高二数学排列3
- 格式:ppt
- 大小:310.00 KB
- 文档页数:12
2022年高中数学选择性必修三:6.2.1 排列及排列数考点一 排列的概念【例1】(2021年广东汕头)(1)下列问题是排列问题的是( )A .从10名同学中选取2名去参加知识竞赛,共有多少种不同的选取方法?B .10个人互相通信一次,共写了多少封信?C .平面上有5个点,任意三点不共线,这5个点最多可确定多少条直线?D .从1,2,3,4四个数字中,任选两个相加,其结果共有多少种?(2)从3个不同的数字中取出2个:①相加;②相减;③相乘;④相除;⑤一个为被开方数,一个为根指数.则上述问题为排列问题的个数为( ) A .2 B .3 C .4 D .5 【答案】(1)B (2)B【解析】(1)排列问题是与顺序有关的问题,四个选项中只有B 中的问题是与顺序相关的,其他问题都与顺序无关,所以选B.(2)排列与顺序有关,故②④⑤是排列. 【一隅三反】1.(2020年广东河源)判断下列问题是否为排列问题.(1)会场有50个座位,要求选出3个座位有多少种方法?若选出3个座位安排三位客人,又有多少种方法?(2)从集合M ={1,2,…,9}中,任取两个元素作为a ,b ,可以得到多少个焦点在x 轴上的椭圆方程x 2a 2+y 2b 2=1?可以得到多少个焦点在x 轴上的双曲线方程x 2a 2-y 2b2=1?(3)从1,3,5,7,9中任取3个数字,有多少种方法?若这3个数字组成没有重复的三位数,又有多少种方法?【答案】见解析【解析】(1)第一问不是排列问题,第二问是排列问题.“入座”问题同“排队”问题与顺序有关,故选3个座位安排三位客人是排列问题.(2)第一问不是排列问题,第二问是排列问题.若方程x 2a 2+y 2b 2=1表示焦点在x 轴上的椭圆,则必有a >b ,a ,b 的大小关系一定;在双曲线x 2a 2-y 2b 2=1中,不管a >b 还是a <b ,方程x 2a 2-y 2b2=1均表示焦点在x 轴上的双曲线,且是不同的双曲线,故是排列问题.(3)第一问不是排列问题,第二问是排列问题.从5个数中取3个数,与顺序无关;若这3个数组成不同的三位数,则与顺序有关.2.(2021年河北)下列问题是排列问题的是 ( )A .从8名同学中选取2名去参加知识竞赛,共有多少种不同的选取方法?B .10个人互相通信一次,共写了多少封信?C .平面上有5个点,任意三点不共线,这5个点最多可确定多少条直线?D .从1,2,3,4四个数字中,任选两个相乘,其结果共有多少种? 【答案】 B【解析】 排列问题是与顺序有关的问题,四个选项中只有B 中的问题是与顺序有关的,其他问题都与顺序无关.故选B.考点二 排列数【例2】(1)(2020·江苏省前黄高级中学)若220m A =,则m =( )A .5B .6C .7D .8(2)(2020·永昌县第四中学)若532m m A A =,则m 的值为 ( )A .5B .3C .6D .7(3)(2021·山西省长治市第二中学校高)不等式217n A n --<的解集为( ) A .{}15n n -<< B .{}1,2,3,4 C .{}3,4D .{}4【答案】(1)A (2)A (2)C【解析】(1)2(1)20m A m m =-=,化解得2200m m --= 解得:m =4-(舍)或m =5故选:A(2)根据题意,若532m m A A =,则有m (m ﹣1)(m ﹣2)(m ﹣3)(m ﹣4)=2×m (m ﹣1)(m ﹣2),即(m ﹣3)(m ﹣4)=2,解可得:m=5故答案为A(3)由217n A n --<,得:()()127n n n ---<,整理得2450n n --<,解得:15n -<<,由题可知,12n -≥且n *∈N ,则3n =或4n =,即原不等式的解集为:{}3,4.故选:C.【一隅三反】1.(2020·全国高二单元测试)对于满足13n ≥的正整数n ,(5)(6)(12)n n n --⋅⋅⋅-=( ) A .712n A - B .75n A -C .85n A -D .125n A -【答案】C【解析】根据排列数定义,要确定元素总数和选取个数,元素总数为5n -, 选取个数为(5)(12)18n n ---+=,85(5)(6)(12)n n n n A ---⋅⋅⋅-=.故选:C . 2.(2020·宁夏育才中学)已知128934n n A A --=,则n =( )A .5B .7C .10D .14【答案】B 【解析】128934n n A A --=,可得387(82)4987(93)n n ⨯⨯⨯⨯-+=⨯⨯⨯⨯⨯-+,即3(11)(10)36n n --=,解得7n =.故选:B . 3.(2020·山东莱州一中)给出下列四个关系式: ①(1)!!1n n n +=+ ②11m m n n A nA --= ③!()!m nn A n m =- ④11(1)!()!m n n A m n ---=- 其中正确的个数为( ) A .1个 B .2个 C .3个 D .4个【答案】C【解析】①因为()()()()(1)!1121,!1221n n n n n n n n +=+⋅⋅-⋅⋅⋅⋅=⋅--⋅⋅⋅⋅,故正确.②()111!!,()!()!mm n n n n n A nA n m n m --=-==--,故正确.③!()!mn n A n m =-,正确.④因为!()!mn n A n m =-,所以11(1)!()!m n n A n m ---=-,故不正确.故选:C4.(1)解不等式288A 6A x x -<;(2)证明:11A A A m m m n n n m -+-=.【答案】(1)x =8;(2)详见解析.【解析】(1)由288A 6A x x -<,得()()8!8!68!10!x x <⨯--,化简得219840x x -<+,解之得712x <<,①又820xx ≥⎧⎨->⎩,2x 8∴<≤,②由①②及x ∈N *得8x =.(2()()()()()()()111!!!1!!A A 1A 1!!!1!11!m mm n n nn n n n n mn mm n m n m n m n m n m n m n m -+++⎛⎫-=-=-===⎪+---+--+-+-⎝⎭,11A A A m m m n n nm -+∴-=. 考点三 排队问题【例3】(2021·全国高二练习)有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数. (1)选5人排成一排;(2)排成前后两排,前排3人,后排4人; (3)全体排成一排,女生必须站在一起; (4)全体排成一排,男生互不相邻;(5)全体排成一排,其中甲不站最左边,也不站最右边; (6)全体排成一排,其中甲不站最左边,乙不站最右边.【答案】(1)2520;(2)5040;(3)576;(4)1440;(5)3600;(6)3720.【解析】(1)从7人中选5人排列,共有57765432520A =⨯⨯⨯⨯=(种). (2)分两步完成,先选3人站前排,有37A 种方法,余下4人站后排,有44A 种方法,按照分步乘法计数原理计算可得一共有347476543215040A A ⋅=⨯⨯⨯⨯⨯⨯=(种).(3)捆绑法,将女生看成一个整体,进行全排列,有44A 种,再与3名男生进行全排列有44A 种,共有4444576A A ⨯=(种).(4)插空法,先排女生,再在空位中插入男生,故有43451440A A ⨯=(种). (5)先排甲,有5种方法,其余6人有66A 种排列方法,共有6653600A ⨯=(种).(6) 7名学生全排列,有77A 种方法,其中甲在最左边时,有66A 种方法,乙在最右边时,有66A 种方法,其中都包含了甲在最左边且乙在最右边的情形,有55A 种方法,故共有76576523720A A A -⨯+= (种).【一隅三反】1.(2020·湖北高二期末)甲、乙、丙、丁四名同学和一名老师站成一排合影留念.若老师站在正中间,则不同站法的种数有( ) A .12种 B .18种 C .24种 D .60种【答案】C【解析】根据题意,若老师站在正中间,则站法只有1种,将甲、乙、丙、丁全排列,安排在两边4个位置,有4424A =种情况,由分步乘法计数原理知共有124=24⨯种,故选:C.2.(2020·山东淄博·高二期末)参加完某项活动的6名成员合影留念,前排和后排各3人,不同排法的种数为( ) A .360 B .720 C .2160 D .4320【答案】B【解析】分两步完成:第一步:从6人中选3人排前排:36120A =种不同排法;第二步:剩下的3人排后排:336A =种不同排法,再按照分步乘法计数原理:1206720⨯=种不同排法, 故选:B.3.(2020·湖北沙市中学高二月考)某单位有8个连在一起的车位,现有4辆不同型号的车需要停放,如果要求剩余的4个车位中恰好有3个连在一起,则不同的停放方法的种数为( ) A .240 B .360 C .480 D .720【答案】C【解析】解法一:给8个车位编号:1,2,3,4,5,6,7,8, 当1,2,3号车位停放3辆车时,有444A ⨯种停放方法; 当2,3,4号车位停放3辆车时,有443A ⨯种停放方法; 当3,4,5号车位停放3辆车时,有443A ⨯种停放方法; 当4,5,6号车位停放3辆车时,有443A ⨯种停放方法; 当5,6,7号车位停放3辆车时,有443A ⨯种停放方法; 当6,7,8号车位停放3辆车时,有444A ⨯种停放方法;所以不同的停放方法的种数为44443444444344433334202024480A A A A A A A +++++==⨯=种.解法二:先定四个车位,其中三个车位连在一起捆绑,三个车位和另一个被四个空车位间隔开,四个空车位就1种排法,造成5个空格,排入三个捆绑车位和一个车位有2520A =种方法, 再把4辆车停入四个车位有4424A =种方法,根据乘法原理共有2024480⨯=种停车方法. 故选:C.考点四 数字问题【例4】(2021·天津静海一中)现有0、1、2、3、4、5、6、7、8、9共十个数字. (1)可以组成多少个无重复数字的三位数?(2)组成无重复数字的三位数中,315是从小到大排列的第几个数?(3)可以组成多少个无重复数字的四位偶数?【答案】(1)648;(2)156;(3)2296;【解析】(1)由题意,无重复的三位数共有1299972648A A=⨯=个;(2)当百位为1时,共有299872A=⨯=个数;当百位为2时,共有299872A=⨯=个数;当百位为3时,共有118412A A+=个数,所以315是第727212156++=个数;(3)无重复的四位偶数,所以个位必须为0,2,4,6,8,千位上不能为0,当个位上为0时,共有39504A=个数;当个位上是2,4,6,8中的一个时,共有1218841792A A A=个数,所以无重复的四位偶数共有50417922296+=个数;【一隅三反】1.(2020·浙江省东阳中学)由0,1,2,3,4,5共6个不同数字组成的6位数,要求0不能在个位数,奇数恰好有2个相邻,则组成这样不同的6位数的个数是()A.144 B.216 C.288 D.432【答案】B【解析】先从3个奇数中选出2个捆绑内部全排共有236A=种排法,再把捆绑的2个奇数看成一个整体,因为这个整体与剩下的一个奇数不相邻,将2个非0偶数全排有222A=种选法,奇数插空全排有236A=种选法,最后把0插空,0不能在两端,有3种排法,可组成这样不同的6位的个数为6263216⨯⨯⨯=种排法,故选:B2.(2020·福建省福州外国语学校用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有A.144个B.120个C.96个D.72个【答案】B【解析】根据题意,符合条件的五位数首位数字必须是4、5其中1个,末位数字为0、2、4中其中1个;分两种情况讨论:①首位数字为5时,末位数字有3种情况,在剩余的4个数中任取3个,放在剩余的3个位置上,有A43=24种情况,此时有3×24=72个,②首位数字为4时,末位数字有2种情况,在剩余的4个数中任取3个,放在剩余的3个位置上,有A43=24种情况,此时有2×24=48个,共有72+48=120个.故选B3.(2021·湖北车城高中)用数字0,1,2,3,4,5组成没有重复数字的四位数.(1)可组成多少个不同的四位数?(2)可组成多少个不同的四位偶数?【答案】(1)300;(2)156.【解析】(1)根据题意分步完成任务:第一步:排千位数字,从1,2,3,4,5这5个数字中选1个来排,有155A=种不同排法;第二步:排百位、十位、个位数字,从排了千位数字后剩下的5个数字中选3个来排列,有3554360A=⨯⨯=种不同排法;所以组成不同的四位数有560300⨯=种,(2)根据题意分类完成任务:第一类:个位数字为0,则从1,2,3,4,5这5个数字中选3个来排在千位、百位、十位,有3554360A=⨯⨯=种不同排法;第二类:个位数字为2或4,则0不能排在千位,有112244244396A A A=⨯⨯⨯=种不同排法;所以组成不同的四位偶数有6096156+=种.。
《排列(1)》导学案【学习目标】1. 理解排列、排列数的概念;2. 了解排列数公式的推导.【重点难点】1. 理解排列、排列数的概念;2. 了解排列数公式的推导.【学法指导】(预习教材P14~ P18,找出疑惑之处)复习1:交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有2个不重复的英文字母和4个不重复的阿拉伯数字,并且2个字母必须合成一组出现,4个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?复习2:从甲,乙,丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另一名参加下午的活动,有多少种不同的选法?【教学过程】(一)导入探究任务一:排列问题1:上面复习1,复习2中的问题,用分步计数原理解决显得繁琐,能否对这一类计数问题给出一种简捷的方法呢?新知1:排列的定义一般地,从n个元素中取出m()个元素,按照一定的排成一排,叫做从个不同元素中取出个元素的一个排列.试试:写出从4个不同元素中任取2个元素的所有排列. 反思:排列问题有何特点?什么条件下是排列问题?探究任务二:排列数及其排列数公式新知2 排列数的定义从个元素中取出(nm≤)个元素的的个数,叫做从n个不同元素取出m元素的排列数,用符合表示.试试:从4个不同元素a,b, c,d中任取2个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?问题:⑴从n个不同元素中取出2个元素的排列数是多少?⑵从n个不同元素中取出3个元素的排列数是少?⑶从n个不同元素中取出m(nm≤)个元素的排列数是多少?新知3 排列数公式从n个不同元素中取出m(nm≤)个元素的排列数=mnA新知4 全排列从n个不同元素中取出的一个排列,叫做n个元素的一个全排列,用公式表示为=nnA(二)深入学习例1计算:⑴410A;⑵218A; ⑶441010AA÷.变式:计算下列各式:⑴215A; ⑵66A⑶28382AA-; ⑷6688AA.例2若17161554mn A =⨯⨯⨯⨯⨯,则n = ,m = .变式:乘积(55)(56)(68)(69)n n n n ----用排列数符号表示 .(,n N ∈)例3 求证: 11--=m n m n nA A变式 求证: 7766778878A A A A =+-小结:排列数m n A 可以用阶乘表示为mn A =※ 动手试试 n 2 3 4 5 6 7n !练2. 从2,3,5,7,11这五个数字中,任取2个数字组成分数,不同值的分数共有多少个? .【当堂检测 】1. 计算:=+243545A A ;2.. 计算:=+++44342414A A A A ;3. 某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行 场比赛;4. 5人站成一排照相,共有 种不同的站法;5. 从1,2,3,4这4个数字中,每次取出3个排成一个3位数,共可得到 个不同的三位数.1. 求证:11211--++=-n n n n n n A n A A2. 一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假设每股道只能停放1列火车)?3.一部记录片在4个单位轮映,每一单位放映1场,有多少种轮映次序?【反思 】1. 排列数的定义2. 排列数公式及其全排列公式《排列(2)》导学案【学习目标 】1熟练掌握排列数公式; 2. 能运用排列数公式解决一些简单的应用问题. 【重点难点 】 1熟练掌握排列数公式; 2. 能运用排列数公式解决一些简单的应用问题. 【学法指导 】 (预习教材P 5~ P 10,找出疑惑之处) 复习1:.什么叫排列?排列的定义包括两个方面分别是 和 ;两个排列相同的条件是 相同, 也复习2:排列数公式:mn A = (,,m n N m n *∈≤)全排列数:nn A = = . 复习3 从5个不同元素中任取2个元素的排列数是 ,全部取出的排列数是【教学过程 】 (一)导入 探究任务一:排列数公式应用的条件 问题1:⑴ 从5本不同的书中选3本送给3名同学,每人各1本,共有多少种不同的送法?⑵ 从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法? 新知:排列数公式只能用在从n 个不同元素中取出m 个元素的的排列数,对元素可能相同的情况不能使用.探究任务二:解决排列问题的基本方法问题2:用0到9这10个数字,可以组成多少个没有重复数字的三位数?新知:解排列问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等. (二)深入学习 例1 (1)6男2女排成一排,2女相邻,有多少种不同的站法? (2)6男2女排成一排,2女不能相邻,有多少种不同的站法? (3)4男4女排成一排,同性者相邻,有多少种不同的站法? (4)4男4女排成一排,同性者不能相邻,有多少种不同的站法?变式::某小组6个人排队照相留念.(1) 若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法? (2) 若排成一排照相,其中甲必在乙的右边,有多少种不同的排法? (3) 若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法? (4) 若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法? (5) 若分成两排照相,前排2人,后排4人,有多少种不同的排法?小结:对比较复杂的排列问题,应该仔细分析,选择正确的方法.例2 用0,1,2,3,4,5六个数字,能排成多少个满足条件的四位数.(1)没有重复数字的四位偶数?(2)比1325大的没有重复数字四位数?变式:用0,1,2,3,4,5,6七个数字,⑴能组成多少个没有重复数字的四位奇数?⑵能被5整除的没有重复数字四位数共有多少个?※动手试试练1.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行实验,有多少种不同的种植方法?练2.在3000至8000之间有多少个无重复数字的奇数?【当堂检测】1. 某农场为了考察3个水稻品种和5个小麦品种的质量,要在土质相同的土地上进行试验,应该安排的试验区共有块.2. 某人要将4封不同的信投入3个信箱中,不同的投寄方法有种.3. 用1,2,3,4,5,6可组成比500000大、且没有重复数字的自然数的个数是.4. 现有4个男生和2个女生排成一排,两端不能排女生,共有种不同的方法.5. 在5天内安排3次不同的考试,若每天至多安排一次考试,则不同的排法有种.1..一个学生有20本不同的书.所有这些书能够以多少种不同的方式排在一个单层的书架上?2.学校要安排一场文艺晚会的11个节目的演出顺序.除第一个节目和最后一个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,求共有多少种不同的排法?【反思 】1. 正确选择是分类还是分步的方法,分类要做到“不重不漏”,分步要做到“步骤完整.2..正确分清是否为排列问题满足两个条件:从不同元素中取出元素,然后排顺序.《组合(1)》导学案【学习目标 】1. 正确理解组合与组合数的概念;2. 弄清组合与排列之间的关系;3. 会做组合数的简单运算;. 【重点难点 】1. 正确理解组合与组合数的概念;2. 弄清组合与排列之间的关系;3. 会做组合数的简单运算; 【学法指导】(预习教材P 21~ P 23,找出疑惑之处)复习1:什么叫排列?排列的定义包括两个方面,分别是 和 . 复习2:排列数的定义:从 个不同元素中,任取 个元素的 排列的个数叫做从n 个元素中取出m 元素的排列数,用符号 表示复习3:排列数公式:mn A = (,,m n N m n *∈≤)【教学过程 】 (一)导入探究任务一:组合的概念问题:从甲,乙,丙3名同学中选出2名去参加一项活动,有多少种不同的选法?新知:一般地,从 个 元素中取出 ()m n ≤个元素 一组,叫做从n 个不同元素中取出m 个元素的一个组合.试试:试写出集合{}a,b,c,d,e 的所有含有2个元素的子集.反思:组合与元素的顺序 关,两个相同的组合需要 个条件,是 ;排列与组合有何关系? 探究任务二.组合数的概念:从n 个 元素中取出m ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号 表示. 探究任务三 组合数公式 m n C = =我们规定:=0nC (二)深入学习例1 甲、乙、丙、丁4个人,(1)从中选3个人组成一组,有多少种不同的方法?列出所有可能情况; (2)从中选3个人排成一排,有多少种不同的方法?变式: 甲、乙、丙、丁4个足球队举行单循环赛: (1)列出所有各场比赛的双方; (2)列出所有冠亚军的可能情况.小结:排列不仅与元素有关,而且与元素的排列顺序有关,组合只与元素有关,与顺序无关,要正确区分排列与组合.例2 计算:(1)47C ; (2)710C变式:求证:11+⋅-+=m n m nC mn m C※ 动手试试 练1.计算:⑴ 26C ; ⑵ 38C ;⑶ 2637C C -; ⑷ 253823C C -.练2. 已知平面内A ,B ,C ,D 这4个点中任何3个点都不在一条直线上,写出由其中每3点为顶点的所有三角形.练3. 学校开设了6门任意选修课,要求每个学生从中选学3门,共有多少种选法?【当堂检测 】1. 若8名学生每2人互通一次电话,共通 次电话.2. 设集合{}A a,b,c,d,e ,B A =⊂,已知a B ∈,且B 中含有3个元素,则集合B 有个. 3. 计算:310C = .4. 从2,3,5,7四个数字中任取两个不同的数相乘,有m 个不同的积;任取两个不同的数相除,有n 个不同的商,则m :n = .5.写出从a,b,c,d,e 中每次取3个元素且包含字母a ,不包含字母b 的所有组合 1.计算:⑴ 215C ; ⑵ 2836C C ÷;2. 圆上有10个点:⑴ 过每2个点画一条弦,一共可以画多少条弦?⑵ 过每3点画一个圆内接三角形,一共有多少个圆内接三角形? 、【反思 】1. 正确理解组合和组合数的概念2.组合数公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+==或者:)!(!!m n m n C mn -=),,(n m N m n ≤∈*且《 组合(2)》导学案【学习目标 】1.2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题; 【重点难点 】1.2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题; 【学法指导 】(预习教材P 24~ P 25,找出疑惑之处)复习1:从 个 元素中取出 ()m n ≤个元素 一组,叫做从n 个不同元素中取出m 个元素的一个组合;从 个 元素中取出 ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号 表示.复习2: 组合数公式: m n C = =【教学过程 】 (一)导入探究任务一:组合数的性质问题1:高二(6)班有42个同学⑴ 从中选出1名同学参加学校篮球队有多少种选法? ⑵ 从中选出41名同学不参加学校篮球队有多少种选法? ⑶ 上面两个问题有何关系?新知1:组合数的性质1:mn n m n C C -=.一般地,从n 个不同元素中取出m 个元素后,剩下n m -个元素.因为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n - m 个元素的每一个组合一一对应....,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:mn n m n C C -=试试:计算:1820C反思:⑴若y x =,一定有yn x n C C =?⑵若yn x n C C =,一定有y x =吗?问题2 从121,,,+n a a a 这n +1个不同元素中取出m 个元素的组合数是 ,这些组合可以分为两类:一类含有元素1a ,一类是不含有1a .含有1a 的组合是从132,,,+n a a a 这 个元素中取出 个元素与1a 组成的,共有 个;不含有1a 的组合是从132,,,+n a a a 这 个元素中取出 个元素组成的,共有 个.从中你能得到什么结论?新知2 组合数性质2 m n C 1+=m n C +1-m n C(二)深入学习例1(1)计算:69584737C C C C +++;变式1:计算2222345100C C C C ++++例2 求证:n m C 2+=n m C +12-n m C +2-n m C变式2:证明:111m m m n n n C C C ++++=小结:组合数的两个性质对化简和计算组合数中用用处广泛,但在使用时要看清公式的形式.例3解不等式()321010n n-C n -<∈+C N .练3 :解不等式:46n nC C <※ 动手试试练1.若542216444x x C -C C C -=+,求x 的值练2. 解方程: (1)3213113-+=x x C C(2)333222101+-+-+=+x x x x x A C C【当堂检测 】1. 908910099C -C =2. 若231212n n-C C =,则n =3.有3张参观券,要在5人中确定3人去参观,不同方法的种数是 ;4. 若7781n n n C C C +=+,则n = ;5. 化简:9981m m m C -C C ++= .1. 计算:⑴ 197200C ; ⑵ 21-+•n n n n C C2. 壹圆,贰圆,伍圆,拾圆的人民币各1张,一共可以组成多少种币值?3. 若128n n C C =,求21n C 的值【反思 】1. 组合数的性质1:mn n m n C C -=2. 组合数性质2:m n C 1+=m n C +1-m n C《组合(3)》导学案 【学习目标 】 1. 进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题.【重点难点 】1. 进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题.【学法指导 】(预习教材P 27~ P 28,找出疑惑之处)复习1:⑴ 从 个 元素中取出 ()m n ≤个元素的 组合的个数,叫做从n 个不同元素中取出m 个元素的组合数...,用符号 表示;从 个 元素中取出 (n m ≤)个元素的 的个数,叫做从n 个不同元素取出m 元素的排列数,用符合 表示. ⑵ mn A =mn C = =m n A 与mn C 关系公式是 复习2:组合数的性质1: .组合数的性质2: .【教学过程 】 (一)导入探究任务一:排列组合的应用问题:一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问: ⑴ 这位教练从17位学员中可以形成多少种学员上场方案?⑵ 如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事?新知:排列组合在实际运用中,可以同时使用,但要分清他们的使用条件:排列与元素的顺序有关,而组合只要选出元素即可,不要考虑元素的顺序.试试:⑴平面内有10个点,以其中每2个点为端点的线段共有多少条? ⑵平面内有10个点,以其中每2个点为端点的有向线段多少条? 反思:排列组合在一个问题中能同时使用吗? (二)深入学习 例1 在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件.⑴ 有多少种不同的抽法?⑵ 抽出的3件中恰好有1件是次品的抽法有多少种?⑶ 抽出的3件中至少有1件是次品的抽法有多少种?变式:在200件产品中有2件次品,从中任取5件: ⑴ 其中恰有2件次品的抽法有多少种?⑵ 其中恰有1件次品的抽法有多少种?⑶ 其中没有次品的抽法有多少种? ⑷ 其中至少有1件次品的抽法有多少种?小结:对综合应用两个计数原理以及组合知识问题,思路是:先分类,后分步.例2 现有6本不同书,分别求下列分法种数:⑴分成三堆,一堆3本,一堆2本,一堆1本;⑵分给3个人,一人3本,一人2本,一人1本;⑶平均分成三堆.变式:6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?例 3 现有五种不同颜色要对如图中的四个部分进行着色,要求有公共边的两块不能用一种颜色,问共有几种不同的着色方法?变式:某同学邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?※动手试试练1. 甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表?练2. 高二(1)班共有35名同学,其中男生20名,女生15名,今从中取出3名同学参加活动, (1)其中某一女生必须在内,不同的取法有多少种?(2)其中某一女生不能在内, 不同的取法有多少种?(3)恰有2名女生在内,不同的取法有多少种?(4)至少有2名女生在内,不同的取法有多少种?(5)至多有2名女生在内,不同的取法有多少种?【当堂检测】1. 凸五边形对角线有条;2. 以正方体的顶点为顶点作三棱锥,可得不同的三棱锥有个;3.要从5件不同的礼物中选出3件送给3个同学,不同方法的种数是;4.有5名工人要在3天中各自选择1天休息,不同方法的种数是;5. 从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,一共可以组成没有重复数字的五位数?1. 在一次考试的选做题部分,要求在第1题的4个小题中选做3个小题,在第2题的3个小题中选做2个小题,在第3题的2个小题中选做1个小题.有多少种不同的选法?路漫漫其修远兮,吾将上下而求索 - 百度文库2. 从5名男生和4名女生中选出4人去参加辩论比赛.⑴如果4人中男生和女生各选2名,有多少种选法?⑵如果男生中的甲和女生中的乙必须在内,有多少种选法?⑶如果男生中的甲和女生中的乙至少有1人在内,有多少种选法?⑷如果4人中必须既有男生又有女生,有多少种选法?【反思】1. 正确区分排列组合问题2. 对综合问题,要“先分类,后分步”,对特别元素,应优先考虑.1111。
6.2 排列知识清单1.排列一般的,从n 个不同的元素中取出)(n m m ≤个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m 个元素的一个排列.两个排列相同的充要条件:两个排列的元素完全相同,并且元素的排列顺序也相同.2.排列数我们把从n 个不同元素中取出)(n m m ≤个元素的所有不同排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n A 表示.3.排列数公式(1))1()2)(1(+-⋅⋅⋅--=m n n n n A m n,这里,*∈N n m ,,并且n m ≤,这个公式叫做排列数公式.(2)特别地,我们把n 个不同的元素全部取出的一个排列,叫做n 个元素的一个全排列.即123)2()1(⨯⨯⨯⋅⋅⋅⨯-⨯-⨯=n n n A n n .(3)正整数1到n 的连乘积,叫做n 的阶乘,用!n 表示.于是,n 个元素的全排列公式可以写成!n A n n =.另外,我们规定1!0=.(4)!)(!)1()2)(1(m n n m n n n n A m n -=+-⋅⋅⋅--=,*∈N n m ,,且n m ≤. 4.排列问题的常见模型(1)特殊元素(位置)——————优先法;(2)相邻问题——————————捆绑法;(3)不相邻问题—————————插空法;(4)定序问题——————————倍缩法(除法);(5)相同元素排列问题——————倍缩法(除法);(6)圆形排列——————————倍缩法(除法).题型训练题型一 特殊元素(位置)问题对于特殊元素(位置)的排列问题,一般先考虑特殊,再考虑其他,也可以选择间接法.1.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24B.48C.60D.722.6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序有()A.240种B.360种C.480种D.720种3.有6人站成前后两排,每排3人,甲在前排,乙不在后排的边上,则不同的排法种数为()A.96 种B.192 种C.216 种D.288 种4.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288 种5.用0,1,2,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.2796.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有()A.36种B.42种C.48种D.54种7.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个8.生产过程有4道工序,每道工序需要安排一人照看,现从甲乙丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案有()A.24种B.36种C.48种D.72种9.已知有5名同学站成一排.(1)甲不站排头,则不同的排法种数为(2)甲不站排头,且乙不站排尾,则不同的排法种数为(3)甲不站排头,乙不站排尾,且丙站中间,则不同的排法种数为10.用0,1,2,3,4 这五个数字.(1)组成无重复数字的四位数的个数为(2)组成无重复数字的四位偶数的个数为(3)组成组成无重复数字且大于2000的四位偶数的个数为题型二相邻问题(捆绑法)当有元素要求相邻时,先整体考虑,将相邻的元素“捆绑”起来,看作一个大元素与其余元素排列,然后再考虑大元素内部各元素间顺序.11.有6名同学排成一排照相,要求甲、乙、丙三人站一起,则不同的排法种数为()A.24种B.72种C.144种D.288种12.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目相邻的排法种数为()A.36种B.48种C.54种D.72种13.某班有6位学生与班主任老师合影,班主任站在正中间且甲乙相邻,则排法的种数为()A.144种B.192种C.216种D.240种14.一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为()A.3×3!B.3×(3!)3C.(3!)4D.9!15.六个停车位置,有3辆汽车要求停放,若要使3辆汽车相邻停放,则停放的方法种数为()A.24种B.36种C.48种D.72种16.甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同的排列方式共有()A.12种B.24种C.36种D.48种17.有5名男生与5名女生排成一排,男生甲与男生乙之间有且只有2名女生,且女生不排在两端,则这样的排列种数为()A.57600种B.5760种C.28800种D.2880种18.某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有()A.504种B.960种C.1008种D.1108种19.有6名同学站成一排.(1)甲、乙相邻,则不同的排法种数为(2)甲、乙均与丙相邻,则不同的排法种数为(3)甲、乙相邻,且丙、丁相邻,则不同的排法种数为(4)甲、乙相邻,且丙不站首位,则不同的排法种数为(5)甲、乙相邻,且丙不站首位,丁不站末位,则不同的排法种数为20.有3名男生与3名女生站成一排,若女生相邻且男生甲不站两端,则不同的排法种数为题型三不相邻问题(插空法)当某些元素要求不能相邻时,可以先将其它元素排好,再将指定的不相邻的元素插入到它们的间隙及两端位置.21.某小区的6个停车位连成一排,现有3辆车随机停放在车位上,则任何两辆车都不相邻的停放方式有( )种.A .24B .72C .120D .14422.用数字1,2,3,4,5,6组成的没有重复数字的6位数中,数字1、2相邻且3、4不相邻的6位数共有( )A .72个B .144个C .216个D .288个23.有6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .2424.由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是( )A .36B .32C .28D .2425.五声音阶是中国古乐的基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徵、羽,如果用上这五个音阶,排成一.五音阶音序,且宫、羽不相邻,且位于角音阶的同侧,可排成的不同音序有( )A .20种B .24种C .32种D .48种26.有3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A .360种B .288种C .216种D .96种27.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .120C .144D .16828.有6名同学站成一排.(1)甲、乙不相邻,则不同的排法种数为(2)甲、乙不相邻,且甲、乙均不站两端,则不同的排法种数为(3)甲、乙相邻,且丙、丁不相邻,则不同的排法种数为(4)甲、乙相邻,且甲、乙均不与丙相邻,则不同的排法种数为(5)甲、乙均不与丙相邻,则不同的排法种数为(6)甲、乙不相邻,且丙、丁不相邻,则不同的排法种数为题型四 定序问题(倍缩法)在n 个不同元素的排列中,当有m 个元素要求按一定的顺序排列时,排法种数为m mn n A A . 29.有6人赛跑,其中甲比乙先到终点,乙比丙先到终点的不同比赛结果的种数为( )A .72B .120C .144D .16830.我们把每个数字比它左边的数字大的正整数称为“渐升数”(如1237),则用1-9九个数字组成的不同四位渐升数的个数为31.元宵节灯展后,如图悬挂有6盏不同的花灯需要取下,每次取1盏,共有 种不同取法.32.有6名同学站成一排,(1)甲站在乙的左边(可以不相邻),则不同的排法种数为(2)甲、乙、丙按照由左至右的顺序排列(可以不相邻),则不同的排法种数为(3)甲站在乙的左边(可以不相邻),丙站在丁的右边(可以不相邻),则不同的排法种数为(4)甲、乙均站在丙的同侧,则不同的排法种数为题型五 相同元素排列问题(倍缩法)在n 个元素的排列中,当有m 个元素相同(其他元素不同)时,排法种数为m mn n A A . 33.4个数字1和4个数字2可以组成不同的8位数共有( )A .16个B .70个C .140个D .256个34.有2个相同的红球,2个相同的白球,2个相同的黑球排成一列,则不同的排法种数为35.用一个0,一个1,一个2,三个3,可组成不同六位数的个数为36.用数字1,2,3组成五位数,且数字1,2,3至少都出现一次,这样的五位数共有 个题型六 圆形排列对n 个不同元素进行圆形全排列,总共的排法总数为nA n n . 37.五颗不同的珠子串成一串手链,则组成不同手链的种数为38.有7个人手拉手站成一个圆,且甲乙相邻,则不同的站法种数为综合训练1.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有( )A .20种B .30种C .40种D .60种2.如图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,现在用四种颜色给这四个直角三角形区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则有多少种不同的涂色方法( C )A.24种B.72种C.84种D.120种3.有3个男生与4个女生站成一排,要求相邻两人性别不同且男生甲与女生乙相邻,则这样的站法种数有()A.56种B.72种C.84种D.120种4.在某活动中,从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有()A.36种B.12种C.18种D.48种5.由数字1,2,3,…9组成的三位数中,各位数字按严格递增(如“156”)或严格递减(如“421”)顺序排列的数的个数是()A.120B.168C.204D.2166.如图,用四种不同颜色给图中的A,B,C,D,E,F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有()A.288种B.264种C.240种D.168种7.将数字“124470”重新排列后得到不同的偶数个数为()A.180B.192C.204D.2648.如图,用四种不同颜色给图中的ABCDEF六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,而且四种不同颜色要全部用完,则不同的涂色方法共有()种.A.144B.216C.264D.3609.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是()A.72B.96C.108D.14410.现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜四项工作,则不同安排方案的种数是()A.152种B.126种C.90种D.54种11.用数字1、2、3、4组成没有重复数字的四位数,则这些四位数中比2134大的数字个数为12.首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有种13.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是.14.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.15.将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有种.16.江湖传说,蜀中唐门配制的天下第一奇毒“含笑半步癫”是由3种藏红花,2种南海蛇毒和1种西域毒草顺次添加炼制而成,其中藏红花的添加顺序不能相邻,同时南海蛇毒的添加顺序也不能相邻,现要研究所有不同添加顺序对药效的影响,则总共要进行次试验.第二节排列参考答案题型一特殊元素(位置)问题1-5 D,C,C,B,B 6-8 B,B,B9.(1)96 (2)78 (3)1410.(1)96 (2)60 (3)42题型二相邻问题(捆绑法)11-15 CDBCA 16-18 BAC19.(1)240 (2)48 (3)96 (4)192 (5)156 20.72题型三不相邻问题(插空法)21-25 ABDAC 26-27 BB28.(1)480 (2)144 (3)144 (4)144 (5)288 (6)336题型四定序问题(倍缩法)29-31 B,126 ,9032.(1)360 (2)120 (3)180 (4)480题型五相同元素排列问题(倍缩法)33-36 B,90,100,150题型六圆形排列37-38 24,120综合训练1-5 A,C,B,A,B 6-10 B,C,B,C,B11-16 17,24,96,36,480,120。
高二数学的知识点排列组合公式高二数学的知识点排列组合公式在现实学习生活中,大家对知识点应该都不陌生吧?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。
为了帮助大家掌握重要知识点,下面是店铺收集整理的高二数学的知识点排列组合公式,希望对大家有所帮助。
你还在为高中数学学习而苦恼吗?别担心,看了高二数学学习:高二数学知识点排列组合公式以后你会有很大的收获:高二数学学习:高二数学知识点排列组合公式排列组合公式/排列组合计算公式排列P------和顺序有关组合C-------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法.排列把5本书分给3个人,有几种分法组合1.排列及计算公式从n个不同元素中,任取m(mn)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同元素中取出m 个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)(n-m+1)=n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m)表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2008-07-0813:30公式P是指排列,从N个元素取R个进行排列。
高二数学选修2-3排列知识点排列是数学中的一个重要概念,在高二数学选修2-3中,我们将深入学习排列的相关概念和应用。
本文将从基本概念、排列的计算方法和排列的应用几个方面进行探讨。
一、基本概念1. 排列的定义:排列是从给定的元素中选取一部分按照一定的顺序排列的方式。
2. 全排列:全排列指的是从给定的元素中选取所有元素按照不同的顺序进行排列的方式。
3. 循环排列:循环排列是一种特殊的排列方式,即在排列的过程中,首尾相连形成一个环。
二、排列的计算方法1. 排列的计算公式:在计算排列的数量时,我们可以使用排列的计算公式,即n个不同元素的全排列数量为n!。
2. 有重复元素的排列:当排列中存在重复的元素时,计算排列的数量需要考虑重复元素的情况,我们可以使用排列计算公式的变形公式,即在n个元素中,有n1个元素相同,n2个元素相同,...,nk个元素相同,则排列的数量为n!/(n1! * n2! * ... * nk!)。
三、排列的应用1. 字母组合:排列的概念在字母组合的问题中经常被应用。
例如,计算一个字母串中可能的组合数量、字母的全排列数量等。
2. 座位安排:排列的概念也被广泛应用于座位安排的问题中。
例如,如何安排n个人坐在一排座位上的不同方式数量。
3. 时间安排:排列还可以应用于时间安排问题。
例如,在参加一场比赛的选手中,如何安排他们的比赛顺序,使得每个选手都能与其他选手进行比赛。
4. 数字密码:排列的概念在密码学中也扮演着重要的角色。
例如,当设置数字密码时,我们可以使用排列的方式来确定密码的顺序与组合。
综上所述,排列作为高二数学选修2-3中的重要知识点,具有一定的理论基础和应用价值。
通过深入学习和实践,我们可以更好地掌握排列的计算方法和应用技巧,进一步提升我们的数学能力和问题解决能力。