油膜振荡故障类型之一
- 格式:docx
- 大小:190.12 KB
- 文档页数:2
300Mvar 调相机油膜振荡故障诊断发布时间:2021-07-26T09:08:02.671Z 来源:《福光技术》2021年6期作者:王军军[导读] 当调相机频率、相位和电压幅值由同期装置调整到与电网电压一致后,调相机投入电网,挂网工频运行。
国网青海省电力公司检修公司青海西宁 810003摘要:调相机作为高速旋转机械,不可避免的存在振动方面的问题,也由于其自身特殊性,主要在于其单转子结构,故对两轴瓦的承载均匀性有较高要求,在振动故障分析中,调整对轮中心、抬标高、增加承载力等火电机组常用的方法将不再适用。
因此本文对某300Mvar 双水内冷调相机在启动超速阶段发生的严重油膜振荡故障进行分析诊断,以供参阅。
关键词:调相机;油膜振荡;故障诊断1案例设备本文探讨的 300Mvar 调相机工程 1 号机组采用上海电气集团上海电机厂有限公司生产的 TTS-300-2 型双水内冷机组,即调相机的定子绕组和转子绕组采用水内冷,定子铁芯及端部结构件采用空气冷却,转子冷却水在出线端转子中心孔进水。
机组非出线端轴承 (1 号轴承 )及出线端轴承 (2 号轴承 ) 均采用落地式椭圆瓦座式轴承,转子一阶、二阶设计临界转速分别为 730r/min 和 2190r/min,转速及键相信号均安装在励磁碳刷末端。
基本结构及参数如图 1、表 1 所示。
调相机采用SFC( 静态变频器) 变频启动方式,2 台调相机共用 2 套变频启动装置,启动系统能在 300s 内将调相机加速至并网。
启动装置通过变频软启的方式将同步调相机启动到 52.5Hz 后,退出运行;机组经变压器升压到 500kV 通过 GIL 分别接到换流站 500kV 系统上,当调相机频率、相位和电压幅值由同期装置调整到与电网电压一致后,调相机投入电网,挂网工频运行。
2调相机故障现象及特征在 2020 年 6 月 7 日 21:32,1 号调相机顺利定速 3000r/min,各瓦振动良好。
汽轮发电机机组油膜振荡综合诊断与处理建议一、概述汽轮发电机机组作为发电厂的核心设备,其运行稳定性和可靠性对供电系统的正常运行至关重要。
而油膜振荡作为汽轮发电机机组常见的故障之一,一旦出现将严重影响设备的安全运行。
对汽轮发电机机组油膜振荡进行综合诊断与处理具有重要的意义。
二、油膜振荡的概念及危害油膜振荡是指在摩擦副间的油膜中因为受到外界激振或者系统本身的激振而发生振动的现象。
油膜振荡会导致机械部件磨损加剧、噪音增大、振动增大等问题,严重时还会造成设备损坏、停机甚至事故。
三、油膜振荡的诊断方法1. 实测法:通过振动仪、加速度传感器等设备对汽轮机设备进行实时监测,获得机组振动和频谱信息,判断是否存在油膜振荡现象。
2. 振动信号处理和分析法:通过对振动信号进行处理和分析,提取特征频点和特征值,判断是否存在油膜振荡现象。
3. 润滑油分析法:对发电机机组的润滑油进行分析,判断是否存在异常现象。
四、油膜振荡的处理建议1. 优化油膜结构:通过改进滑动轴承的结构、参数和材料,减少外激振和本振,提高滑动轴承的稳定性和可靠性。
2. 优化润滑系统:采用先进的油膜振动抑制技术,优化机组的润滑系统,提高摩擦副的稳定性和可靠性。
3. 控制外界激振:对机组的外界激振源进行控制和抑制,减少外界激振对机组的影响。
4. 提高润滑油质量:选择优质的润滑油品牌,保障机组的润滑油质量,减少润滑副的摩擦和磨损。
五、实际应用案例某电厂的汽轮发电机机组在运行中出现了油膜振荡的故障,严重影响了机组的安全运行。
经过综合诊断和处理,先后采取了优化油膜结构、改进润滑系统和控制外界激振等措施。
经过一段时间的试运行,汽轮发电机机组的油膜振荡问题得到了有效控制,机组的运行稳定性和可靠性得到了显著提高。
汽轮发电机机组油膜振荡综合诊断与处理建议一、背景介绍汽轮发电机机组是燃气轮机和电力发电机的一个组合系统,通过燃气轮机驱动电力发电机发电。
在汽轮发电机运行过程中,由于各种原因,容易出现油膜振荡现象,导致设备性能下降、工作效率降低,甚至可能造成设备损坏。
对汽轮发电机机组油膜振荡进行综合诊断与处理显得十分重要。
二、油膜振荡的原因1. 油膜振荡的原因一般包括:轴承磨损、油膜不稳定、轴承间隙不当、转子不平衡、机械故障、传动系统失效等。
2. 轴承磨损会导致轴承的正常运行受阻,油膜产生振荡,影响设备正常运行。
3. 油膜不稳定也是油膜振荡的重要原因,主要表现在油润滑状况不良、油泵失效、油品质量不合格等方面。
4. 轴承间隙不当、转子不平衡、机械故障、传动系统失效等也都可能导致油膜振荡。
三、诊断方法1. 振动测量:通过振动测量系统对汽轮发电机机组进行全面的振动监测,可以辨别出振荡频率、振幅及振动类型,为后续的故障分析提供重要数据。
2. 润滑油分析:通过对润滑油进行化学元素分析、油品粘度测试等手段,可以判断油品质量是否合格,进而判断油膜是否稳定。
3. 热测量:利用红外热像仪对汽轮发电机机组各个部位的温度进行监测,可以发现存在油润滑不良、轴承磨损等问题。
四、诊断结果与处理建议1. 轴承磨损:若因轴承磨损引起的油膜振荡,建议及时更换轴承,并重新调整轴承间隙,确保轴承正常运行。
2. 润滑油不稳定:如果发现润滑油不稳定导致的油膜振荡,应及时更换润滑油,确保油品质量合格。
3. 传动系统失效:对于传动系统失效导致的油膜振荡,应对传动系统进行全面检修,并重新调整传动系统参数,确保传动系统正常运行。
4. 机械故障:若原因为机械故障导致的油膜振荡,应对机械部件进行全面检修,确保设备正常运行。
五、预防措施1. 定期维护:加强汽轮发电机机组的定期维护工作,包括对轴承、润滑系统、传动系统等进行全面检修,确保设备运行状态良好。
2. 润滑油管理:对汽轮发电机机组的润滑油进行严格管理,保证油品质量合格,确保油膜稳定性。
油膜振荡是什么发生油膜振荡为什么不能用提高转速的方法消除油膜振荡的发生原因有很多种,主要包括以下几个方面:1.油膜厚度不均匀:油膜厚度的不均匀分布会导致机体振动。
油膜厚度的不均匀分布可能是由于润滑系统设计不合理、润滑油的质量不稳定等原因造成的。
2.润滑油的黏度变化:润滑油的黏度是指润滑油流动时所表现出的阻力大小,黏度的改变会影响油膜的稳定性。
当润滑油的黏度发生变化时,油膜的压力分布也会发生变化,从而引起机体振动。
3.运动速度的变化:机体的运动速度对油膜的稳定性有很大的影响,当运动速度发生变化时,润滑油膜的稳定性也会受到影响,从而导致油膜振荡的发生。
为什么不能用提高转速的方法来消除油膜振荡呢?首先,提高转速并不能真正解决油膜振荡的根本问题,因为油膜振荡是由于润滑油膜不稳定引起的,而提高转速只是增加了机体运动的速度,并没有改变润滑油膜的特性。
因此,提高转速只是暂时性地改变了机体与润滑油膜之间的相对速度,但并不能真正解决油膜振荡的问题。
其次,提高转速会增加机体的负荷,使机体的运行更加困难,甚至可能导致机体的损坏。
油膜振荡会增加机体的摩擦和振动,提高转速只会增加机体的运行负荷,加剧了机体的摩擦和振动,进一步加剧了油膜振荡的程度。
最后,提高转速并不是一种经济和可行的方法。
提高转速需要进行一系列的工艺改造和设备调整,成本较高,且很可能会引起其他问题。
而且,提高转速只是一种暂时性的解决方法,不能根本解决油膜振荡的问题。
综上所述,油膜振荡是一种由于润滑油膜不稳定引起的机体振动现象,不能用提高转速的方法消除。
要解决油膜振荡问题,需要从润滑系统的设计、润滑油的选择和使用、机体结构优化等方面进行综合改进。
汽轮发电机机组油膜振荡综合诊断与处理建议汽轮发电机机组是利用汽轮机驱动发电机产生电能的装置,其正常运转对于电力生产至关重要。
由于机组长期运行以及其他因素的影响,机组中的润滑油系统可能出现油膜振荡问题,严重影响机组的正常运行和寿命。
对于汽轮发电机机组油膜振荡问题的综合诊断和处理非常重要。
本文将从机组油膜振荡的原因、诊断方法和处理建议三个方面进行综合分析。
一、机组油膜振荡的原因1. 油膜振荡是由于机组运行时润滑油的振动引起的。
润滑油在机械部件表面形成一层薄膜,减少机械部件之间的摩擦和磨损,从而保证机组的正常运行。
但当润滑油的振动频率与机械部件的共振频率相近时,就会产生油膜振荡。
2. 机组设计不合理是油膜振荡的重要原因之一。
机组结构刚度不足、支座刚度不均匀、轴承刚度过大或过小等问题都可能导致油膜振荡的发生。
3. 机组运行过程中的机械故障也是油膜振荡的重要原因。
机械部件的磨损、轴承的损坏、齿轮间隙过大等问题都可能导致机组的振动频率发生变化,从而引发油膜振荡。
二、机组油膜振荡的诊断方法1. 观察机组的振动情况:通过安装振动传感器等设备,观察和记录机组的振动情况,特别是在运行过程中的振动频率和振幅的变化。
如果发现振动频率接近共振频率,说明存在油膜振荡的可能性。
2. 检测润滑油的振动:将机组的润滑油样品取出,使用振动传感器等设备检测润滑油的振动情况。
如果发现润滑油的振动频率与机组振动频率相近,说明存在油膜振荡问题。
3. 利用计算机模拟或仿真软件进行分析:将机组的结构和运行参数输入计算机模拟或仿真软件,通过计算和分析机组的共振频率和振动模态,判断是否存在油膜振荡。
三、机组油膜振荡的处理建议1. 对机组进行结构改造:根据机组的实际情况,对结构刚度不足、支座刚度不均匀等问题进行改造。
增加机组的刚度可以降低共振频率,从而减少油膜振荡的发生。
2. 更换合适的润滑油:选择合适的润滑油可以改善油膜振荡问题。
润滑油的黏度、粘度指数、摩擦系数等参数对油膜的形成和振动频率有一定的影响。
汽轮发电机机组油膜振荡综合诊断与处理建议
汽轮发电机机组是电力系统的重要组成部分,油膜振荡是其常见的故障之一。
本文将综合分析汽轮发电机机组油膜振荡的原因,并提出相应的综合诊断与处理建议。
油膜振荡是由于轴承与油膜之间的相互作用引起的,主要原因有以下几点:
1. 轴承结构设计不合理。
轴承结构设计不合理,如径向间隙过大、刚度不足等,会导致轴承在运行过程中产生振动,进而引起油膜振荡。
2. 润滑系统故障。
润滑系统存在故障,如油道堵塞、油压不足等,会导致油膜形成不稳定,从而造成油膜振荡。
3. 轴承磨损严重。
轴承磨损严重会导致轴承与油膜之间的间隙增大,从而造成油膜振荡。
针对以上原因,可以采取以下综合诊断与处理建议:
2. 加强润滑系统维护与管理。
定期检查润滑系统,清理油道,保证油压稳定,及时更换润滑油等措施,可以有效防止润滑系统故障引起的油膜振荡。
3. 加强轴承保养与检修。
定期检查轴承磨损情况,及时更换磨损严重的轴承,避免轴承磨损引起的油膜振荡。
4. 引入振动监测系统。
安装振动传感器,实时监测轴承振动情况,及时发现轴承运行异常并采取相应的处理措施,避免油膜振荡的发生。
汽轮发电机机组油膜振荡是一个常见的故障,需要综合诊断与处理。
通过优化轴承结构设计、加强润滑系统维护与管理、加强轴承保养与检修以及引入振动监测系统等措施,可以有效降低油膜振荡的发生概率,提高机组的可靠性和稳定性,保证电力系统的正常运行。
油膜振荡产生的原因
油膜振荡是指在润滑油膜中,由于各种原因引起的油膜厚度周期性变化的现象。
油膜振荡是发动机等机械设备中常见的一种故障现象,会导致机械设备的损坏和故障。
油膜振荡产生的原因有很多,主要包括以下几个方面:
1. 转子和轴承的不平衡:转子和轴承的不平衡会导致油膜振荡
现象的发生,因为不平衡会使得油膜在不同位置的厚度不同,从而引起油膜振荡。
2. 油路系统故障:油路系统的故障也是油膜振荡产生的常见原因。
例如,油泵故障、油管阻塞、油滤器堵塞等都会影响油膜的流动和厚度分布,从而导致油膜振荡。
3. 摩擦热:摩擦热也是引起油膜振荡的原因之一。
当机械设备
运转时,由于摩擦力的作用,会产生大量的热,从而使得油膜的黏度和厚度发生变化,进而引起油膜振荡。
4. 温度变化:温度变化也会影响油膜的黏度和厚度分布,从而
引起油膜振荡。
例如,当温度升高时,油膜的黏度会降低,从而使得油膜振荡现象更加明显。
综上所述,油膜振荡的产生是由于多种因素的综合作用,只有全面分析问题、找出根本原因,才能有效地解决油膜振荡问题。
- 1 -。
汽轮发电机机组油膜振荡综合诊断与处理建议汽轮发电机机组作为发电厂的重要设备之一,其稳定运行对于保障电网的稳定供电至关重要。
在机组运行过程中,油膜振荡问题常常会影响机组的运行稳定性,甚至对机组设备造成损害。
对于汽轮发电机机组油膜振荡问题的诊断与处理非常重要。
本文将针对这一问题进行综合诊断分析,并提出合理的处理建议。
一、油膜振荡的概念及影响油膜振荡是指在机械设备的润滑接触表面上,由于介质不均匀或运动状态不稳定产生的油膜振动现象。
在汽轮发电机机组中,油膜振荡主要出现在轴承、齿轮等润滑部位,严重影响设备的运行稳定性。
油膜振荡会导致机组发生噪音、振动增大,严重时还会出现局部过热或磨损等问题,严重影响机组的正常运行。
长期存在的油膜振荡问题还会缩短设备的使用寿命,增加维护成本,甚至引发设备故障,严重影响机组的安全运行。
二、油膜振荡的诊断方法1. 振动分析法通过振动传感器对机组设备进行实时振动监测,并对振动频率、振幅等进行分析,从而判断设备是否存在油膜振荡问题。
2. 润滑油分析法对机组设备的润滑油进行采样分析,通过油品的磨损颗粒、氧化物质等指标的检测,判断设备是否存在油膜振荡问题。
3. 温度监测法对机组设备的润滑部位进行温度监测,发现异常温升情况,从而判断设备是否存在油膜振荡问题。
4. 声学诊断法三、油膜振荡的处理建议1. 优化润滑系统对机组设备的润滑系统进行维护优化,包括润滑油的选择、供油方式、滤芯更换周期等,以保证润滑系统的稳定运行,减少油膜振荡的可能性。
2. 调整设备运行参数通过调整机组设备的运行参数,包括转速、负荷等,减小设备的运行振动,从而减少油膜振荡的发生。
3. 设备状态监测建立设备状态监测系统,实时监测机组设备的运行状态,及时发现油膜振荡问题的存在,并进行预警与处理。
4. 设备维护保养加强机组设备的维护保养工作,包括轴承润滑、齿轮清洗等,保证设备的运行状态良好,减少油膜振荡的发生。
5. 职工培训增加机组操作人员的油膜振荡问题的相关培训,提高操作人员对该问题的认识,加强对设备的监测与维护,减少油膜振荡的发生。
汽轮机油膜振荡影响因素分析及措施研究摘要:所谓油膜振荡是指旋转轴受到滑动轴承中的油膜作用,所产生旋转轴的自激振荡,能够产生和旋转轴在达到临界的转速时相同的振幅,或者使之变得更加激烈。
油膜振荡是中小型汽轮机组在运行过程中常遇见的机械故障之一,中小型汽轮机组,安全的运行受到油膜振荡的影响。
影响中小型汽轮机组产生油膜振荡的因素有很多,主要有轴系结构的设计、轴承负载、润滑油粘度以及轴瓦间隙等,针对产生油膜振荡的这些因素要制定相应的措施,防止油膜振荡的产生,使中小型汽轮机组安全的运行。
油膜振荡是中小型汽轮机组的发电组经常出现的故障,油膜振荡对机组的危害非常大。
我国的中小型汽轮机的发电机组的容量不断增大,中小型汽轮机组的轴颈不断增大,导致中小型汽轮机组的整个轴系系统中的不稳定区域变大,非常容易产生油膜振荡现象。
中小型汽轮机组转子的长度也不断增大,使转子的临界转速降低,现在机组一般工作在一阶临界转速,还有的甚至工作在二阶临界转速之上,这些也非常容易导致油膜振荡产生。
中小型汽轮机组发生油膜振荡后会对汽轮的机组产生动静部件的摩擦、转子热弯曲以及瓦片碎裂等故障的产生,要不断找到消除中小型汽轮机组油膜振荡的方法是非常重要的一项任务。
本篇文章主要是通过对中小型汽轮机组产生油膜振荡的因素进行系统详细的分析,就消除中小型汽轮机组的油膜振荡给予相关的建议。
1.产生汽轮机油膜振荡的影响因素1.1润滑油黏度。
润滑油的黏度是导致中小型汽轮机组产生的影响因素。
油度、油温以及油的型号都会影响润滑油的黏度,随着润滑油粘度度的升高,轴瓦的稳定性不断降低。
油中含水和劣化影响油的质量,目前32号的汽轮油黏度最小,油温越高,最小油膜厚度变小,轴承也就不容易产生油膜振荡。
1.2轴瓦间隙。
轴瓦间隙对轴承的稳定性产生影响,其中影响最大的就是轴承的最小间隙,稳定工作的最小依据就是最小间隙,它越小轴承也就越稳定。
1.3轴系结构设计。
轴系的结构影响转轴刚度,即影响临界转速、载荷分布、挠曲程度等。
汽轮发电机机组油膜振荡综合诊断与处理建议
一、油膜振荡的原因
1. 润滑油质量不合格:润滑油质量不合格、含有杂质或水分会导致油膜振荡。
2. 润滑系统故障:润滑系统中油泵、油管、滤清器等元件故障也会导致油膜振荡。
3. 设备表面粗糙度不符合要求:设备表面粗糙度不符合设计要求,也可能导致油膜
振荡。
4. 运行环境恶劣:运行环境的温度、湿度、振动等因素都会对油膜稳定性产生影
响。
5. 设备配合间隙不合理:装配或使用过程中设备配合间隙不合理也是油膜振荡的原
因之一。
四、油膜振荡的预防措施
1. 定期更换润滑油:定期更换润滑油,确保使用的润滑油质量符合要求。
2. 定期维护润滑系统:对润滑系统进行定期的维护保养,确保润滑系统的各个元件
正常工作。
3. 控制运行环境:控制设备的运行环境,确保温度、湿度、振动等因素处于稳定状态。
4. 优化设备配合间隙:根据实际情况优化设备配合间隙,确保配合间隙符合设计要求。
对于油膜振荡的综合诊断与处理,需要全面从润滑油质量、润滑系统、设备表面粗糙度、运行环境、设备配合间隙等方面进行考虑和分析,制定出合理的处理建议和预防措施,确保设备的正常运行和延长设备的使用寿命。
汽轮发电机机组油膜振荡综合诊断与处理建议汽轮发电机机组油膜振荡是一种常见的故障,在机组正常运行过程中会导致机组振动异常,给设备安全和运行稳定性带来威胁。
为了正确诊断和处理该故障,以下给出一些综合诊断和处理建议:1. 振荡原因分析:首先需要确定振荡的具体原因。
可能的原因包括轴承故障、不平衡、轴封失效、内部结构松动等。
对不同可能原因的诊断可以采用振动分析、温度、压力、油液分析等方法。
2. 振荡的振动频率和幅值:确定振荡的频率和振幅,并与正常运行的数据进行比较。
这可以通过振动监测设备进行实时监测,并与设备的历史数据进行对比分析。
3. 检查轴承状态:轴承是汽轮发电机机组中常见的振动故障原因之一。
定期检查轴承的状态,包括测量轴承的轴向和径向游隙、凸轮磨损、轴承零部件的损坏等。
如果发现问题,及时更换或进行维修。
4. 平衡旋转部件:不平衡是导致振动的另一个常见原因。
对于汽轮发电机的转子,定期进行动平衡是必要的。
通过在适当的位置添加或移除质量,使旋转部件达到平衡。
5. 检查轴封状态:轴封失效可能导致油膜振荡。
需定期检查轴封的密封性能以及存在的磨损、裂缝或松动等问题。
如有必要,及时更换轴封。
6. 定期检查内部结构:震动和振荡可能由于内部结构的松动引起。
定期检查内部结构,包括螺栓紧固、接触面清洁和焊接连接等,确保机组内部结构稳定。
7. 机组维护和保养:定期维护和保养机组也是预防油膜振荡的重要措施。
包括更换油液、过滤器,清洗冷却器等。
对汽轮发电机机组油膜振荡的正确诊断和处理需要综合考虑多种因素,包括振动频率、振幅、轴承、不平衡、轴封和内部结构等。
建议采取定期检查和维护的措施,以保证机组的安全和稳定运行。
滑动轴承油膜涡动与油膜振荡的相关知识[摘要]:详细介绍了滑动轴承的振动种类,并通过学习滑动轴承油膜涡动及油膜振荡的故障机理,总结出了油膜涡动油膜涡动及油膜振荡的故障特征。
[关键词]:滑动轴承油膜振荡相关知识中图分类号:文献标识码:文章编号:1009-914x (2012)32- 0010 -01一、滑动轴承的振动种类滑动轴承的振动,可按其机理分为两种形式:一是强迫振动,又称同步振动,主要是由轴系上组件不平衡、联轴器的不对中、安装不良等原因造成,其振动的频率为转子的旋转频率及其倍频,振动的振幅在转子的临界转速前,随着转速的增加而增大,超过临界转速,则随转速的增加而减小,在临界转速处有共振峰值;另一种振动是自激振动,又称亚同步振动,即油膜涡动及油膜振荡,它的振动频率低于转子的旋转频率(约一半)常常在某个转速下突然发生,具有极大的危害性。
二、油膜涡动及油膜振荡的故障机理涡动是转子轴颈在作高速旋转的同时,还环绕轴颈某一平衡中心作公转运动。
按照激励因素不同,涡动可以是正向的(与轴旋转方向相同),也可以是反向的(与轴旋转方向相反);涡动角速度与转速可以是同步的,也可以是异步的。
如果转子轴颈主要是由于油膜力的激励作用而引起涡动则轴颈的涡动角速度将接近转速的一半,故有时也称之为“半速涡动”,涡动频率通常略低于转速频率的1/2。
随着工作转速的升高,半速涡动频率也不断升高,频谱中半频谐波的振幅不断增大,使转子振动加剧。
如果转子的转速升高到第一临界转速的2倍以上时,半速涡动频率有可能达到第一临界转速,此时会发生共振,造成振幅突然骤增,振动非常剧烈。
同时轴心轨迹突然变成扩散的不规则曲线,频谱图中的半频谐波振幅值增大到接近或超过基频振幅,频谱会呈现组合频率的特征。
若继续提高转速,则转子的涡动频率保持不变,始终等于转子的一阶临界转速,这种现象称为油膜振荡。
三、油膜涡动及油膜振荡的故障特征起始失稳转速与转子的相对偏心率有关,轻载转子在第一临界转速之前就可能发生不稳定的半速涡动,但不产生大幅度的振动;当转速达到第一临界转速时,转子由于共振而有较大的振幅;越过第一临界转速后振幅再次减少。
汽轮发电机机组油膜振荡综合诊断与处理建议汽轮发电机机组是一种常见的发电设备,其正常运行对于电力系统的稳定运行至关重要。
汽轮发电机机组在长期运行过程中,会出现一些问题,例如油膜振荡,这会直接影响机组的稳定性和可靠性。
针对汽轮发电机机组油膜振荡问题,本文将进行综合诊断,并提出相应的处理建议。
一、油膜振荡的机理油膜振荡是指在发电机机组润滑系统中,由于油膜振动引起的系统异常振动现象。
这种振动通常由于机组内部的摩擦力变化或润滑不良引起,可能直接导致设备的损坏和故障。
在汽轮发电机机组中,油膜振荡通常与机组内部的转子、轴承和润滑系统有关。
二、油膜振荡的诊断方法1. 振动检测:通过安装振动传感器,在机组运行过程中对振动进行实时监测,可以发现油膜振荡的存在及程度。
2. 温度检测:通过在机组润滑系统各个关键部位安装温度传感器,监测润滑油的温度变化,可以及时发现异常和问题。
3. 润滑油分析:对机组润滑油进行定期取样,进行化验分析,可以发现油膜振荡导致的润滑油污染、老化等问题。
4. 轴承状态监测:通过安装轴承状态监测系统,对轴承运行状态进行实时监测,可以及时发现油膜振荡引起的轴承损坏和异常。
以上方法可以综合使用,对机组进行全方位的油膜振荡诊断,为后续处理提供准确的数据支持。
1. 润滑系统优化:对汽轮发电机机组的润滑系统进行优化,包括润滑油的选择、系统的清洗和油路的优化设计,以保证油膜的稳定性和良好润滑效果。
2. 减小负荷变化:尽量避免汽轮发电机机组的频繁启停和负荷变化,减小机组内部摩擦力的变化,降低油膜振荡的发生概率。
3. 加强轴承维护:定期对汽轮发电机机组的轴承进行检查和维护,包括润滑油更换、轴承清洗等工作,保证轴承的正常运行状态,减少由油膜振荡引起的轴承损伤。
4. 定期检测:建立定期的油膜振荡检测机制,及时发现问题并采取措施,以减小损失和降低维护成本。
5. 定期培训:针对发电机机组润滑系统的操作人员进行定期培训,提高其对润滑系统运行和维护的理解和认识,减少因操作不当引起的油膜振荡问题。
汽轮发电机组油膜失稳故障机理分析摘要:汽轮发电机组油膜失稳故障是发电厂常见的振动故障之一,因其引起的突然剧烈的振动,情况严重时破坏性较大,逐渐引起人们对油膜失稳故障机理的研究。
油膜失稳故障一般分为油膜祸动和油膜振荡两个过程。
通常转子转速在两倍的转子第一临界转速之下时,发生油膜祸动故障,振动频率约是同步转速的一半,所以又称半速祸动;当转速超过两倍转子第一临界转速后,祸动频率与转子固有频率相重合,发生共振,这种故障就是油膜振荡故障。
关键词:油膜;失稳故障;机理分析1油膜失稳故障的原因通过分析大量油膜失稳故障案例发现轴颈扰动过大和轴承稳定性差两大方面是造成油膜失稳的主要原因。
这主要是由于运行工况和轴承结构以及检修造成的。
其中轴承标高不当、轴承间隙不适、润滑油温过低和轴承型式不当是造成轴承稳定性差的主要四个方面。
1.1轴颈扰动过大轴颈扰动过大是指持续的外部激励,而不是指轴系某一时刻出现的外部扰动,就是指轴颈与瓦块之间的相对运动,即现场检测的相对轴振。
从现场大量的工程实例来看,转轴振动过大主要由以下几个原因引起。
(1)转子热弯曲现场汽轮发电机组的转子出现热弯曲是较为普遍的振动现象。
机组正常运行时负荷增加,如果突然出现油膜失稳,并且振动的大小与负荷或者发电机励磁电流有着某种关系,此情况通常是转子发生热弯曲导致的。
转子发生热弯曲有两种情况:一种是转子发生热弯曲是轴向对称的,在机组并网运行时对轴瓦振动影响很小;另一种情况是转子的热弯曲不是完全轴向对称的,这种情况占大多数。
不管是轴向对称还是轴向不对称热弯曲,转轴振动都将显著增力口。
所以只从增加轴承稳定性来消除轴瓦振动而不降低相对振动,尽管短时间内振动会有所降低,但是机组运行1-2个月之后,轴承的巴氏合金会出现碾轧或龟裂,因此某些机组的轴承虽然经过多次修补,但是振动却一直不能彻底消除。
(2)轴承座动刚度过大从轴承稳定性角度考虑,并不是轴承座动刚度愈大愈好。
因为轴承动刚度过大将使转轴与轴瓦之间的相对振动变大,影响轴承正常运行。
油膜振荡的特征及判别方法山东工程学院曲庆文马浩柴山摘要:油膜振荡是大型机电设备出现故障较多的原因之一,本文主要对机电设备中出现油膜振荡的特征及判别方法加以总结论述,以便尽可能地避免油膜振荡的产生,提高机电设备的利用率和生产效率,减少设备的维修时间。
关键词:油膜振荡;设备故障;故障检测1 涡动转轴的涡动通常有惯性涡动、液力涡动和气隙涡动等[1]。
对于轴颈轴承受到动载荷时,轴颈会随着载荷的变化而移动位置。
移动产生惯性力,此时,惯性力也成为载荷,且为动载荷,取决于轴颈本身的移动。
轴颈轴承在外载荷作用下,轴颈中心相对于轴承中心偏移一定的位置而运转。
当施加一扰动力,轴颈中心将偏离原平衡位置。
若这样的扰动最终能回到原来的位置或在一个新的平衡点保持不变,即此轴承是稳定的;反之,是不稳定的。
后者的状态为轴颈中心绕着平衡位置运动,称为“涡动”。
涡动可能持续下去,也可能很快地导致轴颈和轴承套的接触,稳定性是轴颈轴承的重要性能之一,是由于惯性作用的主要例证。
惯性涡动是由于转子系统的不平衡重量引起的惯性离心力P强迫引起的涡动。
图1所示,矢量P与瞬时轴的动态挠度oH的夹角ψ表示惯性涡动的不同位置,夹角ψ随轴的转速n W变化。
对于小的n W值,ψ接近于零,当轴的转速小于临界转速时,ψ由零增加至90°,此时力P可以分解成作用在挠度方向oH上的力P r和垂直于OH的力P t。
P r与轴的弹性变形后生成的弹性力相平衡;而P t则没有与之平衡的固定力,于是被迫形成“同步涡动”。
当轴的转速达到临界转速n k时,涡动达到极值;若转速继续增加,超过临界转速n k后,涡动减小。
此时, P r与挠度方向相反,产生自动对中现象,这是柔性轴的特征。
图1 惯性涡动由此可知,涡动振幅oH与力P、角度ψ及接触介质有关。
液力涡动又称流体涡动,它是由于轴颈与轴瓦之间润滑油层中液动力所强迫造成的涡动。
图2是一经过理想动平衡(S=H)轴的径向轴颈,且有旋转速度n W。
汽轮发电机机组油膜振荡综合诊断与处理建议汽轮发电机机组是电力站的重要设备之一,在发电过程中发挥着至关重要的作用。
机组在长时间运行过程中,可能会出现一些问题,其中之一就是油膜振荡。
油膜振荡是指在润滑油膜内由于受到外力的作用而产生的振动现象。
这种振动不仅会影响机组的正常运行,还可能导致设备的严重损坏。
对于发电机机组油膜振荡问题,我们需要进行综合诊断与处理,以确保机组的安全稳定运行。
一、油膜振荡的原因及危害1.原因油膜振荡的产生主要受到以下几方面因素的影响:(1)润滑油质量不合格,包括油品稠度、杂质、水分等;(2)机组运行状态不稳定,如转子不平衡、轴承磨损、叶片间隙不均匀等;(3)环境因素,如温度、湿度等;(4)外部振动干扰。
2.危害油膜振荡会导致机组部件受力不均匀,从而加速部件的磨损和疲劳,严重时还会引发设备损坏和事故。
油膜振荡还会导致机组的运行不稳定,影响发电效率,甚至影响供电质量。
二、综合诊断方法1.现场检查通过实际观察机组运行情况,包括机组振动情况、润滑油温度和压力等,了解机组的运行状态。
2.振动监测利用振动监测设备对机组的振动进行实时监测,分析振动特征,确定振动频率和幅值。
3.油质分析对润滑油进行化验分析,了解油品质量,判断油中是否存在杂质、水分等对油膜振荡产生影响的因素。
4.检测仪器检测利用检测仪器对叶片间隙、润滑油温度、压力等参数进行监测、测量,了解机组运行的关键参数。
5.数据分析通过以上多种手段获取的数据进行综合分析,找出引起油膜振荡的具体原因,为后续处理提供依据。
三、处理建议1.优化润滑油对润滑油进行更换或者升级,确保油质量符合要求,排除油品质量不良的影响。
2.检修设备对机组进行必要的检修和维护,如调整叶片间隙、更换磨损部件、平衡转子等,消除设备的运行不稳定因素。
3.环境控制调节机组周围的环境,如降低温度、湿度等,减少这些因素对机组产生的影响。
4.振动控制加强机组振动的监测和控制,及时发现振动异常并采取应对措施,减小振动对油膜的影响。
油膜振荡Oil whip,油膜振荡油膜振荡发生在油润滑滑动轴承的旋转设备中,在转子正常工作时,轴颈中心和轴承中心并不重合,而是存在一个偏心距e,当载荷不变、油膜稳定时,偏心距e保持不变,机组运行稳定,轴颈上的载荷W与油膜压力保持平衡,若外界给轴颈一扰动力,使轴心O1位置产生一位移△e而达到新位置,这时油膜压力由p变为p′,因而不再与此时的载荷W′(W′-W)平衡,两者的合力为F,其分力F1将推动轴颈回到起初的平衡位置O1,而在分力F2的作用下,轴颈除了以角速度?棕作自转外,还将绕O 1涡动(涡动方向与转动方向相同),其涡动速度约为角速度的一半,称为油膜涡动(半速涡动)。
油膜涡动产生后就不消失,随着工作转速的升高,其涡动频率也不断增强,振幅也不断增大。
如果转子的转速继续升高到第一临界转速的2倍时,其涡动频率与一阶临界转速相同,产生共振,振幅突然骤增,振动非常剧烈,轴心轨迹突然变成扩散的不规则曲线,半频谐波振幅值就增加到接近或超过基频振幅,若继续提高转速,则转子的涡动频率保持不变,始终等于转子的一阶临界转速,这种现象称为油膜振荡。
发生油膜振荡时,其主要特征是:a.发生强烈振动时,振幅突然增加,声音异常。
b.振动频率为组合频率,次谐波非常丰富,并且与转子的一阶临界转速相等的频率的振幅接近或超过基频振幅;c.工作转速高于第一临界转速的2倍时才发生强烈振动,振荡频率等于转子的第一临界转速,并且不随工作转速的变化而变化,只有工作转速低于2倍第一临界转速后,剧烈振动才消失;d.轴心轨迹为发散的不规则形状,进动方向为正进动;e.轴承润滑油温度变化对振动有明显的影响,降低润滑油温度可以有效地抑制振动。
概述轴瓦自激振动是现场较常见的一种自激振动,它常常发生在机组启动升速过程中,特别是在超速时。
当转子转速升到某一值时,转子突然发生涡动使轴瓦振动增大,而且很快波及轴系各个轴瓦,使轴瓦失去稳定性,这个转速不失稳转速。
轴瓦失稳除与转速直接有关外,还与其他许多因素有关,因此轴瓦自激振动有时会在机组带负荷过程中发生中。
油膜振荡故障类型之一
1.油膜振荡概念:转子轴颈在轴承内做高速旋转的同时,还环绕某一平衡中心做公转运动。
如果转子轴颈主要是由油膜力的激励作用引起的涡动,则轴颈的涡动角速度近似为转速的二分之一,所以称为“半速涡动”。
当转速升高到一阶临界转速的两倍附近时,涡动频率与转子一阶自振频率相重合,转子轴承系统将发生激烈的油膜共振,这种共振涡动就称为油膜振荡。
2.油膜涡动、油膜振荡的主要征兆与信号特征:
(1)油膜涡动实际振动频率要小于转频的一半,一般为0.43-0.48倍。
油膜振荡频率为转子系统的一阶自振频率。
(2)油膜振荡是一种自激振动,维持振动的能量由轴本身在旋转中产生,不受外部激振力的影响。
发生大振幅油膜振荡后,继续升高转速,振动频率不会变化,振幅也不会下降。
(3)发生油膜振荡时,轴心轨迹形状紊乱、发散。
(4)发生油膜振荡时,往往来势很猛,瞬时间振幅突然升高,引起轴承油膜破裂,会同时发生碰撞摩擦。
(5)当转子转速进入油膜共振区后,升高转速,振荡频率不变,振幅不下降。
但降低转速,振动也并不马上消失,油膜振荡消失的转速要低于它的起始转速。
3.油膜振荡频谱图
4.油膜振荡防治措施:
(1)避开油膜共振区域。
机器设计时避免转子工作转速在一阶临界转速的两倍附近运行。
(2)增加轴承比压。
增大轴颈偏心率,提高油膜的稳定性。
(4)减小轴承间隙。
(5)控制适当的轴瓦预负荷。
(6)选用抗振性好的轴承。
(7)调整油温。
适当升高油温,减小油的黏度,可以增加轴颈在轴承中的偏心率,有利于轴颈稳定。