =,类型六、赵爽弦图【解惑】如图是我国古代著名的“赵爽弦图”,它由4个全等的直角三角形拼成,已知大正方形面积为25,小正方形面积为1,若用a ,b 表示直角三角形的两直角边(a b >),c 表示斜边,则下列说法中错误的是( )A .5c =B .1a b -=C .6ab =D .7a b +=【答案】C 【分析】根据正方形的面积得出5c =,1a b -=,根据勾股定理得出22525a b c +==,进而根据完全平方公式变形求得,ab a b +的值,即可求解.【详解】解:∵大正方形面积为25,∴5c =,故A 选项正确,不合题意;∴22525a b c +==∵小正方形面积为1,∴1a b -=,故B 选项正确,不合题意;∴()22222521a b a ab b ab -=-+=-=∴12ab =,故C 选项错误,符合题意;∴()2222252449a b a b ab +=++=+=∴7a b +=(负值舍去),故D 选项正确,不合题意;故选:C .【点睛】本题考查了勾股定理的应用,完全平方公式的变形求值,熟练掌握勾股定理是解题的关键.【融会贯通】1.(2023春·安徽·八年级统考期末)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,若168ab =,大正方形的面积为625,则小正方形的边长为( )A .7B .24C .17D .25【答案】C 【分析】勾股定理得:22625a b +=,又222()26252168289a b a b ab -=+-=-´=,由此即可求出17()a b a b -=>,因此小正方形的边长为17.【详解】解:由题意知小正方形的边长是a b -,由勾股定理得:22625a b +=,222()26252168289a b a b ab -=+-=-´=Q ,17()a b a b \-=>,\小正方形的边长为17.故选:C .【点睛】本题考查了勾股定理的证明,正方形的性质,全等三角形的性质,熟练掌握勾股定理是解题的关键.2.(2023春·北京·八年级统考期末)如图,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,如果图中勾3a =,弦5c =,则小正方形的面积为( )A .1B .2C .3D .4【答案】2【分析】根据含【详解】在Rt△∴2=,AB AE【答案】4【分析】由图1可知,图2中正方形ABCD的边长为直角三角形长和宽的差,即可求解.-=,【详解】解:由图1可知,图2中正方形ABCD的边长为642´=,∴图2中小正方形ABCD的面积为224故答案为:4.【点睛】本题考查勾股定理,正方形的面积.正确识图是解题的关键.【答案】2【分析】根据边长求出中间小正方形的边长,再根据勾股定理即可求解.【详解】解:如图所示,根据题意可得,AD BC AC ==∵四边形CDEF 是正方形,∴43CD DE EF FC ====-=∴在Rt CDE △中,2CE CD =故答案为:2.【点睛】本题主要考查勾股定理的运用,掌握勾股定理的计算方法是解题的关键.类型七、勾股定理构造图形【解惑】为预防新冠疫情,民生大院入口的正上方A 处装有红外线激光测温仪(如图所示),测温仪离地面的距离 2.4AB =米,测温仪就会自动测温并报告人体体温.当身高为1.8米的市民CD 正对门缓慢走到离门0.8米的地方时(即0.8BC =米),测温仪自动显示体温( )A .1.0米B .1.2米C .1.25米D .1.5米【答案】A 【分析】过点D 作DE AB ^于点E ,构造Rt ADE △,利用勾股定理求得AD 的长度即可.【详解】解:如图,过点D 作DE AB ^于点E ,AB=米,∵ 2.4=-∴AE AB BE△中,由勾股定理得到:在Rt ADE2=AD AE DE+故选:A.【点睛】本题考查了勾股定理的应用,解题的关键是作出辅助线,构造直角三角形,利用勾股定理求得线【融会贯通】A.2m B.3m【答案】D【分析】根据勾股定理求得AB【答案】101【分析】过D 作DE AB ^于E ,构建直角三角形,根据勾股定理计算求解即可.【详解】解:过D 作DE AB ^于E ,设OA OB AD BC r ====,则10DE =,112OE CD ==,1AE r =-,在Rt ADE △中,可有222AE DE AD +=,即【详解】解:如图,两人同时从A 地出发,甲向南行走10步后到达C 地后,偏离原方向.设x 秒两人在B 处相遇,这时乙行驶3AB x =,甲共行驶7AC BC x +=,∵10AC =,∴710BC x =-,∵90A Ð=°,由勾股定理得:()()222710103x x -=+,故答案为:()()222710103x x -=+.【点睛】本题主要考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,利用勾股定理是解决问题的关键.4.(2023秋·全国·八年级专题练习)暑假中,小明到某海岛探宝,如图,他到达海岛登陆点后先往东走8km ,又往北走2km ,遇到障碍后又往西走3km ,再折向北走6km 处往东一拐,仅1km 就找到宝藏,问登陆点到埋宝藏点的直线距离是多少?【答案】登陆点到宝藏处的距离为10千米【分析】通过行走的方向和距离得出对应的线段的长度,构造直角三角形利用勾股定理求解.【详解】解:过点B 作BD AC ^于点D ,根据题意可知,8316AD =-+=千米,268BD =+=千米,【点睛】本题考查了矩形的性质以及勾股定理的应用,解题的根据是结合图形,读懂题意,根据题意找到需要的数量关系,运用勾股定理求线段的长度.2022秋·七年级单元测试)如图,小丽荡秋千,秋千架高时,坐位离地0.8米.此时小红荡出的水平距离是多少?(荡到秋千架两边的最高点之间的距离)【答案】2.4米【分析】画出秋千的侧面图,根据勾股定理即可求出【详解】解:如图为秋千侧面图,座位最低点为则 2.40.42OA OB ==-=,过B 点作OA 的垂线,垂足为则0.80.40.4AC =-=,OC 由勾股定理得:22BC =【点睛】本题考查了勾股定理的运用,属于基础题,关键是正确理解题意.类型八、小鸟飞行问题【解惑】如图,有一只喜鹊在一棵2m高的小树AB上觅食,它的巢筑在与该树水平距离(BD)为8m的一棵9m高的大树DM上,喜鹊的巢位于树顶下方1m的C处,当它听到巢中幼鸟的叫声,立即飞过去,如果2.5m/sA.1s B.3s C.4s【答案】C【分析】过A作AE MD^于E,如图所示,由勾股定理求出最短路径长即可得到答案.【详解】解:过A作AE MD^于E,如图所示:=由题意可知,AB DE根据两点之间线段最短,则它要飞回巢中所飞的最短路径为222=+=AC AE CE6\它要飞回巢中所需的时间至少是【融会贯通】1.(2023春·重庆云阳·八年级校考阶段练习)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树稍飞到另一棵树的树稍,问小鸟至少要飞行()【答案】10【分析】根据“两点之间线段最短定理可将两点之间的距离求出.,为树,且【详解】如图所示,AB CD【点睛】本题主要考查了勾股定理的的实际运用和两点之间,线段最短等知识点,熟练掌握其性质是解决此题的关键.4.(2023秋·全国·八年级专题练习)如图,有两棵树,一棵高鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行【答案】10【答案】一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行【分析】根据题意画出对应的几何图形,的长度,在Rt BDE △中利用勾股定理即可求解.【详解】解:根据题意画出图形如下:其中6AB =米,3CD =米,过点D 作DE AB ^,则四边形∴3AE CD ==米,DE =∴3=-=BE AB AE 米,在Rt BDE △中,BD BE =答:一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行类型九、勾股定理的证明方法【解惑】意大利著名画家达·芬奇用如图所示(四边形ABCD ,四边形CEFG ,四边形PQMN 都为正方形,设图①中空白部分的面积为1S ,图③中空白部分的面积为2S )的方法验证了勾股定理,步骤如下所示,则下列判断不正确的是( )A .★表示2b ab+B .●表示22c ab +C .◆表示=D .▲表示22a b +【答案】B 【分析】根据图形表示出12S S 、,即可求解.【详解】解:由图①可得22221122S a a b b a ab b =+´´´+=++,【融会贯通】1.(2023春·河南周口·八年级校考期中)数学兴趣小组的同学用火柴盒研究证明勾股定理的新方法.如图,火柴盒的一个侧面ABCD 倒下到CEFG 的位置,连接AF ,此时90ABC Ð=°,BC a =,AB b =,AC c =.Q BC a =,AB b =,AC =()12ABEF S EF AB BE \=+×梯形()()12a b a b =´++(2)以图甲中的直角三角形为基础,可以构造出以你利用图乙验证勾股定理.【答案】(1)在直角三角形中,两条直角边的平方和等于斜边的平方;(2)验证见解析【分析】(1)根据题意分别用文字和符号描述出勾股定理即可;(2)根据题意可知()Rt Rt SAS ABE ECD V V ≌,可得Rt Rt Rt ABE DEC AED ABCD S S S S =++V V V 梯形整理可得验证出勾股定理.【详解】(1)文字语言叙述:在直角三角形中,两条直角边的平方和等于斜边的平方,(1)如图1是一个重要公式的几何解释,请你写出这个公式____________;(2)如图2所示,90B D Ð=Ð=°,且B ,C ,D 在同一直线上,试说明,90ACE Ð=°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.【答案】(1)()2222a b a ab b +=++;(2)见解析;(3)见解析.【分析】(1)用面积分割法证明:大正方形的面积等于小正方形和两个长方形的面积之和,从而推出平方和公式;(2)先证明ABC CDE △≌△,利用全等三角形对应角相等,直角三角形的两个锐角互余,推出直角;(3)用面积分割法法证明勾股定理:梯形ABDE 的面积=三角形ABC 的面积+三角形CDE 的面积+三角形ACE 的面积.【详解】(1)解:这个公式是完全平方公式:()2222a b a ab b +=++;理由如下:∵大正方形的边长为a b +,∴大正方形的面积()2a b =+,又∵大正方形的面积=两个小正方形的面积+两个矩形的面积,22222a b ab ab a ab b =+++=++,∴222()2a b a ab b ×+=++.故答案为:()2222a b a ab b +=++.(2)证明:∵在ABC V 和CDE V 中,∴222=+.c a b【点睛】本题主要考查了勾股定理的证明,掌握数形结合思想是解答本题的关键.类型十、台阶地毯长度问题【解惑】如图在一个高为3米,长为5米的楼梯表面铺地毯,则地毯至少需要().A.3米B.4米C.【答案】D【分析】当地毯铺满楼梯时的长度是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,即可求得地毯的长度.【融会贯通】1.(2023春·辽宁抚顺·八年级统考期中)如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()A.13m B.17m C.18m D.26m【答案】BA.5米B.6【答案】C【分析】先根据直角三角形的性质求出【答案】1020【分析】地毯的长是楼梯的竖直部分与水平部分的和,即即可求得AB的长,地毯的长与宽和积就是面积,再乘地毯每平方米的单价即可求解.【详解】解:由勾股定理得:AB【答案】13AC=´【分析】先根据图形求得51可.。
专题05勾股定理的应用十种最常考类型(解析版)类型一大树折断问题【典例1】(2023春•德庆县期末)如图,一棵高为16m的大树被台风刮断,若树在离地面6m处折断,树顶端刚好落在地面上,此处离树底部8m处.【思路引领】首先设树顶端落在离树底部x米处,根据勾股定理可得62+x2=(16﹣6)2,再解即可.【解答】解:设树顶端落在离树底部x米处,由题意得:62+x2=(16﹣6)2,解得:x1=8,x2=﹣8(不合题意舍去).故答案为:8.【总结提升】此题主要考查了勾股定理的应用,关键是正确理解题意,掌握直角三角形中两直角边的平方和等于斜边的平方.【变式训练】1.(2023•南宁模拟)在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面()尺.A.4B.3.6C.4.5D.4.55【思路引领】画出图形,设折断处离地面x尺,则AB=(10﹣x)尺,由勾股定理得出方程,解方程即可.【解答】解:如图,由题意得:∠ACB=90°,BC=3尺,AC+AB=10尺,设折断处离地面x尺,则AB=(10﹣x)尺,在Rt△ABC中,由勾股定理得:x2+32=(10﹣x)2,解得:x=4.55,即折断处离地面4.55尺.故选:D.【总结提升】此题主要考查了勾股定理的应用,正确应用勾股定理得出方程是解题的关键.类型二水杯中的筷子问题及类似问题【典例2】(2023春•陕州区期中)如图是一个饮料罐,下底面半径是5,上底面半径是8,高是12,上底面盖子的中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)的取值范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13【思路引领】如图,过A作AB⊥BC于B,根据勾股定理即可得到结论.【解答】解:如图,过A作AB⊥BC于B,∵下底面半径是5,高是12,∴AB=12,BC=5,∴AC=B2+B2=122+52=13,∴a的长度的取值范围是12≤a≤13,故选A.【总结提升】本题考查正确运用勾股定理.善于观察题目的信息,正确理解题意是解题的关键.【变式训练】1.(2023春•盐山县期末)如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.14【思路引领】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+(102)2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:芦苇长13尺.故选:C.【总结提升】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.2.(2022秋•安阳县期末)从前有一个人拿着竹竿进城,横拿竖拿都进不去,横着比城门宽43,竖着比城门高23,另一个人告诉他沿着城门的两对角斜着拿竿,这个人一试,不多不少刚好进去了,则竹竿的长度为103.【思路引领】设竹竿的长为x米,根据门框的边长的平方和等于竹竿的长的平方列方程,解一元二次方程即可.【解答】解:设竹竿的长为x米,由题意得:(−43)2+(−23)2=2,解得:1=103,2=23(舍去),故答案为:103.【总结提升】本题考查一元二次方程的应用;得到门框的边长和竹竿长的等量关系是解决本题的关键.类型三梯子滑动问题【典例3】(2020春•硚口区期中)如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=8米.若梯子的顶端沿墙面向下滑动2米,这时梯子的底端在水平的地面也恰好向外移动2米,则梯子AB的长度为()A.10米B.6米C.7米D.8米【思路引领】首先设BO=x米,则DO=(x+2)米,利用勾股定理可列出方程,再解可得BO长,然后再利用勾股定理计算出AB长.【解答】解:由题意得:AC=BD=2米,∵AO=8米,∴CO=6米,设BO=x米,则DO=(x+2)米,由题意得:62+(x+2)2=82+x2,解得:x=6,AB=82+62=10(米),故选:A.【总结提升】此题主要考查了勾股定理的应用,关键是掌握直角三角形两直角边的平方和等于斜边的平方.【变式训练】1.(2023秋•新泰市期中)如图,一架梯子若靠墙直立时比窗户的下沿高1m.若斜靠在墙上,当梯子的下端离墙5m时,梯子的上端恰好与窗户的下沿对齐.则梯子的长度为()A.13m B.12m C.15m D.172【思路引领】设梯子的长度为x m,根据勾股定理列方程即可得到结论.【解答】解:设梯子的长度为x m,根据勾股定理得,52+(x﹣1)2=x2,解得x=13,答:梯子的长度为13m,故选:A.【总结提升】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.2.(2023秋•北京期末)如图,小巷左右两侧是竖直的墙,已知小巷的宽度CE是2.2米.一架梯子AB斜靠在左墙时,梯子顶端A与地面点C距离是2.4米.如果保持梯子底端B位置不动,将梯子斜靠在右墙时,梯子顶端D与地面点E距离是2米.求此时梯子底端B到右墙角点E的距离是多少米.【思路引领】设此时梯子底端B到右墙角点E的距离是x米,则BC为(2.2﹣x)米,在Rt△ABC和Rt △DBE中,根据勾股定理列出方程,解方程即可.【解答】解:设此时梯子底端B到右墙角点E的距离是x米,则BC为(2.2﹣x)米,由题意可知,AC=2.4米,DE=2米,AB=DB,在Rt△ABC和Rt△DBE中,由勾股定理得:AB2=BC2+AC2,DB2=BE2+DE2,∴BC2+AC2=BE2+DE2,即(2.2﹣x)2+2.42=x2+4,解得:x=1.5,答:此时梯子底端B到右墙角点E的距离是1.5米.【总结提升】本题考查了勾股定理的应用,根据勾股定理列出方程是解题的关键.3.(2023秋•宝丰县期末)如图是盼盼家新装修的房子,其中三个房间甲、乙、丙,他将一个梯子斜靠在墙上,梯子顶端距离地面的垂直距离记作MA,如果梯子的底端P不动,顶端靠在对面墙上,此时梯子的顶端距离地面的垂直距离记作NB.(1)当盼盼在甲房间时,梯子靠在对面墙上,顶端刚好落在对面墙角B处,若MA=1.6米,AP=1.2米,则甲房间的宽度AB= 3.2米.(2)当他在乙房间时,测得MA=2.4米,MP=2.5米,且∠MPN=90°,求乙房间的宽AB;(3)当他在丙房间时,测得MA=2.8米,且∠MPA=75°,∠NPB=45°.①求∠MPN的度数;②求丙房间的宽AB.【思路引领】(1)根据勾股定理即可得到结论;(2)证明△AMP≌△BPN,从而得到MA=PB=2.4米,PA=NB=0.7米,即可求出AB=PA+PB;(3)①根据平角的定义即可求出∠MPN=60°;②根据PM=PN以及∠MPN的度数可得到△PMN为等边三角形.利用相应的三角函数表示出MN,MP的长,可得到房间宽AB和AM长相等.【解答】解:(1)在Rt△AMP中,∵∠A=90°,MA=1.6米,AP=1.2米,∴PM=B2+B2=1.62+1.22=2,∵PB=PM=2,∴甲房间的宽度AB=AP+PB=3.2米,故答案为:3.2;(2)∵∠MPN=90°,∴∠APM +∠BPN =90°,∵∠APM +∠AMP =90°,∴∠AMP =∠BPN .在△AMP 与△BPN 中,∠B =∠B ∠B =∠B =90°B =B,∴△AMP ≌△BPN ,∴MA =PB =2.4,∵PA =B2−B 2=0.7,∴AB =PA +PB =0.7+2.4=3.1;(3)①∠MPN =180°﹣∠APM ﹣∠BPN =60°;②过N 点作MA 垂线,垂足点D ,连接NM .设AB =x ,且AB =ND =x .∵梯子的倾斜角∠BPN 为45°,∴△BNP 为等腰直角三角形,△PNM 为等边三角形(180°﹣45°﹣75°=60°,梯子长度相同),∠MND =15°.∵∠APM =75°,∴∠AMP =15°.∴∠DNM =∠AMP ,∵△PNM 为等边三角形,∴NM =PM .∴△AMP ≌△DNM (AAS ),∴AM =DN ,∴AB =DN =AM =2.8米,即丙房间的宽AB 是2.8米.【总结提升】此题考查了勾股定理的应用,全等三角形的应用,解直角三角形的应用,根据PM=PN以及∠MPN的度数得到△PMN为等边三角形是解题的关键.类型四立体图形中的最短距离问题【典例4】(2021春•饶平县期末)如图,长方体的底面边长均为3cm,高为5cm,如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要13cm.【思路引领】把立体图形转化为平面图形解决即可.【解答】解:将长方体展开,连接AB,根据两点之间线段最短,AB=52+122=13cm;故答案为:13【总结提升】本题考查了平面展开﹣最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.【变式训练】1.(2023秋•沙坪坝区期中)如图,圆柱形容器中,高为12cm,底面周长为32cm,在容器内壁离容器底部2cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿2cm与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为20cm.(容器厚度忽略不计)【思路引领】将容器侧面展开,建立A关于EC的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.∵高为12cm,底面周长为32cm,在容器内壁离容器底部2cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿2cm与蚊子相对的点A处,∴A′D=16cm,BD=12cm,∴在直角△A′DB中,A′B=162+122=20(cm).故答案为:20.【总结提升】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.2.(2022春•桦甸市期末)如图,是一块长,宽,高分别为6cm,4cm和3cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的外表面,到长方体的另一个顶点B处吃食物,则它需要爬行的最短路径长是85cm.【思路引领】把这个长方体中蚂蚁所走的路线放到一个平面内,在平面内线段最短,根据勾股定理即可计算.【解答】解:第一种情况:把我们所看到的左面和上面组成一个平面,则这个长方形的长和宽分别是9和4,则所走的最短线段是AB=92+42=97(cm).第二种情况:把我们看到的前面与上面组成一个长方形,则这个长方形的长和宽分别是7和6,所以走的最短线段是AB=72+62=85(cm).第三种情况:把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是10和3,所以走的最短线段是AB=102+32=109(cm).∴它需要爬行的最短路径是85cm.故答案为:85cm.【总结提升】本题主要考查的是平面展开﹣最短路径问题,解决此题的关键是明确线段最短这一知识点,然后把长方体的一些面展开到一个平面内,求出最短的线段.3.(荆州中考)如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.42dm B.22dm C.25dm D.45dm【思路引领】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【解答】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=22dm,∴这圈金属丝的周长最小为2AC=42dm.故选:A.【总结提升】本题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.类型五选址满足条件问题【典例5】(2023春•永善县期中)如图,河CD的同侧有A、B两个村,且AB=213km,A、B两村到河的距离分别为AC=2km,BD=6km.现要在河边CD上建一水厂分别向A、B两村输送自来水,铺设水管的工程费每千米需2000元.请你在河岸CD上选择水厂位置0,使铺设水管的费用最省,并求出铺设水管的总费用w(元).【思路引领】作A点关于CD的对称点为A',连接A'B交CD于点O,过点A作AF⊥BD于点F,过点A'作A'E⊥BD交BD的延长线于点E,分别利用勾股定理求出AF和A'B的长即可.【解答】解:如图所示,作A点关于CD的对称点为A',连接A'B交CD于点O,过点A作AF⊥BD于点F,过点A'作A'E⊥BD交BD的延长线于点E,此时AO+BO最小,∵AC=2km,BD=6km,∴BF=4km,DE=2km,∵AB=213km,∴AF=(213)2−42=6(km),在Rt△BA'E中,由勾股定理得:A'B=′2+B2=62+(6+2)2=10(km),∴AO+BO=10(km),∴铺设水管的总费用W=10×2000=20000(元).【总结提升】本题主要考查了勾股定理的应用,构造直角三角形运用勾股定理是解题的关键.【变式训练】1.(2023春•红塔区期中)如图,在笔直的铁路上A,B两点相距20km,C、D为两村庄,DA=8km,CB=14km,DA⊥AB于点A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等,求AE=13.3km.【思路引领】设AE=x km,即可得到EB=(20﹣x)km,结合DA⊥AB于点A,CB⊥AB于B根据勾股定理列式求解即可得到答案.【解答】解:设AE=x km,则EB=(20﹣x)km,∵DA⊥AB,CB⊥AB,DA=8km,CB=14km,∴DE2=x2+82=x2+64,DE2=(20﹣x)2+142=x2﹣40x+596,∵C、D两村到E站的距离相等,∴x2﹣40x+596=x2+64,解得:x=13.3,故答案为:13.3.【总结提升】本题考查勾股定理的应用,解题的关键是根据相等列等式求解.类型六航海问题【典例6】(2023春•黄陂区期中)如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一小时后分别位于点Q,R处,且相距20海里.如果知道“远航”号沿北偏东50°方向航行,你能判断“海天”号沿哪个方向航行吗?请说明理由.【思路引领】利用勾股定理逆定理以及方向角得出答案.【解答】解:由题意可得:RP=12海里,PQ=16海里,QR=20海里,∵162+122=202,∴△RPQ是直角三角形,∴∠RPQ=90°,∵“远航”号沿北偏东50°方向航行,∴∠RPN=40°,∴“海天”号沿北偏西40°方向航行.【总结提升】此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键.【变式训练】1.(2023秋•泰山区期末)如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时30分,我国反走私A艇发现正东方有一走私艇C以8海里/时的速度偷偷向我领海驶来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的距离是20海里,A、B两艇的距离是12海里;反走私艇B测得距离C艇16海里,若走私艇C的速度不变,最早会在什么时候进入我国领海?【思路引领】由勾股定理的逆定理得△ABC为直角三角形,且∠ABC=90°,再由三角形面积求出BE=485海里,然后由勾股定理得CE=645海里,即可解决问题.【解答】解:由题意可知,∠BEC=90°,∵AB2+BC2=122+162=202=AC2,∴△ABC为直角三角形,且∠ABC=90°,∵MN⊥AC,∴走私艇C进入我国领海的最短距离是CE,=12AB•BC=12AC•BE,∵S△ABC∴BE=B⋅B B=12×1620485(海里),∴CE=B2−B2==645(海里),∴645÷8=85(小时)=96分,∴9时30分+96分=11时6分.答:走私艇C最早在11时6分进入我国领海.【总结提升】本题考查了勾股定理的应用、勾股定理的逆定理以及三角形面积等知识,熟练掌握勾股定理和勾股定理的逆定理是解题的关键.类型七受台风或噪声影响问题【典例7】(2022秋•清水县月考)如图,A城气象台测得台风中心在A城的正西方300千米处,以每小时107千米的速度向北偏东60°的BF方向移动,距台风中心200千米的范围内是受这次台风影响的区域.(1)问A城是否会受到这次台风的影响?为什么?(2)若A城受到这次台风的影响,那么A城遭受这次台风影响的时间有多长?【思路引领】(1)作AC⊥BF,则距点A最近的点即为C点,计算AC的长,若AC>200千米,则不受影响,反之,则受影响.(2)求出A城所受影响的距离DE,又有台风移动的速度,即可求解出其影响的时间.【解答】解:(1)A城市受影响.如图,过点A作AC⊥BF,则距离点C最近的距离为AC,∵AB=300,∠ABC=30°,∴AC=12AB=150<200,所以A城会受到这次台风的影响;(2)如图,∵距台风中心200千米的范围内是受这次台风影响的区域,则AD=AE=200,即DE为A城遭受这次台风的距离,CD=A2−B2=507,∴DE=1007,则t===10小时.故A城遭受这次台风影响的时间10小时.【总结提升】本题主要考查了方向角问题以及解直角三角形的简单运用,能够熟练掌握.【变式训练】1.(2022春•紫云县期末)如图,有两条公路OM,ON相交成30°,沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON的方向行驶时,以P为圆心,50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大,若重型运输卡车P沿道路ON方向行驶的速度为5米/秒.(1)求卡车P对学校A的噪声影响最大时,卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次,它给学校A带来噪声影响的总时间.【思路引领】(1)过点A作AH⊥ON于H,利用含30°角的直角三角形的性质可得答案;(2)当AC=AN=50米时,则卡车在CD段对学校A有影响,利用勾股定理求出CH的长,再根据等腰三角形的性质可得CD的长,从而求出时间.【解答】解:(1)过点A作AH⊥ON于H,∵∠O=30°,OA=80米,∴AH=12OA=40米,∴卡车P对学校A的噪声影响最大时,卡车P与学校A的距离为40米;(2)当AC=AN=50米时,则卡车在CD段对学校A有影响,由(1)知AH=40米,∴CH=B2−B2=502−402=30(米),∴CN=2CH=60(米),∴t=60÷5=12(秒),∴卡车P沿道路ON方向行驶一次,它给学校A带来噪声影响的总时间为12秒.【总结提升】本题主要考查了勾股定理的实际应用,含30°角的直角三角形的性质,等腰三角形的性质,垂线段最短等知识,根据题意,构造出直角三角形是解题的关键.类型八求旗杆(大树)高度问题【典例8】(2023秋•开封期末)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)()A.14m B.15m C.16m D.17m【思路引领】根据题意画出示意图,设旗杆高度为x m,可得AC=AD=x m,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【解答】解:设旗杆高度为x m,过点C作CB⊥AD于B,则AC=AD=x m,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选:D.【总结提升】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.【变式训练】1.(2023春•岳阳楼区期末)小华和小侨合作,用一块含30°的直角三角板,旗杆顶端垂到地面的绳子,测量长度的工具,测量学校旗杆的高度,如图,测得AD=0.5米,绳子部分长CD=6米,则学校旗杆AB的高度为()A.6.5米B.(63+0.5)米C.12.5米D.(65+0.5)米【思路引领】根据含30°角的直角三角形的性质得出2DC=BC,进而利用勾股定理解答即可.【解答】解:由题意知∠ABC=30°,CD⊥AB,∴BC=2CD=12米,A=63米,∵AD=0.5米,∴B=(63+0.5)米,故选:B.【总结提升】本题考查了含30度直角三角形的性质及勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.2.(2023秋•岱岳区期中)学习完《勾股定理》后,张老师要求数学兴趣小组的同学测量学校旗杆的高度.同学们发现系在旗杆顶端的绳子垂到了地面并多出了一段,但这条绳子的长度未知.如图,经测量,绳子多出的部分长度为2米,将绳子拉直,且绳子底端与地面接触,此时绳子端点距离旗杆底端5米,则旗杆的高度为214米.【思路引领】在Rt△ABC中,由勾股定理得出关于AB的方程求解即可.【解答】解:如图,由题意可知,BD=2米,BC=5米,AC=AB+BD=(AB+2)米,在Rt△ABC中,由勾股定理得,AB2+BC2=AC2,即AB2+52=(AB+2)2,解得AB=214,∴旗杆的高度为214米.故答案为:214.【总结提升】本题考查了勾股定理的应用,熟记勾股定理是解题的关键.3.(2023秋•秦安县期末)如图,在一棵树的10米高B处,有两只猴子,一只猴子爬下树走到离树20米处的池塘A处,另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树的高度为15米.【思路引领】根据两只猴子所经过的距离相等,将两只猴子所走的路程表示出来,根据勾股定理列出方程求解.【解答】解:如图,设树的高度为x米,因两只猴子所经过的距离相等都为30米.由勾股定理得:x2+202=[30﹣(x﹣10)]2,解得x=15m.故这棵树高15m.【总结提升】把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.类型九小鸟飞行距离问题【典例9】(2022秋•嵩县期末)如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行()米.A.6B.8C.10D.12【思路引领】根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:两棵树的高度差为8﹣2=6m,间距为8m,根据勾股定理可得:小鸟至少飞行的距离=82+62=10m.故选:C.【总结提升】本题主要考查了勾股定理的应用,解题的关键是将现实问题建立数学模型,运用数学知识进行求解.【变式训练】1.(2023秋•青羊区期中)如图,一只小鸟旋停在空中A点,A点到地面的高度AB=20米,A点到地面C 点(B,C两点处于同一水平面)的距离AC=25米.(1)求出BC的长度;(2)若小鸟竖直下降到达D点(D点在线段AB上),此时小鸟到地面C点的距离与下降的距离相同,求小鸟下降的距离.【思路引领】(1)在直角三角形中运用勾股定理即可求解;(2)在Rt△BDC中,根据勾股定理即可求解.【解答】解:(1)由题意知∠B=90°,∵AB=20米,AC=25米.∴BC=252−202=15米,(2)设AD=x,则CD=x,BD=20﹣x,在Rt△BDC中,DC2=BD2+BC2,∴x2=(20﹣x)2+152,解得x=1258,∴小鸟下降的距离为1258米.【总结提升】本题考查勾股定理,熟练掌握勾股定理是解题关键.类型十利用勾股定理表示无理数【典例10】(2022春•武昌区期末)平面直角坐标系中,点P(﹣4,2)到坐标原点的距离是()A.2B.4C.23D.25【思路引领】利用勾股定理计算可得结论.【解答】解:由题意得,点P到坐标原点的距离为:42+22=20=25.故选:D.【总结提升】本题考查了勾股定理,掌握勾股定理的内容是解决本题的关键.【变式训练】1.(2023•大连)如图,在平面直角坐标系中,点A,B的坐标分别为(1,0)和(0,2),连接AB,以点A为圆心、AB的长为半径画弧,与x轴正半轴相交于点C,则点C的横坐标是+1.【思路引领】由勾股定理求出AB的长,进而得到AC的长,再求出OC的长,得出点C的坐标,即可解决问题.【解答】解:∵点A,B的坐标分别为(1,0)和(0,2),∴OA=1,OB=2,∵∠AOB=90°,∴AB=B2+B2=12+22=5,∵以点A为圆心,以AB长为半径画弧,∴AC=AB=5,∴OC=AC+OA=5+1,∵交x轴正半轴于点C,∴点C的坐标为(5+1,0).故答案为:5+1.【总结提升】本题考查了勾股定理以及坐标与图形性质等知识,熟练掌握勾股定理是解题的关键.2.(2022秋•芗城区月考)用尺规作图在数轴上作出表示实数=10的点P(保留作图痕迹,不写作法).【思路引领】过表示1的点A作数轴的垂线AB,在垂线上截取AB=3,连接OB,以O为圆心,OB为半径作弧交数轴于P,则P即为所求的点.【解答】解:如图:点P表示的数即为10.【总结提升】此题主要考查了勾股定理以及作图,关键是掌握10是两直角边长分别为1和3的直角三角形的斜边长.3.(2023•长阳县一模)如图,在3×3的正方形网格中,每个小正方形边长为1,点A,B,C,D均为格点,以A为圆心,AB长为半径作弧,交网格线CD于点E,则C,E两点间的距离为()A.3B.3−3C.3+12D.3−12【思路引领】如图:连接AE,则AE=2、AD=1,由勾股定理可求出DE,然后运用线段的和差即可解答.【解答】解:如图:连接AE,则AE=2,AD=1,∴DE=B2−A2=22−12=3,∴CE=CD﹣DE=3−3.故选B.【总结提升】本题主要考查了勾股定理的应用以及线段的和差,根据题意运用勾股定理求得DE是解答本题的关键.4.(2022秋•埇桥区期中)如图,网格中每个小正方形的边长均为1,点A、B,C都在格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为()A.3−1B.3−5C.5D.22【思路引领】连接AD,则AD=AB=3,在Rt△AED中,利用勾股定理求出DE即可得出答案.【解答】解:连接AD,由题意知:AD=AB=3,在Rt△AED中,由勾股定理得:ED=A2−B2=32−22=5,∴CD=CE﹣DE=3−5,故选:B.【总结提升】本题主要考查了勾股定理,求出DE的长是解题的关键.。
一、选择题(每小题3分,共30分)1.一个直角三角形,两直角边长分别为3和4,下列说法正确的是()A.斜边长为5 B.三角形的周长为25C.斜边长为25 D.三角形的面积为20【答案】A.解析:此题较简单关键是熟知勾股定理:在直角三角形中两条直角边的平方和等于斜边的平方.利用勾股定理求出后直接选取答案.两直角边长分别为a=3和b=4,∴斜边c==52.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42或32 D.37或33【答案】C.解析:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.3.已知直角三角形中30°角所对的直角边长是cm,则另一条直角边的长是()A.4cm B. cm C.6cm D. cm【答案】C【解析】根据含30度角的直角三角形求出AB,根据勾股定理求出BC即可.∵∠C=90°,∠B=30°,AC=2cm,∴AB=2AC=4cm,由勾股定理得:BC==6cm4.如图,在△ABC中,三边a,b,c的大小关系是()A.a<b<c B.c<a<b C.c<b<a D.b<a<c【答案】D【解析】先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.根据勾股定理,得a==;b==;c==.∵5<10<13,∴b<a<c.5.若等腰三角形两边长分别为4和6,则底边上的高等于()A.或B.或C. D.【答案】A【解析】因为题目没有说明哪个边为腰哪个边为底,所以需要讨论,①当4为腰时,此时等腰三角形的边长为4、4、6;②当6为腰时,此时等腰三角形的边长为4、6、6;然后根据等腰三角形的高垂直平分底边可运用解直角三角形的知识求出高.∵AB=AC,AD⊥BC,∴BD=CD,边长为4、6的等腰三角形有4、4、6与4、6、6两种情况,①当是4、4、6时,底边上的高AD===;②当是4、6、6时,同理求出底边上的高AD是=.6.把直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的()A.2倍B.4倍C.3倍D.5倍【答案】A【解析】根据勾股定理,可知:把直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的2倍.设一直角三角形直角边为a、b,斜边为c.则a2+b2=c2;另一直角三角形直角边为2a、2b,则根据勾股定理知斜边为=2c.即直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的2倍.7.在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于( )A.10 B.8 C.6或10 D.8或10【答案】C.【解析】本题考查分类思想和勾股定理,要分两种情况考虑,分别在两个图形中利用勾股定理求出BD和CD,从而可求出BC的长.在图①中,由勾股定理,得BD=AB2-AD2=102-62=8CD=AC2-AD2=(210)2-62=2∴BC=BD+CD=8+2=10.在图②中,由勾股定理,得BD=AB2-AD2=102-62=8CD=AC2-AD2=(210)2-62=2∴BC=BD―CD=8―2=68.△ABC中,a、b、c是三角形的三条边,若(a+b)2﹣c2=2ab,则此三角形应是()A.锐角三角形B.直角三角形 C.钝角三角形 D.等腰三角形【答案】B【解析】先对已知进行化简,再根据勾股定理的逆定理进行判定.∵(a+b)2﹣c2=2ab,∴a2+b2=c2,∴△ABC是直角三角形.9.以下列各组数为边长,能组成直角三角形的是()A.8,15,17 B.4,5,6C.5,8,10 D.8,39,40【答案】A【解析】此题可直接用勾股定理的逆定理来进行判断,对数据较大的可以用c2=a2+b2的变形:b2=c2-a2=(c -a)(c+a)来判断。
专题01 勾股定理的证明1.做8个全等的直角三角形,设它们的两条直线边分别为a ,b ,斜边为c ,再做3个边长分别为a ,b ,c 的正方形,把它们按下图所示的方式拼成两个正方形.利用两个正方形的面积相等来证明勾股定理:a 2+b 2=c 2【答案】证明见解析【解析】【分析】根据不同图形拼成的两个正方形面积相等即可证明【详解】证明:①左图大正方形的边长为:a +b ,则面积为(a +b )2,分成了四个直角边为a ,b ,斜边为c 的全等的直角三角形和一个边长为c 的小正方形,()22142a b ab c \+=´+;②右图大正方形的边长为:a +b ,则面积为(a +b )2,分成了边长为a 的一个正方形,边长为b 的一个正方形,还有四个直角边为a ,b ,斜边为c 的全等的直角三角形,()222142a b a b ab \+=++´;综上所述:2142ab c ´+()222142a b a b ab =+=++´,即222+=a b c .【点睛】本题考查利用图形面积的关系证明勾股定理,解题关键是利用三角形和正方形边长的关系进行组合图形.2.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,也可以用面积法来证明勾股定理,请完成证明过程.(提示:BD 和AC 都可以分割四边形ABCD )【答案】证明见解析【解析】【详解】如图,连接DB,过点D作BC边上的高DF,根据S四边形ADCB=S△ACD+S△ABC=S△ADB+S△DCB 即可求解.【解答】证明:如图,连接DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab.又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b﹣a)∴12b2+12ab=12c2+12a(b﹣a)∴a2+b2=c2.【点睛】本题考查了等面积法证明勾股定理.解题得关键在于利用等面积法进行证明.3.如图,四边形ACFD是一个边长为b的正方形,延长FC到B,使BC=a,连接AB,使AB=C;E是边DF上的点且DE=a.(1)判断△ABE的形状,并证明你的结论;(2)用含b的式子表示四边形ABFE的面积;(3)求证:a2+b2=c2.【答案】(1)△ABE 是等腰直角三角形,证明见解析;(2)b 2;(3)证明见解析.【解析】【分析】(1)由题意可以得到△ADE ≌△ACB ,从而得到△ABE 是等腰直角三角形;(2)由(1)可得四边形ABFE 的面积=正方形ACFD 的面积=b 2;(3)由(2)可得正方形ACFD 的面积=△ABE 的面积+△BEF 的面积,把a 、b 、c 代入上式即可整理得a 2+b 2=c 2.【详解】解:(1)△ABE 是等腰直角三角形,理由如下:∵四边形ACFD 是正方形,∴AC =AD ,∠D =∠DAC =∠ACB =90°,∵CB =a =DE ,∴△ADE ≌△ACB ,∴AB =AE ,∠BAC =∠EAD ,∴∠BAE =90°,∴△ABE 是等腰直角三角形.(2)∵△ADE ≌△ACB ,∴四边形ABFE 的面积=正方形ACFD 的面积=b 2.(3)证明:∵四边形ABFE 的面积=△ABE 的面积+△BEF 的面积,∴正方形ACFD 的面积=△ABE 的面积+△BEF 的面积,∴()()221122b c b a b a =++-,∴22222b c b a =+-,∴a 2+b 2=c 2.【点睛】本题考查正方形的综合应用,熟练掌握正方形的性质、三角形全等的判定与性质、等腰直角三角形的判定方法、三角形与四边形面积的灵活计算是解题关键 .4.如图,小明用6个图1中的矩形组成图2,其中四边形ABCD ,EFGH ,MNPQ 都是正方形,证明:222+=a b c .【答案】见解析【解析】【分析】根据4BEF ABCD EFGH S S S =+V 正方形正方形,列式计算即可求解.【详解】证明:由图得:4BEF ABCD EFGH S S S =+V 正方形正方形,∴()22142a b c ab +=+´,整理得:22222a ab b c ab ++=+,∴222a b c +=.【点睛】本题考查了勾股定理的证明,得到4BEF ABCD EFGH S S S =+V 正方形正方形是解题的关键.5.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.Rt ABC V 中,90ACB Ð=°,若AC b =,BC a =,请你利用这个图形说明222+=a b c ;【答案】见解析【解析】【分析】根据题意,可在图中找出等量关系,由大正方形的面积等于中间的小正方形的面积加上四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.【详解】解:∵大正方形面积为2c ,直角三角形面积为12ab ,小正方形面积为()2b a -,∴()222214222c ab b a ab b ab a =´+-=+-+,即222c a b =+.【点睛】本题考查了对勾股定理的证明,解决问题的关键是在图中找出等量关系.7.勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要.学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法.请你利用如图图形证明勾股定理:已知:如图,四边形ABCD 中,BD ⊥CD ,AE ⊥BD 于点E ,且△ABE ≌△BCD .求证:AB 2=BE 2+AE 2.【答案】证明见解析【解析】【分析】连接AC ,根据四边形ABCD 面积的两种不同表示形式,结合全等三角形的性质即可求解.【详解】解:连接AC ,∵△ABE ≌△BCD ,∴AB =BC ,AE =BD ,BE =CD ,∠BAE =∠CBD ,∵∠ABE +∠BAE =90°,∴∠ABE +∠CBE =90°,∴∠ABC =90°,∴S 四边形ABCD =2111111222222ABD BDC S S BD AE BD CD AE AE BD BE AE BD BE D D +=×+×=×+×=+×,又∵S 四边形ABCD =2111111222222ABC ADC S S AB BC CD DE AB AB BE DE AB BE DE D D +=×+×=×+×=+×,2211112222AE BD BE AB BE DE +×=+×Q ,∴AB 2=AE 2+BD •BE -BE •DE ,∴AB 2=AE 2+(BD -DE )•BE ,即AB 2=BE 2+AE 2.【点睛】本题考查了勾股定理的证明,解题时,利用了全等三角形的对应边相等,对应角相等的性质.8.【经典回顾】梅文鼎是我国清初著名的数学家,他在《勾股举隅》中给出多种证明勾股定理的方法图1是其中一种方法的示意图及部分辅助线.在ABC V 中,90ACB Ð=°,四边形ADEB 、ACHI 和BFGC 分别是以Rt ABC V 的三边为一边的正方形.延长IH 和FG ,交于点L ,连接LC 并延长交DE 于点J ,交AB 于点K ,延长DA 交IL 于点M .(1)证明:AD LC =;(2)证明:正方形ACHI 的面积等于四边形ACLM 的面积;(3)请利用(2)中的结论证明勾股定理.(4)【迁移拓展】如图2,四边形ACHI 和BFGC 分别是以ABC V 的两边为一边的平行四边形,探索在AB 下方是否存在平行四边形ADEB ,使得该平行四边形的面积等于平行四边形ACHI 、BFGC 的面积之和.若存在,作出满足条件的平行四边形ADEB (保留适当的作图痕迹);若不存在,请说明理由.【答案】(1)见解析(2)见解析(3)见解析(4)存在,见解析【解析】【分析】(1)根据正方形的性质和SAS 证明△ACB ≌△HCG ,可得结论;(2)证明S △CHG =S △CHL ,所以S △AMI =S △CHL ,由此可得结论;(3)证明正方形ACHI 的面积+正方形BFGC 的面积=▱ADJK 的面积+▱KJEB 的面积=正方形ADEB,可得结论;(4)如图2,延长IH和FG交于点L,连接LC,以A为圆心CL为半径画弧交IH于一点,过这一点和A作直线,以A为圆心,AI为半径作弧交这直线于D,分别以A,B为圆心,以AB,AI为半径画弧交于E,连接AD,DE,BE,则四边形ADEB即为所求.(1)证明:如图1,连接HG,∵四边形ACHI,ABED和BCGF是正方形,∴AC=CH,BC=CG,∠ACH=∠BCG=90°,AB=AD,∵∠ACB=90°,∴∠GCH=360°﹣90°﹣90°﹣90°=90°,∴∠GCH=∠ACB,∴△ACB≌△HCG(SAS),∴GH=AB=AD,∵∠GCH=∠CHI=∠CGL=90°,∴四边形CGLH是矩形,∴CL=GH,∴AD=LC;(2)证明:∵∠CAI=∠BAM=90°,∴∠BAC=∠MAI,∵AC=AI,∠ACB=∠I=90°,∴△ABC ≌△AMI (ASA ),由(1)知:△ACB ≌△HCG ,∴△AMI ≌△HGC ,∵四边形CGLH 是矩形,∴S △CHG =S △CHL ,∴S △AMI =S △CHL ,∴正方形ACHI 的面积等于四边形ACLM 的面积;(3)证明:由正方形ADEB 可得AB DE ∥,又AD LC P ,所以四边形ADJK 是平行四边形,由(2)知,四边形ACLM 是平行四边形,由(1)知,AD LC =,所以ACHI ADJK ACLM S S S ==正方形平行四边形平行四边形,延长EB 交LG 于Q ,同理有BFGC KJEB CBQL S S S ==正方形平行四边形平行四边形,所以+ACHI BFGC ADEB ADJK KJEB S S S S S +==正方形正方形正方形平行四边形平行四边形.所以222AC BC AB +=.(4)解:如图为所求作的平行四边形ADEB .【点睛】本题是四边形的综合题,考查的是全等三角形的性质和判定,平行四边形的性质和判定,矩形的性质和判定,正方形的性质,勾股定理的证明等知识;熟练掌握正方形的性质和全等三角形的判定与性质,根据图形面积的关系证出勾股定理是解题的关键,属于中考常考题型.9.阅读理解下列材料,并解决相应的问题.材料一:对角线互相垂直的四边形的面积等于对角线乘积的一半.如图1,四边形ABCD 中,若AC BD ^,则12ABCD S AC BD =×四边形.材料二:人教版教材八年级下册介绍了几种利用全等直角三角形通过拼图证明勾股定理的方法.这些方法的共同特点:利用两种不同的方法计算同一个拼图的面积,然后建立等量关系,化简即可证明勾股定理.小文发现:把两块全等的直角三角板ACB 和直角三角板DEF 摆成图2的形状,点C 与点F 重合,并且点C ,E ,B 在同一条直线上,连接DA ,DB .利用这种摆放方式,也能证明勾股定理.问题:如图2,已知(),90,,,ABC CDE ACB DEC BC DE a AC CE b a b Ð=Ð=°====>△≌△AB CD c ==,AB ,CD 交于点O .求证:(1)AB CD ^;(2)222+=a b c .【答案】(1)见解析(2)见解析【解析】【分析】(1)根据全等三角形的性质得到∠CAB =∠DCE ,利用等角的余角相等得到结论(2)根据四边形的对角线垂直得到四边形的面积,再利用BDE ACBD ACED S S S =+V 四边形梯形得到四边形的面积,即可得到结论.(1)证明:∵△ABC ≌△CDE ,∴∠CAB =∠DCE ,∵∠DCE +∠ACO =90°,∴∠CAB +∠ACO =90°,∴∠AOC =90°,即AB ⊥CD ;(2)∵四边形ACBD 中,若AB ⊥CD ,∴21122ACBD S AB CD c =×=四边形.∵BDEACBD ACED S S S =+V 四边形梯形=()1122AC DE CE DE BE +×+×=()()1122b b a a a b ++-=221122b a +,∴222111222b ac +=,即222+=a b c .【点睛】此题考查了全等三角形的性质,应用题意的结论进行推论论证,正确理解题意并应用是解题的关键.10.数学王老师在探索乘法公式时利用了面积法,面积法可以帮助我们直观地推导或验证公式,俗称“无字证明”,我国三国时期的数学家赵爽创造了一幅“勾股圆方图”(也称“赵爽弦图”)证明了勾股定理.2002年在北京召开的国际数学家大会把“赵爽弦图”作为会徽(如图1),彰显了这一中国古代的重大成就.运用“赵爽弦图”证明勾股定理的基本思路如下:“赵爽弦图”是将四个完全相同的直角三角形(如图2,其中构成直角的两条边叫直角边,边长分别为a 和b ,且a b <;最长的那条边叫做斜边,边长为c )围成一个边长为c 的大正方形(如图3),中间空的部分是一个边长为b a -的小正方形.(1)验证过程:大正方形的面积可以表示为2S c =,又可用四个直角三角形和一个小正方形的和表示为214()2S ab b a =´+-,∴2214()2c ab b a =´+-.化简等号右边的式子可得∴2c =_______.即直角三角形两直角边的平方和等于斜边的平方.(2)爱动脑筋的小新把这四个相同的直角三角形拼成了另一个大的正方形(如图4),模仿上述过程也能验证这个结论,请你帮助小新完成验证的过程.【答案】(1)a 2+b 2;(2)见解析【解析】【分析】(1)化简等号右边的式子,即可得出答案;(2)利用以c为边的正方形和4个直角三角形的面积和等于以边为a+b的正方形的面积建立方程,即可得出结论.(1)解:(1)验证过程:大正方形的面积可以表示为S=c2,又可用四个直角三角形和一个小正方形的和ab+(b-a)2,表示为S=4×12ab+(b-a)2.∴c2=4×12化简等号右边的式子可得c2=a2+b2.即直角三角形两直角边的平方和等于斜边的平方.故答案为:a2+b2;(2)如图4,∵大的正方形的面积可以表示为(a+b)2,ab,大的正方形的面积又可以表示为c2+4×12∴c2+2ab=a2+b2+2ab,∴a2+b2=c2.【点睛】本题考查了勾股定理的证明.求面积时,利用了“分割法”.11.阅读理解:我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图1所示的“弦图”,后人称之为“赵爽弦图”(边长为c的大正方形中放四个全等的直角三角形,两直角边长分别为a,b,斜边长为c).(1)请根据“赵爽弦图”写出勾股定理的推理过程;探索研究:(2)小亮将“弦图”中的2个三角形进行了运动变换,得到图2,请利用图2证明勾股定理;问题解决:(3)如图2,若6a =,8b =,此时空白部分的面积为__________;(4)如图3,将这四个直角三角形紧密地拼接,形成风车状,已知外围轮廓(实线)的周长为24,3OC =,求该风车状图案的面积.【答案】(1)见详解;(2)见详解;(3)52;(4)24.【解析】【分析】(1)运用等面积法4S S S =+△小正方形大正方形计算即可;(2)连接大正方形一条对角线,运用等面积法2BDE ACDE S S S =+△△梯形化简计算即可;(3)先用勾股定理计算出c ,再利用2S S S =-△空白大正方形计算面积即可;(4)将风车周长表示出来4()24C c b a =+-=风车,其中a =OC =3,得到b 、c 的等量关系,再结合勾股定理求解出b ,最后计算面积即可.(1)证明:由图可知,每个直角三角形的面积为12S ab =△,空白小正方形的面积为2()S b a =-小正方形,整个围成的大正方形的面积为2S c =大正方形,∵4S S S =+△小正方形大正方形,即2222221()4222c b a ab b a ab ab b a =-+×=+-+=+,故222c b a =+;(2)如下图所示,连接大正方形一条对角线DE可知2BDE ACDE S S S =+△△梯形 ,其中,1()()2ACDE S a b a b =++梯形,212BDE S c =△,12S ab =△,代入可得,22111()2222a b ab c +=×+,即222+=a b c ;(3)由图2可知,2S S S =-△空白大正方形,∵6a =,8b =,∴10c ==,则2S c =大正方形=100,∴21210068522S c ab =-×=-×=空白,故空白部分的面积为52;(4)由题意可知,风车的周长为4()24C c b a =+-=风车 ,其中OC =a =3,代入上式可得c +b =9,则c =9-b ,且222+=a b c ,即2229c b a -==,将c =9-b 代入得,22(9)9b b --=,解得b =4,则1144342422S ab =×=×××=风车.【点睛】本题考查了勾股定理的证明与运用,灵活掌握等面积法在证明勾股定理中的作用是解题的关键.12.勾股定理在全世界有超过400种证法,下面介绍欧几里得的证法:(不得直接运用勾股定理结论进行证明)在Rt ABC V 中,90ACB Ð=°分别以AB ,BC ,AC 为边向Rt ABC V 外侧做正方形,求正方形,分别得到正方形ACDE ,正方形BCJK ,正方形ABGF .(1)如图1,连接CF ,BE ,试证明线段CF 和线段BE 的数量关系.(2)如图2,过点C 作直线l AB ^交正方形ABGF 中AB 边于点H ,FG 边于点I ,求证:ACDE AHIF S S =正方形长方形.(3)设BC a =,AC b =,AB c =,运用此图合勾股定理的学习经验证明结论:222+=a b c .(不得直接运用勾股定理结论证明)【答案】(1)EB =CF ,证明见解析(2)见解析(3)见解析【解析】【分析】(1)连接BE ,CF ,再证明EAB CAF SAS ()△≌△即可;(2)首先得出,·ACDE S EA AC =正方形,·AHIF S AF AH =长方形,再根据EAB CAF △≌△可得结论;(3)根据第第二问结论,可得出ACDE AHIF S S =正方形长方形,BCJK BGHI S S =正方形长方形即可证明.(1)解:如图,连接BE ,CF∵ACDE ,BCJK 为正方形∴AC =AE ,AB =AF ,∠EAC =90°,∠BAF =90°EAB CAF Ð=Ð∴EAB CAF SAS ()△≌△ ∴EB =CF .(2)证明:过B 作BR EA ^于点R ,·ACDE S EA AC =正方形.1·2EAB S EA BR =V .∵BR =AC ∴12ACDE S 正方形=EAB S V (同底等高三角形面积是长方形的一半)·AHIF S AF AH =长方形.1·2FAC S AF SC =V .∵AH =SC ∴12FAC AHIF S S =V 长方形又∵EAB CAF△≌△∴EAB FACS S =V V ∴ACDE AHIF S S =正方形长方形.(3)证明:如图,已知ACDE AHIFS S =正方形长方形同理可证BCJK BGHIS S =正方形长方形∴ACDE BCJK AHIF BGHI S S S S +=+正方形正方形长方形长方形.即ACDE BCJK ABGFS S S +=正方形正方形正方形又∵2ACDE S b =正方形,2BCJK S a =正方形,2ABGF S c=正方形∴222+=a b c .【点睛】本题考查了勾股定理的验证,理解题意根据图形,找出等量关系是解题的关键.13.(1)阅读理解我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.根据“赵爽弦图”写出勾股定理和推理过程;(2)问题解决勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形ACDE 的中心O ,作FG ⊥HP ,将它分成4份,所分成的四部分和以BC 为边的正方形恰好能拼成以AB 为边的正方形.若AC =12,BC =5,求EF 的值.【答案】(1)222+=a b c ,见解析;(2)EF 为172或72【解析】【分析】(1)根据大正方形的面积等于4个直角三角形的面积与小正方形的面积和证明;(2)分a >b 和a <b 两种情况求解.【详解】解:(1)222+=a b c (直角三角形两条直角边的平方和等于斜边的平方),证明如下:∵如图①,∵△ABE ≌△BCF ≌△CDG ≌△DAH ,∴AB =BC =CD =DA =c ,∴四边形ABCD 是菱形,∴∠BAE +∠HAD =90°,∴四边形ABCD 是正方形,同理可证,四边形EFGH 是正方形,且边长为(b ﹣a ),∵=4+ABE ABCD EFGHS S S △正方形正方形∴2211=4+()22c ab a b ´´´-,∴222+=a b c (2)由题意得:正方形ACDE 被分成4个全等的四边形,设EF =a ,FD =b ,分两种情况:①a >b 时,∴a +b =12,∵正方形ABIJ 是由正方形ACDE 被分成的4个全等的四边形和正方形CBLM 拼成,∴E 'F '=EF ,KF '=FD ,E 'K =BC =5,∵E 'F '﹣KF '=E 'K ,∴a ﹣b =5,∴=125a b a b +ìí-=î解得:a =172,∴EF =172;②a <b 时,同①得:=125a b b a +ìí-=î,解得:a =72,∴EF =72;综上所述,EF 为172或72.【点睛】本题考查了勾股定理的证明和应用,熟练掌握面积法证明勾股定理,并灵活运用是解题的关键.14.勾股定理是人类重大科学发现之一.我国古代数学书《周髀算经》记载,约公元前11世纪,我国古代劳动人民就知道“若勾三,股四,则弦五”,比西方早500多年.请你运用学到的知识、方法和思想探究以下问题.【探究一】我国汉代数学家赵爽创制了“赵爽弦图”,通过图形切割、拼接,巧妙地利用面积关系证明了勾股定理.古往今来,人们对勾股定理的证明一直保持着极大的热情.意大利著名画家达·芬奇用两张一样的纸片,拼出不一样的空洞,利用空洞面积相等也成功地证明了勾股定理(如图).请你写出这一证明过程(图中所有的四边形都是正方形,三角形都是直角三角形).【探究二】在学习勾股定理的过程中,我们获得了以下数学活动经验:分别以直角三角形的三边为边向外侧作正方形(如图2),它们的面积1S,2S,3S之间满足的等量关系是:__________.迁移应用:如图3,图中所有的四边形都是正方形,三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,3,2,则正方形E的面积是________.【探究三】如图4,分别以直角三角形的三边为直径向外侧作半圆,则它们的面积1S,2S,3S之间满足的等量关系是________.迁移应用:如图5,直角三角形的两条直角边长分别为a ,b ,斜边长为c ,分别以三边为直径作半圆.若5a =,13c =,则图中阴影部分的面积等于________.【探究四】《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地三尺.引索却行,去本八尺而索尺.问索长几何.译文:今有一竖立着的木柱,在木桩的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索与地面接触)退行,在距木柱根部8尺处时绳索用尽.问绳索长多少?【答案】【探究一】:见解析;【探究二】:S 1+S 2=S 3;迁移应用:47;【探究三】S 1+S 2=S 3;迁移应用:30;【探究四】绳索长为736尺.【解析】【分析】【探究一】根据直角三角形以及正方形的面积公式计算即可解决问题.【探究二】由正方形面积公式以及勾股定理得S 1+S 2=S 3;迁移应用:根据正方形的面积公式,结合勾股定理,能够导出正方形A ,B ,C ,D 的面积和即为正方形E 的面积;【探究三】利用直角△ABC 的边长就可以表示出半圆S 1、S 2、S 3的大小;迁移应用:求出阴影部分的面积等于直角三角形的面积,然后列式计算即可得解;【探究四】设绳索长为x尺,根据勾股定理列出方程解答即可.【详解】解:【探究一】:由题意得:②的面积为a2+b2+212´ab=a2+b2+ab;图③的面积为c2+212´ab=c2+ab,∴a2+b2+ab=c2+ab,即a2+b2=c2;【探究二】S1+S2=S3.证明如下:∵S3=c2,S1=a2,S2=b2,∴S1+S2=a2+b2=c2=S3;故答案为:S1+S2=S3;迁移应用:根据勾股定理的几何意义,可知SE=SF+SG=SA+SB+SC+SD=32+52+32+22=47;故答案为:47;【探究三】S1+S2=S3.证明如下:∵S3=18πc2,S1=18πa2,S2=18πb2,∴S1+S2=18πa2+18πb2=18πc2=S3;故答案为:S1+S2=S3;迁移应用:阴影部分面积和=S1+S2+12ab-S3=12ab,∵a=5,c=13,∴b==12,∴阴影部分面积和=12×5×12=30,故答案为:30;【探究四】设绳索长为x尺,根据题意得:x2-(x-3)2=82,解得:x=736,答:绳索长为736尺.【点睛】本题考查了勾股定理的证明及应用,读懂题目材料的信息并用两种方法准确表示出同一个图形的面积是解题的关键.。
八年级数学勾股定理经典例题解析八年级数学勾股定理经典例题解析经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,, . 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴ ( 的两个锐角互余)∴ (在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴ .举一反三【变式1】如图,已知:,,于P. 求证: .解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵ (已知),∴ .在中,根据勾股定理有,∴ .【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。
利用勾股定理解三角形 正向思维:是一类常规性的、传统的思维形式,指的是大家按照自上而下,由近及远、从左到右、从可知到未知等一般而言的线性方向做出探究问题的思维途径。
逆向思维:是指在剖析、破解数学难题进程中,可以灵活转换思维方向,从常规思维的相反方向出发进行探索的思维方式,比如正向思维无法解决问题时可反其道而行采取逆向思维,直接证明有困难时可采用间接证明。
一、勾股定理在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.【典例1】如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,∠CBE =45°,BE 分别交AC 、AD 于E 、F .(1)如图1,AB =12,BC =8,求AF 的长度;(2)如图2,取BF 中点G ,若BF 2+EF 2=CG 2,求证:AF =BC ;(3)如图3,在(2)的条件下,过点D 作DN ⊥AC 于点N ,并延长ND 交AB 延长线于点M ,请直接写出BMDM 的值. ◆知识点总结 ◆思维方法◆典例分析(1)先根据等腰三角形三线合一的性质得BD=4,由勾股定理计算可得AD的长,由等腰直角三角形性质得DF=4,最后由线段的差可得结论;(2)连接CF,由题意可知AD是BC的垂直平分线,可知CF=BF,∠FCB=∠FBC=45°,可得CF⊥EG,由勾股定理可得CF2+FG2=CG2,结合BF2+EF2=CG2,可得EF=FG,由G是BF的中点,可知EF=FG= BG,可得CF是EG的垂直平分线,易知CE=CG,得∠CEG=∠CGE,则∠AEF=∠CGB,由∠FDB=90°,∠FBD=45°,可知∠AFE=∠DFB=45°,继而可得∠AFE=∠CBG,利用ASA即可证明△AEF≌△CGB,即可证得结论;(3)过点B作BQ⊥MN于Q,过点D作DH⊥AB于H,连接DG,连接CF,利用等腰三角形的性质可得△NCD≌△QBD(AAS),易知CN=BQ,DN=DQ=DH,由S△DBM=12BM⋅DH=12DM⋅BQ,得BMDM=CNDN,结合(2)中结论,可设EF=FG=BG=a,由勾股定理可得AF=BC=2√2a,CD=BD=12BC=√2a,AE=CG=CE=√5a,AC=2√5a,AD=3√2a,由S△ABC=12AC⋅NQ=12BC⋅AD可得NQ=6√55a,进而求得DN,CN的长即可求解.(1)解:∵AB=AC,AD⊥BC,BC=8,∴BD=CD=12BC=4,∠ADB=∠ADC=90°,由勾股定理得:AD=√AB2−BD2=√122−42=√144−16=√128=8√2,∵∠CBE=45°,∠BDF=90°,∴△BDF是等腰直角三角形,∴DF=BD=4,∴AF=AD−DF=8√2−4;(2)证明:连接CF,∴CD=BD,则AD是BC的垂直平分线,∴CF=BF,∴∠FCB=∠FBC=45°,∴∠CFB=180°−∠FCB−∠FBC=90°,即CF⊥EG,∠CFE=180°−∠CFB=90°,Rt△CFG中,CF2+FG2=CG2,∵BF2+EF2=CG2,CF=BF,∴EF2=FG2,则EF=FG,∵G是BF的中点,∴FG=BG,则EF=FG=BG,∵∠FDB=90°,∠FBD=45°,∴∠DFB=45°,∴∠AFE=∠DFB=45°,即:∠AFE=∠CBG,∵CF⊥EG,EF=FG,∴CF是EG的垂直平分线,∴CE=CG,∴∠CEG=∠CGE,∴∠AEF=∠CGB,∴△AEF≌△CGB(ASA)∴AF=BC;(3)过点B作BQ⊥MN于Q,过点D作DH⊥AB于H,连接DG,连接CF,∴CD=BD,∠CAD=∠BAD,∴DN=DH,∵BQ⊥MN,DN⊥AC,则∠DNC=∠DQB=90°,∴BQ∥AC,则∠NCD=∠QBD,∴△NCD≌△QBD(AAS),∴CN=BQ,DN=DQ=DH,∵S△DBM=12BM⋅DH=12DM⋅BQ,∴BM⋅DN=DM⋅CN,∴BM DM =CNDN,由(2)可知:EF=FG=BG,CE=CG,△AEF≌△CGB,则AF=BC,AE=CG=CE设EF=FG=BG=a,则BF=CF=2a,∴AF=BC=√BF2+CF2=2√2a,则CD=BD=12BC=√2a,AE=CG=CE=√CF2+FG2=√5a,则AC=AE+CE=2√5a,则AD=√AC2−CD2=3√2a,∵S△ABC=12AC⋅NQ=12BC⋅AD,即:2√5a⋅NQ=2√2a⋅3√2a∴NQ=6√55a,又∵DN=DQ,∴DN=12NQ=3√55a,则CN=√CD2−DN2=√55a,∴BM DM =CNDN=13.1.(2023上·江西赣州·九年级统考阶段练习)已知,在Rt △ABC 中,∠B =90°,∠ACB =30°,点D 为边BC 上一个动点,以AD 为边作其右侧作等边△ADE .(1)如图1,线段AB 与线段AC 之间的数量关系为__________;(2)如图2,过点E 作EF ⊥AC 于点F .求证:点F 是AC 的中点;(3)若AB =2.①如图3,当点D 是BC 的中点时,过点E 作EG ⊥BC 于点G .求EG 的长;②当点D 从点B 运动到点C ,则点E 所经过的路径长__________(直接写出结果).【思路点拨】(1)由∠B =90°,∠ACB =30°即可求解;(2)证△ABD ≌△AFE (AAS ),即可证明;(3)①作DN ⊥AC , BC =√AC 2−AB 2=2√3,AD =√AB 2+BD 2=√7, AN =√AD 2−DN 2=52,证△ADN ≌△EDG (AAS ), 进而可求;②FH 为E 所经过的路径,当D 在B 点时,点E 恰落在AC 的中点F 处,当D 在C 点时,AH =AC ,进而可求.【解题过程】(1)解:∵∠B =90°,∠ACB =30°,∴AB =12AC .故答案为:AB =12AC .(2)∵△ADE 是等边三角形,∴AD =AE,∠DAE =60°,∵∠B =90°,∠ACB =30°,∴∠BAC =60°, ◆学霸必刷∴∠BAD=∠FAE,∵EF⊥AC,∴∠ABD=∠AFE,∴△ABD≌△AFE(AAS),∴AB=AF=12AC,∴点F是AC的中点.(3)作DN⊥AC,∵AB=12AC,AB=2,∴AC=4,∴BC=√AC2−AB2=2√3,∵D是BC的中点,∴BD=CD=√3,∴AD=√AB2+BD2=√7,∵DN⊥AC,∠ACB=30°,∴DN=12CD=√32,∠CDN=60°,∴AN=√AD2−DN2=52,∵∠ADE=60°,∴∠ADN=∠EDG,∵AD=DE,∴△ADN≌△EDG(AAS),∴EG=AN=52.如图,FH为E所经过的路径,当D在B点时,点E恰落在AC的中点F处,当D在C点时,AH=AC,∴FH=√AH2−AF2=2√3.2.(2023上·重庆南岸·八年级重庆市珊瑚初级中学校校考期中)如图,分别以△ABC的两边AB、AC为腰向外作等腰直角△ABD和等腰直角△ACE,其中∠BAD=∠CAE=90°,BC=5.(1)如图1,连接BE、CD.若∠ACB=45°,AC=2,求CD的长;(2)如图2,M为BC的中点,连接DM,过点M作DM⊥MN,交EB的延长线于点N,连接DN,试猜想BE、BN、DN之间有何等量关系并证明你的结论.【思路点拨】(1)先根据SAS证明△ACD≌△AEB,可得CD=BE,再说明△BCE是直角三角形,然后根据勾股定理求出CE,进而求出答案即可;(2)延长NM至K,使MN=MK,连接CK,DK,设NE交AD于点O,与CD的交点为J.先根据“SAS”证明△BMN≌△CMK,可得BN=CK,∠MNB=∠CKM,进而判定CK∥NE,可说明CD⊥CK,再根据勾股定理得DK2=DC2+CK2,然后根据垂直平分线的性质得DK=DN,即可得出答案.【解题过程】(1)∵等腰直角△ABD和等腰直角△ACE,∴AB=AD,AC=AE,∠EAC=45°,∴∠DAB+∠DAE=∠EAC+∠DAE,即∠EAB=∠CAD,在△EAB和△CAD中,{AB=AD∠EAB=∠CADAE=AC,∴△ACD≌△AEB,∴CD=BE.∵∠ACB=45°,∴∠BCE=∠ACB+∠ECA=45°+45°=90°,在Rt△ACE中,AC=AE=2,∴CE=√AC2+AE2=2√2.∵BC=5,∴BE=√CE2+BC2=√(2√2)2+52=√33,∴CD=BE=√33;(2)结论:DN2=BE2+BN2.理由:如图2中,延长NM至K,使MN=MK,连接CK,DK,设NE交AD于点O,与CD的交点为J.∵△ACD≌△AEB,∴∠EBA=∠CDA,BE=CD.∵∠AOB=DOJ,∴∠OAB=∠DJO=90°,∴BE⊥CD.∵MB=MC,∠BMN=∠CMK,MN=MK,∴△BMN≌△CMK,∴BN=CK,∠MNB=∠CKM,∴CK∥NE.∵CD⊥EN,∴CD⊥CK,∴∠DCK=90°,∴DK2=DC2+CK2.∵MN=MK,DM⊥NK,∴DK=DN,∴DN2=BE2+BN2.3.(2023上·四川成都·八年级校考期中)如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动,设点P的运动时间为t,连接AP.(1)当t=3秒时,求△BPA的面积;(2)若AP平分∠CAB,求t的值;(3)过点D作DE⊥AP于点E.在点P的运动过程中,当t为何值时,能使DE=CD?【思路点拨】(1)根据动点的运动速度和时间先求出BP,再利用三角形的面积计算公式解答即可求解;(2)作PM⊥AB于M,利用角平分线的性质分别求得BM、PM,再利用勾股定理PB2=PM2+BM2,解得PC=4√5−4,最后利用BP=2t=16−(4√5−4),求得t的值即可;(3)根据动点运动的不同位置利用勾股定理解答即可求解;本题考查了全等三角形的判定和性质、勾股定理,三角形的面积,根据题意,正确作出辅助线是解题的关键.【解题过程】(1)解:由题意可得,BP=2t,∵t=3,AC=8,∴BP=2×3=6,∴S△BPA=12BP·AC=12×6×8=24,∴当t=3秒时,求△BPA的面积为24;(2)解:当线段AP恰好平分∠CAB时,作PM⊥AB于M,如图,∵线段AP平分∠CAB,∠ACB=90°,PM⊥AB,∴∠PAC=∠PAM,∠ACP=∠AMP=∠BMP=90°,又∵AP=AP,∴△ACP≌△AMP(AAS),∴PC=PM,AC=AM=8,∵AB=√82+162=8√5,∴BM=AB−AM=8√5−8,在Rt△BPM中,PB2=PM2+BM2,∴(16−PC)2=PC2+(8√5−8)2,解得PC=4√5−4,∴BP=2t=16−(4√5−4),解得t=10−2√5;(3)解:①点P在线段BC上时,过点D作DE⊥AP于E,连接PD,如图,则∠AED=∠PED=90°,∴∠PED=∠ACB=90°,∵PD平分∠APC,∴∠EPD=∠CPD,又∵PD=PD,∴△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=16−2t,∴AD=AC−CD=8−3=5,∴AE=4,∴AP=AE+PE=4+16−2t=20−2t,在Rt△APC中,由勾股定理得:82+(16−2t)2=(20−2t)2,解得t=5;②点P在线段BC的延长线上时,过点D作DE⊥AP于E,如图,同①得△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=2t−16,∴AD=AC−CD=8−3=5,∴AE=4,∴AP=AE+PE=4+2t−16=2t−12,在Rt△APC中,由勾股定理得:82+(2t−16)2=(2t−12)2,解得t=11;综上所述,在点P的运动过程中,当t的值为5或11时,能使DE=CD.4.(2024上·河南南阳·八年级校考阶段练习)如图,在△ABC中,∠ABC=90°,AC=13,BA=5,点P从点C出发,以每秒3个单位长度的速度沿折线C−A−B运动.设点P的运动时间为t(t>0)秒.(1)求斜边AC上的高线长;(2)①当P在AB上时,AP的长为__________,t的取值范围是__________.(用含t的代数式表示);②若点P在∠BCA的角平分线上,则t的值为__________;(3)在整个运动过程中,当△PAB是等腰三角形时t的值为__________.【思路点拨】(1)过点B作BD⊥AC于点D,利用面积法求解;(2)①根据点P的运动路径及速度可解;②过点P作PE⊥AC于E,利用角平分线的性质可知PB=PE,再证Rt△BCP≌Rt△ECP(HL),推出EC=BC=12,最后利用勾股定理解Rt△AEP即可;(3)分AB=AP=5和AB=BP=5两种情况,利用等腰三角形的性质、勾股定理分别求解即可;关键.【解题过程】(1)在△ABC中,∠ABC=90°,AC=13,BA=5,∴BC=√AC2−AB2=√132−52=12,如图所示,过点B作BD⊥AC于点D,S△ABC=12AB⋅BC=12AC⋅BD,即BD=AB⋅BCAC=5×1213=6013,∴斜边AC上的高线长为6013;(2)①∵点P从点C出发,以每秒3个单位长度的速度沿折线C−A−B运动,AC=13,∴AP=3t−AC=(3t−13),∴AC3≤t≤AC+AB3,即133≤t≤13+53,∴133≤t≤6,故答案为:(3t−13),133≤t≤6;②点P在∠BCA的角平分线上时,过点P作PE⊥AC于E,如图所示,∵CP平分∠BCA,∠B=90°,PE⊥,∴PB=PE.又∵PC=PC,∴Rt△BCP≌Rt△ECP(HL),∴EC=BC=12,则AE=AC−CE=13−12=1,由(2)知AP=3t−13,∴BP=AB−AP=5−(3t−13)=18−3t,∴PE=18−3t,在Rt△AEP中,AP2=AE2+EP2,即(3t−13)2=12+(18−3t)2,解得t=265,∴点P在∠BAC的角平分线上时,t=265故答案为:265;(3)△PAB 是以AB 为一腰的等腰三角形时,有两种情况:当AB =AP =5时,如图所示,则CP =AC −AP =13−5=8,∴t =CP 3=83; 当AB =BP =5时,过点B 作BD ⊥AC 于点D ,如图所示,由(2)知BD =6013,AD =√AB 2−BD 2=√52−(6013)2=2513, ∵AB =BP ,BD ⊥AC ,∴AP =2AD =5013,∴CP =AC −AP =13−5013=11913, ∴t =CP 3=11939,△PAB 是以AB 为底的等腰三角形时,t 的值为136,综上,△PAB 是等腰三角形时t 的值为83或11939或136.5.(2023上·重庆南岸·八年级校考开学考试)如图,四边形ABCD中,AC=AD=AB,∠BAC=90°.(1)把△BCD沿BC翻折得到△BCE,过点A作AF⊥BE,垂足为F,求证:BE=2AF;(2)在(2)的条件下,连接DE,四边形ABCD的面积为45,AD=5√2,BC=10,求DE的长.【思路点拨】BD,由折叠的性质可得:(1)作AG⊥BD于G,由等腰三角形的性质可得∠ABD=∠ADB,BG=DG=12BE=BD,CE=CD,∠CBE=∠CBD,证明△ABF≌△BAG得到AF=BG,即可得出结论;(2)作BM⊥AD于M,CN⊥AD于N,延长BC交DE于H,则CH⊥DE,DH=EH,求出△ACD的面积为20,求出CN=4√2,由勾股定理可得AN=3√2,证明△ABM≌△CAN(AAS)得到BM=AN=3√2,求出△ABDBC×DH=30,求出DH=6,即可得出答案.的面积为15,得到△BCD的面积=12【解题过程】(1)证明:如图,作AG⊥BD于,,则∠AGB=90°,∵∠BAC=90°,AB=AC,∴∠ABC=45°,∵AB=AD,AG⊥BD,BD,∠AGB=90°,∴∠ABD=∠ADB,BG=DG=12由折叠的性质可得:BE=BD,CE=CD,∠CBE=∠CBD,设∠CBE=∠CBD=x,则∠ABG=45°−x,∠ABF=45°+x,∵AF⊥BE,∴∠BFA=∠AGB=90°,∴∠BAF=90°−∠ABF=90°−(45°+x)=45°−x,∴∠ABG=∠BAF,在△ABF和△BAG中,{∠BFA=∠AGB∠BAF=∠ABGAB=BA,∴△ABF≌△BAG(AAS),∴AF=BG,∴BE=2AF;(2)解:如图,作BM⊥AD于M,CN⊥AD于N,延长BC交DE于H,,由折叠的性质可得:CH⊥DE,CD,∵CE=CD,CH⊥DE,∴DH=EH,∵△ABC是等腰直角三角形,AD=AB=AC=5√2,∴△ABC的面积=12AB⋅AC=12×5√2×5√2=25,∵四边形ABCD的面积为45,∴△ACD的面积=12×AD×CN=45−25=20,∴12×5√2×CN=20,∴CN=4√2,∴AN=√AC2−CN2=√(5√2)2−(4√2)2=3√2,∵∠BAC=90°,∴∠BAM+∠ABM=∠BAM+∠CAN=90°,∴∠ABM=∠CAN,在△ABM和△CAN中,{∠AMB=∠CNA=90°∠ABM=∠CANAB=CA,∴△ABM≌△CAN(AAS),∴BM=AN=3√2,∴△ABD的面积=12AD×BM=12×5√2×3√2=15,∴△BCD的面积=12BC×DH=45−15=30,∴12×10×DH=30,∴DH=6,∴DE=2DH=12.6.(2023上·山东济南·八年级统考期末)已知∠AOB=∠COD=90°,OA=OB=10,OC=OD=8(1)如图1,连接AC、BD,问AC与BD相等吗?并说明理由.(2)若将△COD绕点O逆时针旋转,如图2,当点C恰好在AB边上时,请写出AC、BC、OC之间关系,并说明理由.(3)若△COD绕点O旋转,当∠AOC=15°时,直线CD与直线AO交于点F,求AF的长.【思路点拨】(1)根据题意可证得△AOC≌△BOD(SAS),据此即可解答;(2)连接BD,可证得∠AOC=∠BOD,据此即可证得△AOC≌BOD(SAS),AC=BD,∠CAO=∠DBO,根据勾股定理可得CD2=2OC2,再根据等腰直角三角形的性质可证得∠CBD=90°,根据勾股定理即可证得结论;(3)过点O作OE⊥CD于点E,利用勾股定理可求得CD=8√2,根据面积公式可求得OE=4√2,再分两种情况,分别计算即可求得.【解题过程】(1)解:AC与BD相等;理由如下:∵∠AOB=∠COD=90°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,{OA=OB∠AOC=∠BOD OC=OD∴△AOC≌BOD(SAS),∴AC=BD;(2)解:结论:BC2+AC2=2OC2理由如下:如图:连接BD,∵∠AOB=∠COD=90°,∴∠AOB−∠BOC=∠COD−∠BOC,即∠AOC=∠BOD在△AOC和△BOD中,{OA=OB∠AOC=∠BOD OC=OD∴△AOC≌BOD(SAS),∴AC=BD,∠CAO=∠DBO,∵∠AOB=∠COD=90°,OA=OB,OC=OD,∴∠BAO=∠ABO=45°,CD2=OC2+OD2=2OC2,∴∠CAO=∠DBO=45°,∴∠CBD=∠ABO+∠DBO=45°+45°=90°,∴BC2+BD2=CD2,∴BC2+AC2=2OC2;(3)解:如图:过点O作OE⊥CD于点E,∵∠COD=90°,OC=OD=8,∴CD=√OC2+OD2=√82+82=8√2,∵S△OCD=12OC⋅OD=12CD⋅OE,∴OE=OC⋅ODCD =8√2=4√2,如图:当点F在OA的延长线上时,∵∠DCO=45°,∠AOC=15°,∴∠F=∠DCO−∠AOC=45°−15°=30°,∴OF=2OE=8√2,∴AF=OF−OA=8√2−10;如图:当点F在线段OA上时,∵∠DCO=45°,∠AOC=15°,∴∠DFO=∠DCO+∠AOC=45°+15°=60°,∴∠FOE=90°−60°=30°,∴EF=12OF,∵OF2=EF2+OE2,∴OF2=(12OF)2+(4√2)2,解得OF=83√6,∴AF=OA−OF=10−83√6,综上,AF的长为8√2−10或10−83√6.7.(2023下·湖北武汉·八年级校考阶段练习)在等腰△ABC中,AB=AC,D为BC上一点,E为AD上一点,连接BE,CE,∠BAC=∠CED=2∠BED=2x.(1)如图1,若x=45°,求证:CE=2AE(2)如图2,若x=30°,AB=AC=√7.求CE的长.(3)如图3,若x=60°,AB=AC=2√3,点Q为△ABC外一点,且∠BQA=60°,AQ=2,求线段QC的长.【思路点拨】(1)作BH⊥AD,交AD的延长线于H,证明△ACE≌△BAH(AAS),得到BH=AE,CE=AH,即可得证;(2)在AD上取点H,使BH=EH,作BF⊥AD于F,同(1)法可得,△ACE≌△BAH(AAS),得到CE=AH,AE= BH,在Rt△ABF中,利用勾股定理进行求解即可;(3)以AQ为边作等腰三角形AQM,使∠QAM=120°,AQ=AM,连接BM,证明△BAM≌△CAQ(SAS),得到BM=CQ,过点A作AG⊥QM于点G,勾股定理求出BM的长,即可得解.【解题过程】(1)证明:作BH⊥AD,交AD的延长线于H,∵x=45°,∴∠BAC=∠CED=2∠BED=90°,∴∠AEC=90°,∵∠CED=∠EAC+∠ACE,∠BAC=∠EAC+∠BAE,∴∠BAH=∠ACE,∵∠AEC=∠H=90°,AB=AC,∴△ACE≌△BAH(AAS),∴BH=AE,CE=AH,∵∠BEH=45°,∠H=90°,∴BH=EH,CE,∴AE=EH=12∴CE=2AE;(2)在AD上取点H,使BH=EH BF⊥AD于F,则∠BHE=∠AEC=120°,同(1)法可得,△ACE≌△BAH(AAS),∴CE=AH,AE=BH,设BH=EH=AE=2x,∵∠BHF=60°,∴HF=x,BF=√3x,在Rt△ABF中,由勾股定理得:(√3x)2+(5x)2=(√7),解得:x=1(负值舍去),2∴CE=AH=4x=2;(3)解:以AQ为边作等腰三角形AQM,使∠QAM=120°,AQ=AM,连接BM,∵∠BAC=∠QAM=120°,∴∠BAC+∠CAM=∠QAM+∠CAM,即∠BAM=∠CAQ,又∵AB=AC,∴△BAM≌△CAQ(SAS),∴BM=CQ,∵AQ=AM,∠QAM=120°,∴∠AQM=30°,∵∠BQA=60°,∴∠BQM=∠BQA+∠AQM=60°+30°=90°,过点A作AN⊥BQ于点N,∵AQ=2,∠AQN=60°,∴NQ=AN=√3∵AB=2√3,∴BN=√AB2−AN2=√(2√3)2−(√3)2=3.∴BQ=BN+NQ=3+1=4,过点A作AG⊥QM于点G,∵∠AQG=30°,AQ=2,∴AG=1,GQ=√3,∴QM=2√3∴BM=√BQ2+QM2=√42+(2√3)2=2√7,∴CQ=2√7.8.(2023下·浙江金华·八年级浙江省义乌市后宅中学校考阶段练习)定义:在△ABC,若BC=a,AC=b,AB=c,a,b,c满足b2=ac+a2则称这个三角形为“和谐勾股三角形”.请根据以上定义解决下列问题:(1)命题:“直角三角形都是和谐勾股三角形”是(填“真”或“假”)命题;(2)如图1,若等腰△ABC是“和谐勾股三角形”,其中AB=BC,AC>AB,求∠A的度数;(3)如图2,在三角形ABC中,∠B=2∠A,且∠C>∠A.①当∠A=32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角度数;若不能,请说明理由;②请证明△ABC为“和谐勾股三角形【思路点拨】(1)先假设Rt△ABC是和谐勾股三角形,得出ab+a2=c2,再由勾股定理得a2+b2=c2,即可判断出此直角三角形是等腰直角三角形;(2)由“和谐勾股三角形”定义判断出此三角形是等腰直角三角形,即可得出结论;(3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a,AD=CD=a,BD=AB−AD=c−a,DG=BG=12(c−a),AG=12(a+c),在Rt△ACG与Rt△BCG利用勾股定理分别求CG2,建立方程即可得出结论.【解题过程】(1)解:如图1,假设Rt△ABC是和谐勾股三角形,∴ab+a2=c2,在Rt△ABC中,∠C=90°,根据勾股定理,∴a2+b2=c2,∴ab+a2=a2+b2,∴ab=b2∴a=b,∴△ABC是等腰直角三角形,∴等腰直角三角形是和谐勾股三角形,即原命题是假命题,故答案为:假;(2)∵AB=BC,AC>AB∴a=c,b>c,∵△ABC是和谐勾股三角形,∴ac+a2=b2,∴c2+a2=b2,∴△ABC是等腰直角三角形,∴∠A=45°,(3)①在△ABC中,∠ABC=2∠BAC,∠BAC=32°,∴∠ABC=64°,根据三角形的内角和定理得,=180°−∠ABC−∠BAC=84°,∵把这个三角形分成两个等腰三角形,当射线经过点C,(Ⅰ)当∠BCD=∠BDC时,∵∠ABC=64°,∴∠BCD=∠BDC=58°,∴∠ACD=∠ACB−∠BCD=84°−58°=26°,∠ADC=∠ABC+∠BCD=122°,∴△ACD不是等腰三角形,此种情况不成立;(Ⅱ)当∠BCD=∠ABC=64°时,∴∠BDC=52°,∴∠ACD=∠ACB−∠BCD=84°−64°=20°,∠ADC=128°,∴△ACD不是等腰三角形,此种情况不成立;(Ⅲ)当∠BDC=∠ABC=64°时,∴∠BCD=52°,∴∠ACD=∠ACB−∠BCD=84°−52°=32°=∠BAC,∴△ACD是等腰三角形,即:分割线和顶角标注如图2所示,当射线经过点B,同(Ⅰ当射线经过点A,同(Ⅱ)的方法,判断此种情况不成立;②如图3,在AB边上取点D,连接CD,使∠ACD=∠A,作CG⊥AB于G,∴∠CDB=∠ACD+∠A=2∠A,∵∠B=2∠A,∴∠CDB=∠B,∴CD=CB=a,∵∠ACD=∠A,∴AD=CD=a,∴BD=AB−AD=c−a,∵CG⊥AB,∴DG=BG=12(c−a),∴AG=AD+DG=a+12(c−a)=12(a+c),在Rt△ACG中,CG2=AC2−AG2=b2−[12(c+a)]2,在Rt△BCG中,CG2=BC2−BG2=a2−[12(c−a)]2,∴b2−[12(c+a)]2=a2−[12(c−a)]2,∴b2=ac+a2,∴△ABC为“和谐勾股三角形”.9.(2023下·湖北武汉·八年级校考阶段练习)已知△ABC中,AB=AC,∠BAC=2α,∠ADB=α.(1)如图1,若α=30°,则线段AD,BD,CD之间的数量关系为;(2)若α=45°,①如图2;线段AD,BD,CD满足怎样的数量关系?证明你的结论;②如图3,点E在线段BD上,且∠BAE=45°,AD=5,BD=4,则DE=.【思路点拨】(1)结论:DC2=DA2+DB2.如图1中,将△DCB绕点C顺时针旋转60°得到△MAC,连接DM.首先证明△DCM是等边三角形,再证明△ADM是直角三角形即可解决问题;(2)①结论:DC2=DB2+2DA2.如图2中,作AM⊥AD交DB的延长线于M,连接CM.由△DAB≌△MAC,推出BD=CM,∠ADB=∠AMC=45°推出∠DMC=90°,推出DC2=CM2+DM2,由CM=DB,DM=√2AD,即可证明;②如图3中,在图2的基础上将△AMB绕点A顺时针旋转90°得到△ADG.则△AEG≌△AEB,∠GDE=90°,可得EB=EG,设DE=x.EB=EG=4−x,由AD=AM=5,推出DM=5√2,BM=DG=5√2−4,在RtΔDEG中,根据DG2+DE2=EG2,列出方程即可解决问题.【解题过程】(1)解:结论:DC2=DA2+DB2.理由如下:将△DCB绕点C顺时针旋转60°得到△MAC,连接DM,如图1所示:∵CD=CM,∠DCM=60°,∴△DCM是等边三角形,∴DM=CD=CM,∵∠ADB=30°,∴∠DAB+∠DBA=150°,∵∠MAC=∠DBC,∴∠MAC+∠DAB=∠DBC+∠DAB=∠DBA+∠ABC+∠DAB=150°+60°=210°,∴∠DAM=360°−210°−60°=90°,∴DM2=DA2+AM2,∵AM=DB,DM=DC,∴DC2=DA2+DB2.故答案为DC2=DA2+DB2;(2)解:①结论:DC2=DB2+2DA2.理由如下:作AM⊥AD交DB的延长线于M,连接CM,如图2所示:∵∠ADM=45°,∠DAM=90°,∴∠ADM=∠AMD=45°,∴DA=AM,DM=√2DA,∵∠DAM=∠BAC,∴∠DAB=∠MAC,∵AB=AC,∴△DAB≌△MAC,∴BD=CM,∠ADB=∠AMC=45°∴∠DMC=90°,∴DC2=CM2+DM2,∵CM=DB,DM=√2AD,∴DC2=DB2+2DA2;②在图2的基础上将△AMB绕点A顺时针旋转90°得到△ADG,如图3所示:则△AEG≌△AEB,∠GDE=90°,∴EB=EG,设DE=x,则EB=EG=4−x,∵AD=AM=5,∴DM=5√2,BM=DG=5√2−4,在RtΔDEG中,由勾股定理知DG2+DE2=EG2,则(5√2−4)2+x2=(4−x)2,解得x=20√2−254,故答案为5√2−254.10.(2023下·重庆沙坪坝·八年级重庆一中校考期中)在△ABC中,∠B=45°,E为平面内一点,连接AE、CE.(1)如图1,若点E在线段BC上,AC=EC,AB=4√2,BE=3,求线段AC的长;(2)如图2,若点E在△ABC内部,AC=EC,∠BAE=∠ACE,求证:AE+2AB=√2BC;(3)如图3,若点E在△ABC内部,连接BE,AB=4,BC=6√2,请直接写出12EC+√52EB+EA的最小值.【思路点拨】(1)过点A作AF⊥BC于F,则可得△AFB是等腰直角三角形,由勾股定理可求得AF=BF=4,则可得EF=1,再设AC=x,则CF=CE−EF=x−1,在Rt△AFC中由勾股定理建立方程即可求解;(2)过C作CG⊥BC交BA的延长线于点G,在AG上取AH=AE,连接CH;首先可证明△AEC≌△AHC,其次再证明△ABC≌△HGC,则得GH=AB,从而由勾股定理即可证明结论成立;(3)过点B作BN⊥BE,且BN=BE,作BM⊥BC,BM=BC,连接MN;分别取BM、BN的中点D、F,连接DF,过A作AP⊥BD交DB延长线于点P,连接EF、AD、FD;证明△BEC≌△BNM,则MN=CE,由中点及中位线定理知BF=12BE,BD=12BC,DF=12MN=12CE,在Rt△EBF中,由勾股定理得EF=√5 2BE;则12EC+√52EB+EA=DF+FE+AE,则当点A、E、F、D四点共线时,12EC+√52EB+EA的最小值为AD的长,由勾股定理求解即可.【解题过程】(1)解:如图,过点A作AF⊥BC于F,则∠AFB=∠AFC=90°,∴∠FAB=∠FBA=45°,∴AF=BF即△AFB是等腰直角三角形,由勾股定理得:AF2+BF2=AB2=32,∴AF=BF=4,∴EF=BF−BE=1;设AC=x,则CE=AC=x,∴CF=CE−EF=x−1;在Rt△AFC中,AF2+CF2=AC2,即42+(x−1)2=x2,解得:x=172;(2)解:如图,过C作CG⊥BC交BA的延长线于点G,在AG上取AH=AE,连接CH;∵AC=CE,∴∠CAE=∠CEA;∵∠CAE+2∠CAE=180°,∠BAE+∠CAE+∠CAH=180°,∠BAE=∠ACE,∴∠CAE=∠CAH,∵AC=AC,AE=AH,∴△AEC≌△AHC(SAS),∴CE=CH,∵CA=CE,∴CA=CH,∴∠CHA=∠CAH,∴∠CHG=∠CAB;∵CG⊥BC,∠B=45°,∴∠G=∠B=45°,∴△ABC≌△HGC(AAS),∴GH=AB,∴BG=AB+AH+CG=AE+2AB;∵∠G=∠B=45°,CG⊥BC,∴CB=CG,由勾股定理得:BG=√2BC,∴AE+2AB=√2BC;(3)解:如图,过点B作BN⊥BE,且BN=BE;作BM⊥BC,BM=BC,连接MN;分别取BM、BN的中点D、F,连接DF;过A作AP⊥BD交DB延长线于点P,连接EF、AD;∵∠EBN=∠CBM=90°,∴∠EBC=∠NBM;∵BN=BE,BC=BM,∴△BEC≌△BNM(SAS),∴MN=CE,∵BM、BN的中点分别为D、F,∴BF=12BE,BD=12BC,DF=12MN=12CE,在Rt△EBF中,由勾股定理得EF=√BF2+BE2=√52BE;∴1 2EC+√52EB+EA=DF+FE+AE,∴当点A、E、F、D四点共线时,12EC+√52EB+EA取得最小值,且最小值为AD的长;∵BD⊥BCP,A⊥BP,∠ABC=45°,∴∠PBA=∠PAB=45°,∴PA=PB=√22AB=2√2;∵BM=BC=6√2,∴BD=12BM=3√2,∴PD=PB+BD=2√2+3√2=5√2;在Rt△PDA中,由勾股定理得AD=√PA2+PD2=√8+50=√58,∴1 2EC+√52EB+EA的最小值为√58.11.(2023上·重庆沙坪坝·八年级重庆八中校考开学考试)已知△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC,AD=AE,连接BD、CE.(1)如图1,若点B、D、E在同一直线上,已知AD=2√2,BD=2,求线段BC的长度.(2)如图2,当∠ADB=90°时,过点B作BG⊥ED并交ED的延长线于点G,EG与BC交于点F,求证:DE=2FG.(3)如图3,已知若AB=4,直线BD与直线CE相交于点P,过点C作直线CH垂直于CB,点Q是直线CH上一点,直接写出AQ+PQ的最小值.【思路点拨】(1)如图1中,设AC与BE交于点O,证明△BAD≌△CAE(SAS),推出BD=CE=2,∠ABD=∠ACE,推出∠CEO=∠BAO=90°,可得结论;(2)连接AF,过点A作AN⊥EG于点N,过点C作CM⊥EF与M,则∠CME=∠ANF=90°,依次证明△BAD≌△∠CAE(SAS),再求出△GBD≌△MEC(AAS),△BFG≌△CFM(AAS),△BFG≌△FAN,即可得出结论;(3)如图3,作点A关于CH的对称点J,连接CJ,AJ,过点J作JM⊥BC交BC的延长线于点M,取BC的中点O,连接OP,OJ.求出PJ的最小值,可得结论.【解题过程】(1)解:如图1中,设AC与BE交于点O∵△ABC和△ADE都是等腰直角三角形∴AB=AC,AD=AE,∠BAC=∠DAE=90°∴∠BAD=∠CAE在△BAD和△CAE中,{AB=AC∠BAD=∠CAEAD=AE∴△BAD≌△CAE(SAS)∴BD=CE=2,∠ABD=∠ACE∵∠AOB=∠COE∴∠CEO=∠BAO=90°∵AD=AE=2√2∴DE=√2AD=4∴BE=6∴BC=√CE2+BE2=√22+62=2√10;(2)证明:如图,连接AF,过点A作AN⊥EG于点N,过点C作CM⊥EF与M,则∠CME=∠ANF=90°,∵∠BAC=∠DAE=90°,AB=AC,AD=AE,∴∠BAD=∠CAE,∠ABC=∠ACB=∠ADE=∠AED=45°,∴△BAD≌△∠CAE(SAS),∴CE=BD,∠AEC=∠ADB=90°,∴∠BDG=180°−∠ADB−∠ADE=45°,∠DEC=∠AEC−∠AED=90°−45°=45°,∵BG⊥ED,∴∠G=90°,∴∠CME=∠G=90°,∠BDG=∠DEC=45°,CE=BD,∴△GBD≌△MEC(AAS),∴BG=CM,又∵∠G=∠CMF,∠BFG=∠CFM,∴△BFG≌△CFM(AAS),∴BF=CF.∵AB=AC,∠BAC=90°,∴AF=BF=CF,AF⊥BC,∴∠AFN+∠BGG=90°,∵∠FBG+∠BFG=90°,∴∠AFN=∠FBG,∴∠G=∠ANF=90°,∴△BFG≌△FAN,∴AN=FG∵AD=AE,∠DAE=90°,AN⊥DE,∴DE=2AN=2FG.(3)解:如图3,作点A关于CH的对称点J,连接CJ,AJ,过点J作JM⊥BC交BC的延长线于点M,取BC的中点O,连接OP,OJ.∵AB=AC=4,∠BAC=90°∴BC=√2AB=4√2∴OB=OC=2√2∵CH⊥BC,A,J关于CH对称∴CJ=CA=4,∠JCH=45°∴∠JCM=45°∵JM⊥CM∴CM=JM=2√2∴OM=OC+CM=4√2∴OJ=√JM2+OM2=√(2√2)2+(4√2)2=2√10由(2)得△BAD≌△CAE∴∠ABD=∠ACE∴∠CPB=∠BAC=90°∵OB=OC∴OP=2√2∴PJ≥OJ−OP=2√10−2√2∴PJ的最小值为2√10−2√2∵A,J关于CH对称∴AQ=QJ∴AQ+PQ=QP+QJ≥PJ=2√10−2√2∴AQ+QP的最小值为2√10−2√2.12.(2023上·陕西西安·八年级西安市第三中学校考期中)如图,长方形纸片ABCD,AB=6,BC=8,点E、F分别是边AB、BC上的点,将△BEF沿着EF翻折得到△B′EF.(1)如图1,点B′落在边AD上,若AE=2,则AB′=______,FB′=______;(2)如图2,若BE=2,F是BC边中点,连接B′D、FD,求△B′DF的面积;(3)如图3,点F是边BC上一动点,作EF⊥DF,将△BEF沿着EF翻折得到△B′EF,连接DB′,当△DB′F是以DF为腰的等腰三角形时,请直接写出CF的长.【思路点拨】(1)根据题意,折叠的性质可得△BEF≌△B′EF,根据在Rt△AB′E中,AE=2,B′E=4,AB′=√3AE= 2√3,设BF=x,则由等面积法列式求解,可得答案;(2)延长FB′交AB于K,设KE=x,KB′=y,则∠EB′K=90°,由勾股定理可得{x2=y2+4(x+2)2+16=(y+4)2,结合面积法可得S△BEFS△FEK =BFKF=BEEK,可得y=2x−4,可得AK=23,由S△DKF=S长方形ABCD−S△AKD−S△BFK−S△DCF可得三角形面积,结合S△B′KDS△DB′F =23,从而可得答案;(3)分两种情况讨论:由△DB′F是以DF为腰的等腰三角形,当DF=DB′时,过D作DH⊥B′F于H,证明△DHF≌△DCF,可得HF=CF,易得CF=83;当DF=B′F时,同理△DHF≌△DCF,设HF=CF=n,DH= CD=6,可得DF=B′F=BF=8−n,利用勾股定理可得(8−n)2=n2+62,从而可得答案.【解题过程】(1)解:∵四边形ABCD是长方形,AB=6,BC=8,AE=2,∴∠A=∠B=90°,BE=AB−AE=6−2=4,∵△BEF沿着EF翻折得到△B′EF,∴△BEF≌△B′EF,∴BE=B′E=4,在Rt△AB′E中,AE=2,B′E=4,∴AB′=√3AE=2√3,设BF=B′F=x,如下图,连接AF,则由等面积法可得12AE⋅BF+12AB′⋅AB=12BF⋅BE+12AE⋅AB′,即12×2x+12×2√3×6=12×4x+12×2×2√3,解得x=4√3,∴BF=B′F=4√3.故答案为:2√3,4√3;(2)∵四边形ABCD是长方形,AB=6,BC=8,BE=2,F是BC边中点,∴AE=AB−BE=6−2=4,BF=CF=12BC=12×8=4,∵△BEF沿着EF翻折得到△B′EF,∴B′F =BF =4,BE =B′E =2,∠B =∠EB′F =90°,∴B′F =CF =4,如图2,延长FB′交AB 于K ,设KE =x ,KB′=y ,∴∠EB′K =90°,∴由勾股定理可得{x 2=y 2+4(x +2)2+16=(y +4)2 , ∴x =2y −2,∴S △BEFS △FEK=BF KF =BE EK , ∴44+y =2x ,即y =2x −4,∴{x =2y −2y =2x −4, 解得{x =103y =83,经检验符合题意; ∴AK =6−103−2=23, ∴S △DKF =S 长方形ABCD −S △AKD −S △BFK −S △DCF=48−12×23×8−12×163×4−12×4×6 =683; ∵B ′K B ′F =834=23, ∴S△B ′KD S △DB ′F =23,∴S △DB ′F =35S △DKF =35×683=685;(3)∵△DB′F 是以DF 为腰的等腰三角形,当DF =DB′时,如图3,过D 作DH ⊥B′F 于H ,∴B′H =FH ,由折叠可得∠BFE =∠B′FE ,且EF ⊥DF ,∴∠B′FE +∠DFB′=90°=∠BFE +∠DFC ,∴∠DFB′=∠DFC ,∵∠DHF =∠C =90°,DF =DF ,∴△DHF ≌△DCF(AAS),∴HF =CF ,∴BF =B′F =2FH =2FC ,∴3CF =8,即CF =83,当DF =B′F 时,同理△DHF ≌△DCF(AAS),设HF =CF =n ,DH =CD =6,∴DF =B′F =BF =8−n ,∴由勾股定理可得(8−n)2=n 2+62,解得n =74,即CF =74.综上所述,CF =83或74.13.(2023下·四川成都·八年级统考期末)在△ABC 中,AB =12AC ,点D 为直线BC 上一动点,AD =AE ,∠BAC =∠DAE .(1)如图1,连接ED 交AC 于F ,∠BAC =90°,F 为AC 中点,若BD =3√2,DF =√2,求AD 的长;(2)如图2,延长CB至点G使得BG=DB,连接AG,CE,求证:AG=CE;(3)如图3,∠BAC=120°,AB=2√7,作点E关于直线BC的对称点E′,连接BE′,EE′,当BE′最小时,直接写出线段EE′的长.【思路点拨】(1)由同角的余角相等可得∠BAD=∠EAF,由SAS可证明△BAD≌△EAF,得到BD=EF=3√2,由∠EAD= 90°,AD=AE结合勾股定理得到AD2+AD2=BD2,计算即可得到答案;(2)延长AB至H,使BH=AB,连接DH,由SAS证明△ABG≌△HBD,得到AG=DH,由SAS证明△AHD≌△ACE,得到CE=AH,从而得证;(3)取AC的中点M,连接EM并延长交BC于N,令BC与EE′相交于点O,由SAS可证明△BAD≌△MAE(SAS),得到∠ABD=∠AME=∠CMN,由∠BAC=120°,可得∠BAH=60°,∠MNB=60°,点E的轨迹为直线EM,EM交BC于N,连接AN,再将该直线沿BC翻折可得到E′的轨迹,则AN⊥NE′,此时∠ANB=30°,作AH⊥CA 交CA的延长线于H,作AG⊥BC交BC于G,由含有30°角的直角三角形的性质以及勾股定理可得,AH=√7,AM=CM=AB=2√7,BH=√21,CH=5√7,BC=14,由等面积法可得AG=2√3,从而得到BG=4,AN=4√3,GN=6,BN=10,由对称的性质可得∠E′NB=60°,BN⊥EE′,OE′=OE,当BE′⊥E′N时,BE′最小,在△BE′N中,由含有30°角的直角三角形的性质、勾股定理以及等面积法可求得OE′的长,从而得到答案.【解题过程】(1)解:∵F为AC中点,AB=12AC,∴AF=12AC=AB,∵∠BAD+∠DAF=∠BAC=90°,∠EAF+∠DAF=∠EAD=90°,∴∠BAD=∠EAF,在△BAD和△EAF中,{AD=AE∠BAD=∠EAFAB=AF,∴△BAD≌△EAF(SAS),∴BD=EF=3√2,∴BD=EF+DF=4√2,∵∠EAD=90°,AD=AE,∴AD2+AE2=BD2,∴AD2+AD2=BD2,∴AD=4;(2)证明:延长AB至H,使BH=AB,连接DH,,在△ABG和△HBD中,{GB=DB∠ABG=∠HBDAB=HB,∴△ABG≌△HBD(SAS),∴AG=DH,∵∠HAD+∠DAC=∠HAC,∠DAC+∠CAE=∠DAE,∠BAC=∠DAE,∴∠HAD=∠CAE,∵AB=12AC,AB=BH,∴AH=AC,在△AHD和△ACE中,{AH=AC∠HAD=∠CAEAD=AE,∴△AHD≌△ACE(SAS),∴CE=AH,∴CE=AG;(3)解:如图,取AC的中点M,连接EM,令BC、EE′交于点O,,∵AB=12AC,∴AM=AB,∵∠BAD+∠DAC=∠BAC,∠DAC+∠EAM=∠EAD,∠BAC=∠EAD,∴∠BAD=∠MAE,在△BAD和△MAE中,{AB=AM∠BAD=∠MAEAD=AE,∴△BAD≌△MAE(SAS),∴∠ABD=∠AME=∠CMN,∵∠BAC=120°,∴∠ABC+∠C=60°,∠BAH=60°,∴∠MNB=∠CMN+∠C=60°,∴点E的轨迹为直线EM,EM交BC于N,连接AN,再将该直线沿BC翻折可得到E′的轨迹,则AN⊥NE′,此时∠ANB=30°,作BH⊥CA交CA的延长线于H,∵AB=2√7,∴AH=12AB=√7,AM=CM=12AC=AB=2√7,AC=2AB=4√7,∴BH=√AB2−AH2=√(2√7)2−(√7)2=√21,CH=AC+AH=5√7,∴BC=√BH2+CH2=√(√21)2+(5√7)2=14,作AG⊥BC交BC于G,∵S△ABC=12AC⋅BH=12BC⋅AG,∴12×4√7×√21=12×14×AG,∴AG=2√3,∴AN=2AG=4√3,BG=√AB2−AG2=4,∴GN=√AN2−AG2=6,∴BN=BG+GN=10,∵点E关于直线BC的对称点E′,∴∠E′NB=60°,BN⊥EE′,OE′=OE,∴当BE′⊥E′N时,BE′最小,∴E′N=12BN=5,∴E′B=√BN2−E′N2=5√3,∵S△BE′N=12E′B⋅E′N=12BN⋅OE′,∴5√3×5=10×OE′,∴OE′=5√32,∴EE′=5√3.14.(2023下·辽宁沈阳·八年级沈阳市南昌初级中学(沈阳市第二十三中学)校联考期中)在Rt△ABC中,∠ABC=90°,∠CAB=60°,AB=4,E为直线AB上一动点,连接CE,将CE绕点C顺时针旋转60°得到CD,连接AD.(1)BC=______(2)①如图1,当点E与点B重合时,AD=______.②如图2,当点E在线段AB上时,若BE=1,求AD的长度.(3)若∠ECB=15°,直接写出AD的长度.【思路点拨】(1)在Rt△ABC中,由30°所对的直角边是斜边的一半,再由勾股定理得到BC=4√3,即可得到答案;(2)①利用旋转性质,证得△ABC≌△ADC(SAS),由全等性质即可得到AD=AB=4;②在AC上截取AF= AE,如图所示,由“手拉手模型”证得△DAE≌△CFE(SAS),则AD=CF,根据(1)中AC=8,结合已知条件即可得到答案;(3)由于E为直线AB上一动点,当∠ECB=15°,分两种情况:①E在直线BC上方;②E在直线BC下方;作图分析求解即可得到答案.【解题过程】(1)解:在Rt△ABC中,∠CAB=60°,则∠ACB=30°,∵AB=4,则AC=8,∴BC=√AC2−AB2=√82−42=4√3,故答案为:4√3;(2)解:①由(1)知∠ACB=30°,∵将CE绕点C顺时针旋转60°得到CD,∴当点E与点B重合时,∠DCA=∠ACB=30°,CB=CD,在△ABC和△ADC,{CB=CD∠DCA=∠ACBAC=AC,∴△ABC≌△ADC(SAS),∴AD=AB=4,故答案为:4;②在AC上截取AF=AE,如图所示:∵∠CAB=60°,∴△AEF是等边三角形,∴AE=EF,∠AEF=60°,∵将CE绕点C顺时针旋转60°得到CD,∴△CDE是等边三角形,∴DE=CE,∠CED=60°,∵∠AED=∠AEF−∠DEF=60°−∠DEF,∠CEF=∠CED−∠DEF=60°−∠DEF,∴∠AED=∠CEF,在△DAE和△CFE中,{AE=EF∠AED=∠CEFED=EC,∴△DAE≌△CFE(SAS),∴AD=CF,∵AB=4,BE=1,∴AF=AE=AB−BE=4−1=3,由(1)知AC=8,∴CF=AC−AF=8−3=5,则AD=CF=5;(3)解:由题意可知,分两种情况讨论:①E在直线BC上方;②E在直线BC下方;由(1)知在Rt△ABC中,∠ACB=30°,当∠ECB=15°时,∠ACE=∠BCE=15°,即CE是∠ACB的角平分线,∴过E作EG⊥AC于G,如图所示:∴BE=BG,在Rt△AEG中,∠EAG=60°,则∠AEG=30°,设AG=x,则AE=2x,由勾股定理可得BE=EG=√AE2−AG2=√3x,∵AB=4,∴AB=AE+EB,即4=2x+√3x,解得x=8−4√3,则BE=√3x=8√3−12,当E在直线BC上方,在AC上截取=AE,如图所示:由(2)②的求解过程可知,AD=FC,当BE=8√3−12时,AF=AE=AB−BE=4−(8√3−12)=16−8√3,∴AD=FC=AC−AF=8−(16−8√3)=8√3−8;当E在直线BC下方,过D作DH⊥AC于H,如图所示:∴∠DHC=90°,由(1)知在Rt△ABC中,∠ACB=30°,AB=4,BC=4√3,AC=8,∵将CE绕点C顺时针旋转60°得到CD,∠ECB=15°,∴∠ACD=60°−30°−15°=15°=∠BCE,CE=CD,在△DHC和△EBC中,{∠ACD=∠BCE=15°∠DHC=∠EBC=90°CD=EC,∴△DHC≌△EBC(SAS),∴HC=BC=4√3,DH=BE,作点E关于直线BC的对称点I,如图所示:则DH=BE=BI,由(3)可知,BI=8√3−12,则DH=BE=BI=8√3−12,∵AH=AC−HC=8−4√3,在Rt△AHD中,∠DHA=90°,AH=8−4√3,DH=8√3−12,则AD=√AH2+DH2=16−8√3,综上所述,若∠ECB=15°,AD的长度为8√3−8或16−8√3.15.(2023下·辽宁沈阳·八年级沈阳市第七中学校考阶段练习)在△ABC中,∠ACB=90°,AC=BC,过点C作AB的平行线l,点P是直线l上异于点C的动点,连接AP,过点P作AP的垂线交直线BC于点D.(1)如图1,当点P在点C的右侧时,①求证:PA=PD;(提示:作PE垂直直线l交CD于点E.)②试判定线段CA,CD,CP之间有何数量关系?写出你的结论,并证明;(2)若AC=5√2,AP=13,直接写出线段BD的长.【思路点拨】(1)①过P作PE⊥l,交CD于E,由∠ACB=90°,AC=BC,AB∥l,可得∠ACP=∠ACB+∠ECP=135°,△ECP是等腰直角三角形,所以CP=EP,∠DEP=∠ECP+∠CPE=135°=∠ACP,即可证明△ACP≌△DEP(ASA),得PA=PD;②由①知△ACP≌△DEP,△ECP是等腰直角三角形,故AC=DE,CE=√2CP,即得CD=AC+√2CP;(2)分两种情况:当P在C右侧时,过A作AH⊥l于H;当P在C左侧时,过P作PF⊥l交BD的延长线于F,分别求解即可得到答案.【解题过程】(1)①证明:过P作PE⊥l,交CD E,如图所示,,∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵AB∥l,∴∠ECP=∠ABC=45°,∴∠ACP=∠ACB+∠ECP=135°,△ECP是等腰直角三角形,∴CP=EP,∠DEP=∠ECP+∠CPE=135°=∠ACP,∵∠APD=90°=∠EPC,∴∠APC=∠EPD,∴△ACP≌△DEP(ASA),∴PA=PD;②解:CD=AC+√2CP,由①可知:△ACP≌△DEP,△ECP是等腰直角三角形,∴AC=DE,CE=√2CP,∵CD=DE+CE,∴CD=AC+√2CP;(2)解:当P在C右侧时,过A作AH⊥l于H,如图所示,,∵∠ABC=∠BCP=45°,∠ACB=90°,∴∠ACH=45°,∴△ACH是等腰直角三角形,∵AC=5√2,∴AH=CH=5,在Rt△APH中,HP=√AP2−AH2=√132−52=12,∴CP=HP−CH=12−5=7,由②可知,CD=AC+√2CP,∴CD=5√2+√2×7=12√2,∴BD=CD−BC=CD−AC=12√2−5√2=7√2;当P在C左侧时,过P作PF⊥l交BD的延长线于F,如图所示,。
专题01讲 勾股定理(考点清单)【聚焦考点】题型一:用勾股定理解三角形题型二:勾股数问题题型三:以直角三角形三边为边长的图形面积题型四:勾股定理和网格问题题型五:勾股定理和折叠问题题型六:利用勾股定理求两条线段的平方和题型七:以炫图为背景的计算题题型八:勾股定理的应用题型九:勾股定理的证明题型十:勾股定理的综合问题【题型归纳】题型一:用勾股定理解三角形A .13【答案】A 【专训1-1】(2023下·河南新乡·八年级校考期末)如图,在Rt ABC △中,90B Ð=°,6AB =,10AC =,以边BC 为直径作一个半圆,则半圆(阴影部分)的面积为( )A .4πB .8πC .12πD .16π【专训1-2】(2023下·四川宜宾·八年级统考期末)如图,菱形OABC 的边长为2,45AOC Ð=°,则点B 的坐标是( ) A .()22,2B .(2【答案】D 【分析】过点B 作x 轴的垂线,可证OH BH 与就是点B 的横坐标与纵坐标.因为菱形OABC 的边长为2,∴2OA AB ==.由菱形的对边AB OC ∥可得:又90BHA Ð=°,题型二:勾股数问题,,是勾股数的是( )【专训2-1】(2023下·安徽合肥·八年级统考期末)下列各组a b c【专训2-2】(2023下·贵州铜仁·八年级统考期末)成书于大约公元前1世纪的《周髀算经》是中国现存最早的一部数学典籍,里面记载的勾股定理的公式与证明相传是在西周由商高发现,故又称之为商高定理.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1;古希腊哲学家m³,m为正整数),弦与股相差为2的一类勾股数,柏拉图(公元前427年—公元前347年)研究了勾为2m(3如:6,8,10;8,15,17;…,若此类勾股数的勾为12,则其股为()A .14B .16C .35D .37【答案】C 【分析】依题意,设斜边为x ,则股为2x -,根据勾股定理即可求出x 的值.【详解】解:依题意,设斜边为x ,则股为2x -,∴()222122x x +-=,解得:37x =,∴股为237235x -=-=,故选:C .题型三:以直角三角形三边为边长的图形面积【典例3】2023下·云南红河·八年级统考期末)如图,直线l 上有三个正方形,,a b c ,若,a c 的面积分别为6和9,则b 的面积为( )A .9B .12C .15D .20【答案】C 【分析】先根据AAS 证明ABC CDE △△≌,由此得BC DE =,在Rt ABC △中,根据勾股定理可得222AC AB BC =+,等量代换可得222AC AB DE =+,即可求出b 的面积.【详解】如图,ABC QV 中90ABC Ð=°,90ACB BAC \Ð+Ð=°.90ACE Ð=°Q ,90ACB ECD \Ð+Ð=°,BAC ECD \Ð=Ð.又90,ABC CDE AC CE Ð=Ð=°=Q ,AAS ()ABC CDE \≌V V ,BC DE \=.90,ABC ABC Ð=°QV ,222AC AB BC \=+,222AC AB DE \=+,即6915b a c S S S =+=+=.故选:C【专训3-1】(2023下·安徽马鞍山·八年级校考期末)ABC V 中,90ACB Ð=°,分别以ABC V 的三边作为边长向形外作正方形,并把各正方形的面积分别记作1S ,2S ,3S ,如图,若126S =,29S =,则3S 的值为( )A .13B .17C .20D .35【答案】B 【分析】由2=26AB ,29BC =,再根据勾股定理即可得到结论.【详解】解:∵126S =,29S =,∴2=26AB ,29BC =,∵90ACB Ð=°,∴22226917AC AB BC =-=-=,∴2317S AC ==.故选:B .【专训3-2】(2023下·广西柳州·八年级统考期末)如图,在Rt ABC △中,90ACB Ð=°,分别以AC 、BC 为边作正方形,若12AB =,则正方形ADEC 和正方形BCFG 的面积和为( )A .144B .120C .100D .无法计算【答案】A 【分析】根据勾股定理即可进行解答.【详解】解:∵四边形ADEC 和四边形BCFG 为正方形,∴2ADEC S AC =形正方,2BCFG S BC =形正方 ,∵在Rt ABC △中,90C Ð=°,∴222212144AC BC AB +===,∴22144ADEC BCFG S S BC AC +=+=正方正方形形,故选:A .题型四:勾股定理和网格问题【典例4】(2023下·河北保定·八年级统考期末)如图,在34´的正方形网格(每个小正方形的边长都是1)中,标记格点A ,B ,C ,D 的是( )A .线段ABB .线段BC C .线段ACD .线段BD【答案】B 【分析】根据勾股定理分别求解AB ,BC ,AC ,BD ,从而可得答案.【详解】解:由勾股定理可得:【专训4-1】(2023下·湖北武汉·八年级统考期中)如图,由单位长度为1的4个小正方形拼成的一个大正方形网格,连接三个小格点,可得ABCV,则AC边上的高是()A.32 2【答案】C【分析】设AC边上的高为【专训4-2】(2022上·山西运城·八年级统考期末)如图,ABCV的顶点A,B,C在边长为1的正方形网格的格点上,则BC边上的高为()题型五:勾股定理和折叠问题【典例5】(2023下·湖北荆州·八年级统考期末)如图,在Rt ABC △中,90,8,6A AB AC Ð=°==,将ABC V 沿CD 翻折,使点A 与BC 边上的点CDA .5【答案】D 【分析】利用勾股定理求得【专训5-1】(2023下·山东济宁·八年级统考期末)如图所示,有一块直角三角形纸片,90C Ð=°,2AC =,32BC =,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CE 的长为( ) A .1B .34【答案】C 【分析】根据勾股定理求出AB 【专训5-2】(2023下·天津和平·八年级天津市第五十五中学校考期末)如图,有一个直角三角形纸片,两直角边6cm AC =,8cm BC =,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为( )题型六:利用勾股定理求两条线段的平方和【典例6】(2021上·江苏扬州·八年级统考期末)如图,在△ABC 中,AB =6,AC =9,AD⊥BC 于D ,M 为AD 上任一点,则MC 2-MB 2等于( )A .29B .32C .36D .45【答案】D 【分析】在Rt △ABD 及Rt △ADC 中可分别表示出BD 2及CD 2,在Rt △BDM 及Rt △CDM 中分别将BD 2及CD 2的表示形式代入表示出BM 2和MC 2,然后作差即可得出结果.【详解】解:在Rt △ABD 和Rt △ADC 中,BD 2=AB 2−AD 2,CD 2=AC 2−AD 2,在Rt △BDM 和Rt △CDM 中,BM 2=BD 2+MD 2=AB 2−AD 2+MD 2,MC 2=CD 2+MD 2=AC 2−AD 2+MD 2,∴MC 2−MB 2=(AC 2−AD 2+MD 2)−(AB 2−AD 2+MD 2)=AC 2−AB 2=45.故选:D .【专训6-1】(2020上·浙江杭州·八年级统考期末)如图,在Rt ABC D 中, 90ACB °Ð=,以AB ,AC ,BC 为边作等边ABD D ,等边ACE D .等边CBF D .设AEH D 的面积为1S ,ABC D 的面积为2S ,BFG D 的面积为3S ,四边形DHCG 的面积为4S ,则下列结论正确的是( )【专训6-2】(2018上·辽宁沈阳·八年级校考期末)如图OP=1,过P 作PP 1⊥OP 且PP 1=1,得OP 1P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2,依此法继续作下去,得OP 2017等于( )题型七:以炫图为背景的计算题【典例7】(2023下·安徽·八年级统考期末)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,若168ab =,大正方形的面积为625,则小正方形的边长为( )A .7B .24C .17D .25【答案】C 【分析】勾股定理得:22625a b +=,又222()26252168289a b a b ab -=+-=-´=,由此即可求出17()a b a b -=>,因此小正方形的边长为17.【详解】解:由题意知小正方形的边长是a b -,由勾股定理得:22625a b +=,222()26252168289a b a b ab -=+-=-´=Q ,17()a b a b \-=>,\小正方形的边长为17.故选:C .【专训7-1】(2023下·青海西宁·八年级统考期末)如图,“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,它是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形两直角边为a ,b .斜边为c ,若85ab c ==,,则小正方形的边长为( )A.3B【答案】A【分析】由题意可知:中间小正方形的边长为:边长.【详解】解:由题意可知:中间小正方形的边长为:【专训7-2】(2023下·北京房山·八年级统考期末)如图,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,如果图中勾3a=,弦c=,则小正方形的面积为()5A.1B.2【答案】A【分析】首先根据勾股定理求出c=,【详解】∵勾3a=,弦5∴224=-=b c a2()(题型八:勾股定理的应用【典例8】(2023下·辽宁葫芦岛·八年级统考期末)如图是楼梯的一部分,若2AD =,1BE =,3AE =,一只蚂蚁在A 处发现C 处有一块糖,则这只蚂蚁吃到糖所走的最短路程为( ) A .25B .【答案】A 【分析】将台阶展开得到的是一个矩形,蚂蚁要从【专训8-1】(2023下·广东广州·八年级统考期末)如图,一个工人拿一个2.5米长的梯子,底端A 放在距离墙根C 0.7米处,另一头B 点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑多少米?( )A .0.4B .0.6C .0.7D .0.8【专训8-2】(2023下·北京怀柔·八年级统考期末)如图,在我军某次海上演习中,两艘航母护卫舰从同一港口O 同时出发,1号舰沿东偏南60°方向以9节(1节=1海里/小时)的速度航行,2号舰沿南偏西60°方向以12节的速度航行,离开港口2小时后它们分别到达A ,B 两点,此时两舰的距离是( )A .9海里B .12海里C .15海里D .30海里【答案】D 【分析】由60EOA Ð=°,60BOM Ð=°,求得30MOA Ð=°,90AOB Ð=°,再利用勾股定理的逆定理计算求解.【详解】解:由题意可得:60EOA Ð=°,60BOM Ð=°∴30MOA Ð=°,90AOB Ð=°又∵9218AO =´=(海里),12224BO =´=(海里),题型九:勾股定理的证明【典例9】(2023下·四川绵阳·八年级统考期末)如图,是2002年8月在北京召开的第24届国际数学家大会会标,创作的灵感来源于我国三国时代东吴数学家赵爽所注的著作《周髀算经》中的一个数学知识,这个数学知识是( )A .黄金分割【答案】D 【分析】如图,边长为为()b a -的小正方形的面积,即可求解.由题意得:边长为c 的大正方形的面积的小正方形的面积,即:214(2c ab b =´+-整理得:222c a b =+,【专训9-1】(2023下·河北廊坊·八年级统考期末)勾股定理是数学定理中证明方法最多的定理之一,也是用代数思想解决几何问题最重要的工具之一.下列图形中可以证明勾股定理的有( )A .①③B .②③C .②④D .①④【答案】D 【分析】利用同一个图形的面积的不同表示方法进行验证即可.【详解】解:①()()22211222S a b a ab b =+=++梯形,(2111122222S ab ab c ab c =++=+梯形【专训9-2】(2023上·河北保定·八年级统考期末)勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的, 90610BAC AB BC Ð=°==,,,点D ,E ,F ,G ,H ,I 都在长方形KLMJ 的边上,则长方形KLMJ 的面积为( )A .420B .440C .430D .410【答案】B 【分析】延长AB 交KL 于P ,延长AC 交LM 于Q ,可得ABC PFB QCG V V V 、、全等,根据全等三角形对应边相等可得PB AC CQ AB ==,,然后求出IP 和DQ 的长,再根据长方形的面积公式列式计算即可得解.【详解】解:如图,延长AB 交KL 于P ,延长AC 交LM 于Q ,由题意得,90BAC BPF FBC BC BF ===°=∠∠∠,,∴90ABC ACB PBF ABC +=°=+∠∠∠∠,∴ACB PBF =∠∠,∴()AAS ABC PFB △≌△,同理可证()AAS ABC QCG △≌△,∴86PB AC CQ AB ====,,∵图2是由图1放入长方形内得到,∴86822IP =++=,68620DQ =++=,∴长方形KLMJ 的面积2220440=´=.故选:B .题型十:勾股定理的综合问题【典例10】(2023下·内蒙古呼伦贝尔·八年级校考期末)如图,某自动感应门的正上方A 处装着一个感应器,离地的高度AB 为2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD 正对门,缓慢走到离门1.2米的地方时( 1.2BC =米),感应门自动打开,AD 为多少米?【答案】2.5米【分析】过点D 作DE 【详解】解:如图,过点2.5AB =Q 米,BE =答:AD为2.5米.【点睛】本题考查了勾股定理的应用,解题的关键是作出辅助线,构造直角三角形,利用勾股定理求得线段AD的长度.【专训10-1】.(2023上·河南周口·八年级校考期末)图1为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作注时给出的,它标志着中国古代的数学成就.根据该图,赵爽用两种不同的方法计算正方形的面积,通过正方形面积相等,从而证明了勾股定理.现有4个全等的直角三角形(图2中灰色部分),直角边长分别为a,b,斜边长为c,将它们拼合为图2的形状.(1)小诚同学在图2中加了相应的虚线,从而轻松证明了勾股定理,请你根据小诚同学的思路写出证明过程;b=时,求图2中空白部分的面积.(2)当3a=,4【答案】(1)见解析(2)13【分析】(1)根据图形可得,图2中图形的总面积可以表示为:以【专训10-2】(2023上·河北承德·八年级统考期末)如图,已知在ABC V 中,90ACB Ð=°,8AC =,16BC =,点D 在线段AC 上,且3CD =,点P 从点B 出发沿射线BC 方向以每秒2个单位长度的速度向右运动.设点P 的运动时间为t 秒,连接AP . (1)当3t =时,求AP 的长度;(2)当ABP V 是以BP 为腰的等腰三角形时,求t 的值;(3)连接PD ,在点P 的运动过程中,当PD 平分APC Ð时,直接写出【答案】(1)241则90AED PED Ð=Ð=°.90PED ACB \Ð=Ð=°.PD Q 平分APC Ð,DE AP ^3ED CD \==,PE PC ==同①得3ED CD ==,PE PC =835AD AC CD \=-=-=,AE \=2225AD DE -=-。
第十七章 勾股定理单元总结【思维导图】【知识要点】知识点一 勾股定理勾股定理概念:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=变式:1)a ²=c ²- b ²2)b ²=c ²- a ²适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,因而在应用勾股定理时,必须明了所考察的对象是直角三角形。
勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.c ba HG FEDC BA方法二:b ac b a cca b c a b四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c += 方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证222a b c += a b ccb a E DCB A知识点二 勾股定理的逆定理勾股数概念:能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数常见的勾股数:如3,4,5;6,8,10;5,12,13;7,24,25等扩展:用含字母的代数式表示n 组勾股数:1)221,2,1n n n -+(2,n ≥n 为正整数);2)2221,22,221n n n n n ++++(n 为正整数)3)2222,2,m n mn m n -+(,m n >m ,n 为正整数)注意:每组勾股数的相同整数倍,也是勾股数。
八年级北师大版上册第一章勾股定理培优专题一、勾股定理的应用(最短路径)1.如图是放在地面上的一个长方体盒子,其中AB=18,BC=12,BF=10,点M在棱AB上,且AM=6,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程的平方为()A.400B.424C.136D.324【答案】A【解析】【分析】利用平面展开图有两种情况,画出图形利用勾股定理求出MN的长即可.【详解】解:如图1,∵AB=18cm,BC=GF=12cm,BF=10cm,∵BM=18-6=12,BN=10+6=16,∵MN2=122+162=400如图2,∵AB=18cm,BC=GF=12cm,BF=10cm,∵PM=18-6+6=18,NP=10,∵MN2=182+102=424.∵因为400<424,所以蚂蚁沿长方体表面从点M爬行到点N的最短距离的平方为400.故选:A.【点睛】此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有两种情况分析得出是解题关键.2.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为_______cm.【答案】15.【分析】过C作CQ∵EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C即可.【详解】沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ∵EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∵AP+PC=A′P+PC=A′C,∵CQ=12×18cm=9cm,A′Q=12cm-4cm+4cm=12cm,在Rt∵A′QC中,由勾股定理得:,故答案为15.3.有一个如图所示的长方体的透明鱼缸,假设其长AD=80 cm,高AB=60 cm,水深AE=40 cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60 cm.一小虫想从鱼缸外的点A处沿缸壁爬到鱼缸内G处吃鱼饵.(1)小虫应该走怎样的路线才可使爬行的路程最短?请画出它的爬行路线,并用箭头标注;(2)试求小虫爬行的最短路程.【答案】(1)如图所示见解析,AQ→QG为最短路线;(2)小虫爬行的最短路程为100 cm.【分析】(1)根据轴对称性质,通过作对称点将折线转化成两点之间线段距离最短.(2)根据AE=40cm,AA′=120cm,可得:A′E=120-40=80(cm),再根据EG=60cm,可得:A′G2=A′E2+EG2=802+602=10000,A′G=100cm,进而可得:AQ+QG=A′Q+QG=A′G=100cm.【详解】(1)如图所示,AQ→QG为最短路线,(2)因为AE=40cm,AA′=120cm,所以A′E=120-40=80(cm),因为EG=60cm,所以A′G2=A′E2+EG2=802+602=10000,所以A′G=100cm,所以AQ+QG=A′Q+QG=A′G=100cm,所以小虫爬行的最短路程为100cm.【点睛】本题主要对称性质和勾股定理的应用,解决本题的关键是要熟练掌握利用轴对称性质和勾股定理解决实际问题的方法.勾股定理的实际应用4.有一辆装满货物的卡车,高2.5米,宽1.6米,要开进如图所示的上边是半圆,下边是长方形的桥洞,已知半圆的直径为2米,长方形的另一条边长是2.3米.(1)这辆卡车能否通过此桥洞?试说明你的理由.(2)为了适应车流量的增加,想把桥洞改为双行道,并且要使宽1.2米,高为2.8米的卡车能安全通过,那么此桥洞的宽至少应增加到多少米?【答案】(1)能通过,理由见解析;(2) 桥洞的宽至少应增加到2.6米.【分析】(1)如图①,当桥洞中心线两边各为0.8米时,由勾股定理得方程2220.81x +=,解出x 的值,再用x +2.3与卡车的高2.5作比较即可;(2)如图②,在直角三角形AOB 中,已知OB =1.2,AB =2.8-2.3=0.5,由此可求OA 的长,即桥洞的半径,再乘以2即得结果.【详解】解:(1)能通过.理由如下:如图①所示,当桥洞中心线两边各为0.8米时,由勾股定理得2220.81x +=,解得0.6x =,∵2.5 2.30.6<+,∵卡车能通过.(2)如图②所示,在直角三角形AOB 中,已知OB =1.2,AB =2.8-2.3=0.5,由勾股定理得:22221.20.5 1.3OA =+=,∵ 1.3OA =,∵桥洞的宽至少应增加到1.32 2.6⨯=(米).① ②【点睛】本题考查了勾股定理的应用,解题的关键是正确理解题意,画出图形,弄清相关线段所表示的实际数据. 5.如图,公路MN 和公路PQ 在点P 处交会,公路PQ 上点A 处有学校,点A 到公路MN 的距离为80m ,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音的影响,试问该校受影响的时间为多长?【答案】24s.【解析】试题分析:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束,在Rt∵ACB中求出CB,继而得出CD,再由拖拉机的速度可得出所需时间.试题解析:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt∵ABC中,CB60(m),∵CD=2CB=120m,∵18km/h=18000m/3600s=5m/s,∵该校受影响的时间为:120÷5=24(s).答:该校受影响拖拉机产生的噪声的影响时间为24秒.6.如图是某体育广场上的秋千,秋千静止时,其下端离地面0.7m,秋千荡到最高位置时,其下端离地面1.2 m,此时秋千与静止位置时的水平距离为1.5 m,请你根据以上数据计算秋千摆绳的长度.【答案】2.5m .【分析】根据题意画出图形,表示出图形中相关线段的长,再利用勾股定理得出答案.【详解】解:如图,作BE∵OA ,垂足为E ,由题意得,0.7m AC =, 1.2m BD =, 1.5m BE =,∵ 1.2m CE BD ==, 1.20.70.5(m)AE =-=.设m OA OB x ==,则(0.5)m OE x =-.在Rt OBE 中,由勾股定理得,222OE O E B B -=,即222(0.5) 1.5x x --=,解得 2.5x =.答:秋千摆绳的长度为2.5m .二、勾股定理与几何问题的应用7.如图,把长方形纸条ABCD 沿EF ,GH 同时折叠,B ,C 两点恰好落在AD 边的P 点处,若∵FPH =90°,PF =8,PH =6,则长方形ABCD 的边BC 的长为( )A .20B .22C .24D .30【答案】C【详解】 由折叠得: ,,FP BF CH PH ==在Rt PHF ∆ 中,∵FPH =90°,PF =8,PH =6,则10.FH == 故BC=BF+FH+HC=6+8+10=24. 故选C.8.如图,在四边形ABCD 中,AD∵BC ,∵ABC+∵DCB=90°,且BC=2AD ,分别以AB 、BC 、DC 为边向外作正方形,它们的面积分别为S 1、S 2、S 3.若S 2=48,S 3=9,则S 1的值为( )A.18B.12C.9D.3【答案】D【分析】过A作AH∵CD交BC于H,根据题意得到∵BAE=90°,根据勾股定理计算即可.【详解】∵S2=48,∵BC A作AH∵CD交BC于H,则∵AHB=∵DCB.∵AD∵BC,∵四边形AHCD是平行四边形,∵CH=BH=AD AH=CD=3.∵∵ABC+∵DCB=90°,∵∵AHB+∵ABC=90°,∵∵BAH=90°,∵AB2=BH2﹣AH2=3,∵S1=3.故选D.【点睛】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.9.如图,在∵ABC中,AB=AC=m,P为BC上任意一点,则PA2+PB•PC的值为()A.m2B.m2+1C.2m2D.(m+1)2【答案】A【分析】如图,作AD∵BC交BC于D,根据勾股定理得AB2=BD2+AD2,AP2=PD2+AD2,再根据D是BC的中点,整理得到AB2﹣AP2=PB•PC,再把AB=m代入求解即可.【详解】解:如图,作AD∵BC交BC于D,AB2=BD2+AD2 ①,AP2=PD2+AD2 ②,①﹣②得:AB2﹣AP2=BD2﹣PD2,∵AB2﹣AP2=(BD+PD)(BD﹣PD),∵AB=AC,∵D是BC中点,∵BD+PD=PC,BD﹣PD=PB,∵AB2﹣AP2=PB•PC,∵PA2+PB•PC=AB2=m2.故选A.10.如图,点E 是正方形ABCD 内一点,将ABE ∆绕点B 顺时针旋转90到CBE '∆的位置,若1,2,3AE BE CE ===,求BE C '∠的度数.【答案】135︒【分析】连接EE`,如图,根据旋转的性质得BE=B E'=2,AE=C E'=1,∵EBE`=90°,则可判断∵BEE`为等腰直角三角形,根据等腰直角三角形的性质得在∵CE E'中,由于CE`2 +E E'2=CE 2,根据勾股定理的逆定理得到∵CEE`为直角三角形,即∵EE`C=90°,然后利用∵B E'C=∵B E'E+∵C E'E 求解【详解】连接EE`,如图,∵∵ABE 绕点B 顺时针旋转90°得到∵CBE`∵BE=BE'=2,AE=CE'=1,∵EB E'=90°∵∵BE E'为等腰直角三角形在∵CEE`中∵122=32∵CE 2+E E'2= CE 2∵∵CE E'为直角三角形∵∵E E'C=90°∵∵B E'C=∵B E'E+∵C E'E=135°【点睛】此题考查了等腰直角三角形,勾股定理的逆定理,正方形的性质和旋转的性质,利用勾股定理证明三角形是直角三角形是解题关键11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12315S S S ++=,则2S 的值是__________.【答案】5【分析】根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可.【详解】解:将四边形M TKN 的面积设为x ,将其余八个全等的三角形面积一个设为y ,正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=, ∴得出18S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y, 154=53x y , 所以245S x y , 故答案为:5.【点睛】此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用12315S S S ++=求出是解决问题的关键.12.如图,P 是等边三角形ABC 内的一点,连接PA ,PB ,PC ,以BP 为边作60PBQ ∠=︒,且BQ=BP ,连接CQ.若::3:4:5PA PB PC =,连接PQ ,试判断PQC △的形状,并说明理由.【答案】PQC △是直角三角形,理由详见解析【解析】【分析】先利用SAS 证明∵ABP ∵∵CBQ ,得到AP=CQ ;设PA =3a ,PB =4a ,PC =5a ,由已知可判定∵PBQ 为正三角形,从而可得PQ =4a ,再根据勾股定理的逆定理即可判定∵PQC 是直角三角形.【详解】解:PQC △是直角三角形. 理由如下:在ABP △与CBQ △中,∵AB CB =,BP BQ =,60ABC PBQ ∠=∠=︒,∵ABP ABC PBC PBQ PBC CBQ ∠=∠-∠=∠-∠=∠.∵ABP CBQ ≌△△.∵AP CQ =.∵::3:4:5PA PB PC =,∵设3PA a =,4PB a =,5.PC a =在PBQ △中,由于4PB BQ a ==,且60PBQ ∠=︒,∵PBQ △为等边三角形.∵4PQ a =.在PQC △中,∵22222216925PQ QC a a a PC +=+==,∵PQC △为直角三角形.【点睛】此题考查了等边三角形的性质、勾股定理逆定理和全等三角形的判定与性质,解题的关键是通过证明ABP CBQ≌△△得出AP=CQ.13.已知:如图,∵ABC中,AB=AC=10,BC=16,点D在BC上,DA∵CA于A.求:BD的长.【答案】7 2【分析】先根据等腰三角形的性质和勾股定理求出AE=6,设BD=x,则DE=8﹣x,DC=16﹣x.在Rt∵ADE和Rt∵ADC中利用勾股定理得:AD2=AE2+DE2=DC2﹣AC2,继而代入求出x的值即可.【详解】如图,过点A作AE∵BC于点E,∵AB=AC=10,BC=16,∵BE=CE=8,在Rt∵ACE中,利用勾股定理可知:AE=6,设BD=x,则DE=8﹣x,DC=16﹣x,又DA∵CA,在Rt∵ADE和Rt∵ADC中分别利用勾股定理得:AD2=AE2+DE2=DC2﹣AC2,代入为:62+(8﹣x)2=(16﹣x)2﹣102,解得:x=72.即BD=72.【点睛】本题考查了勾股定理及等腰三角形的性质,解题的关键是在Rt∵ADE和Rt∵ADC中分别利用勾股定理,列出等式AD2=AE2+DE2=DC2﹣AC2.14.已知:AB=AC,且AB∵AC,D在BC上,求证:2222BD CD AD+=.【答案】证明见解析【分析】作AE∵BC于E,由于∵BAC=90°,AB=AC,得到∵BAC是等腰直角三角形,再由等腰直角三角形的性质得到BE=AE=EC,进而得到BD= AE-DE,DC= AE+DE,代入BD2+CD2计算,结合勾股定理,即可得到结论.【详解】作AE∵BC于E,如图所示.∵AB=AC,且AB∵AC,∵∵BAC是等腰直角三角形.∵AE∵BC,∵BE=AE=EC,∵BD=BE -DE=AE-DE,DC=EC+DE= AE+DE,∵BD2+CD2= (AE-DE)2+(AE+DE)2= AE2+DE2-2AE•DE+ AE2+DE2+2AE•DE= 2AE2+2DE2= 2(AE2+DE2)=2AD2.【点睛】本题主要考查勾股定理及等腰直角三角形的性质,关键在于得出BD= AE-DE,DC= AE+DE.三、动点问题15.已知,如图,在Rt∵ABC中,∵C=90°,∵A=30°,BC=18cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为t(s),解答下列问题:(1)t为______时,∵PBQ是等边三角形?(2)P,Q在运动过程中,∵PBQ的形状不断发生变化,当t为何值时,∵PBQ是直角三角形?说明理由.【答案】(1)12;(2)当t为9或725时,∵PBQ是直角三角形,理由见解析.【分析】(1)根据等边三角形的性质解答即可;(2)分两种情况利用直角三角形的性质解答即可.【详解】(1)要使,∵PBQ是等边三角形,即可得:PB=BQ,∵在Rt∵ABC中,∵C=90°,∵A=30°,BC=18cm.∵AB=36cm,可得:PB=36-2t,BQ=t,解得:t=12故答案为;12(2)当t为9或725时,∵PBQ是直角三角形,理由如下:∵∵C=90°,∵A=30°,BC=18cm∵AB=2BC=18×2=36(cm)∵动点P以2cm/s,Q以1cm/s的速度出发∵BP=AB-AP=36-2t,BQ=t∵∵PBQ是直角三角形∵BP=2BQ或BQ=2BP当BP=2BQ时,36-2t=2t解得t=9当BQ=2BP时,t=2(36-2t)解得t=72 5所以,当t为9或725时,∵PBQ是直角三角形.【点睛】此题考查了等边三角形的判定和含30°角的直角三角形的性质,关键是含30°角的直角三角形的性质的逆定16.如图1,Rt∵ABC 中,∵ACB =90.,直角边AC 在射线OP 上,直角顶点C 与射线端点0重合,AC =b ,BC =a ,30a -=.(1)求a ,b 的值;(2)如图2,向右匀速移动Rt∵ABC ,在移动的过程中Rt∵ABC 的直角边AC 在射线OP 上匀速向右运动,移动的速度为1个单位/秒,移动的时间为t 秒,连接OB .①若∵OAB 为等腰三角形,求t 的值;②Rt∵ABC 在移动的过程中,能否使∵OAB 为直角三角形?若能,求出t 的值:若不能,说明理由.【答案】(1)a =3,b =4(2)①t =4或t =1;②能.t =94. 【分析】(1)根据两个非负数的和为零则每一个数都为零,得出b -4=0 ,a -3=0 ,求解即可得出a ,b 的值;(2) ①首先根据勾股定理算出AB 的长及用含t 的式子表示出OA ,OB 2 ,然后分三类讨论:当OB =AB 时;当AB =OA 时 ;当OB =OA 时 ;一一列出方程求解即可得出t 的值; ②能.由于t >0,点C 在OP 上,∵ACB = 90,故只能是∵OBA =90°,根据勾股定理得出关于t 的方程求出t 的值即可. 【详解】(1)解0≥,30a -≥, 30a -=,0=, 30a -=∵a=3,b=4(2)解:①∵AC=4,BC=3,∵AB,∵OC=t∵OB2=t2+32=t2+9,OA=t+4,当OB=AB时,t2+9=25,解得t=4或t=﹣4(舍去);当AB=OA时,5=t+4,解得t=1;当OB=OA时,t2+9=(t+4)2,解得t=-78(舍去).综上所述,t=4或t=1;②能.∵t>0,点C在OP上,∵ACB ∵只能是∵OBA=90°,∵OB2+AB2=OA2,即t2+9+25=(t+4)2,解得t=94.∵Rt∵ABC在移动的过程中,能使∵OAB为直角三角形,此时t=94.【点睛】本题考查了非负数的性质,勾股定理的应用,等腰三角形的定义及分类讨论的数学思想.掌握非负数的性质是解(1)的关键,掌握勾股定理及分类讨论的数学思想是解(2)的关键.四、分类讨论的思想17.阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:22221()21()2a m n b mnc m n ⎧=-⎪⎪=⎨⎪⎪=+⎩其中m >n >0,m ,n 是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【答案】12,13或3,4.【详解】试题分析:由n=1,得到a= (m 2﹣1)①,b=m②,c=(m 2+1)③,根据直角三角形有一边长为5,分情况,列方程即可得到结论.试题解析:当n=1,a=12(m 2﹣1)①,b=m②,c=12(m 2+1)③, ∵直角三角形有一边长为5,∵∵、当a=5时,12(m 2﹣1)=5,解得:(舍去), ∵、当b=5时,即m=5,代入①③得,a=12,c=13,∵、当c=5时,12(m 2+1)=5,解得:m=±3, ∵m >0,∵m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.18.∵ABC 中,AB=15,AC=13,高AD=12,则∵ABC 的周长为( )A .42B .32C .42或32D .37或33 【答案】C【分析】存在2种情况,∵ABC是锐角三角形和钝角三角形时,高AD分别在∵ABC的内部和外部【详解】情况一:如下图,∵ABC是锐角三角形∵AD是高,∵AD∵BC∵AB=15,AD=12∵在Rt∵ABD中,BD=9∵AC=13,AD=12∵在Rt∵ACD中,DC=5∵∵ABC的周长为:15+12+9+5=42情况二:如下图,∵ABC是钝角三角形在Rt∵ADC中,AD=12,AC=13,∵DC=5在Rt∵ABD中,AD=12,AB=15,∵DB=9∵BC=4∵∵ABC的周长为:15+13+4=32故选:C【点睛】本题考查勾股定理,解题关键是多解,注意当几何题型题干未提供图形时,往往存在多解情况.18.如图是某商品的商标,由七个形状、大小完全相同的正六边形组成.我们称正六边形的顶点为格点,已知∵ABC的顶点都在格点上,且AB边位置如图所示,则∵ABC是直角三角形的个数有()A.6个B.8个C.10个D.12个【答案】C【分析】根据正六边形的性质,分AB是直角边和斜边两种情况确定出点C的位置即可得解.【详解】如图所示:AB是直角边时,点C共有6个位置,即有6个直角三角形,AB是斜边时,点C共有4个位置,即有4个直角三角形,综上所述,∵ABC是直角三角形的个数有6+4=10个.故答案选:C.【点睛】本题考查的知识点是正多边形和圆, 勾股定理的逆定理,解题的关键是熟练掌握正多边形和圆, 勾股定理的逆定理.。