2020版高中数学第三章数系的扩充与复数3_1_1实数系3_1_2复数的概念学案新人教B版
- 格式:doc
- 大小:32.50 KB
- 文档页数:5
3.1.1 数系的扩充和复数的概念预习课本P102~103,思考并完成下列问题(1)实数系经过扩充后得到的新数集是什么?复数集如何分类?(2)复数能否比较大小?复数相等的充要条件是什么?纯虚数、虚数、实数、复数关系如何?[新知初探]1.复数的有关概念a+b i|a,b∈R中的数,即形如a+b i(a,b∈R)的数叫做复数,其中我们把集合C={}i叫做虚数单位.全体复数所成的集合C叫做复数集.复数通常用字母z表示,即z=a+b i(a,b∈R),这一表示形式叫做复数的代数形式.对于复数z=a+b i,以后不作特殊说明都有a,b∈R,其中的a与b分别叫做复数z 的实部与虚部.[点睛] 复数概念的三点说明(1)复数集是最大的数集,任何一个数都可以写成a+b i(a,b∈R)的形式,其中0=0+0i.(2)复数的虚部是实数b而非b i.(3)复数z=a+b i只有在a,b∈R时才是复数的代数形式,否则不是代数形式.2.复数相等a+b i|a,b∈R中任取两个数a+b i,c+d i(a,b,c,d∈R),我们规在复数集C={}定:a+b i与c+d i相等的充要条件是a=c且b=d.3.复数的分类对于复数a +b i ,当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +b i 可以分类如下:复数z ⎩⎪⎨⎪⎧实数(b =0),虚数(b ≠0)(当a =0时为纯虚数).[点睛] 复数集、实数集、虚数集、纯虚数集之间的关系[小试身手]1.判断(正确的打“√”,错误的打“×”) (1)若a ,b 为实数,则z =a +b i 为虚数.( ) (2)若a 为实数,则z =a 一定不是虚数.( )(3)如果两个复数的实部的差和虚部的差都等于0,那么这两个复数相等.( ) 答案:(1)× (2)√ (3)√2.(1+3)i 的实部与虚部分别是( ) A .1,3B .1+3,0 C .0,1+ 3 D .0,(1+3)i答案:C3.复数z =(m 2-1)+(m -1)i(m ∈R)是纯虚数,则有() A .m =±1 B.m =-1 C .m =1 D .m ≠1答案:B复数的概念及分类 [典例] 实数x 分别取什么值时,复数z =2x +3+(x 2-2x -15)i 是(1)实数?(2)虚数?(3)纯虚数?[解] (1)当x 满足⎩⎪⎨⎪⎧x 2-2x -15=0,x +3≠0,即x =5时,z 是实数.(2)当x 满足⎩⎪⎨⎪⎧x 2-2x -15≠0,x +3≠0,即x ≠-3且x ≠5时,z 是虚数.(3)当x 满足⎩⎪⎨⎪⎧x 2-x -6x +3=0,x 2-2x -15≠0,x +3≠0,即x =-2或x =3时,z 是纯虚数.复数分类的关键(1)利用复数的代数形式,对复数进行分类,关键是根据分类标准列出实部、虚部应满足的关系式.求解参数时,注意考虑问题要全面,当条件不满足代数形式z =a +b i(a ,b ∈R)时应先转化形式.(2)注意分清复数分类中的条件设复数z =a +b i(a ,b ∈R),则①z 为实数⇔b =0,②z 为虚数⇔b ≠0,③z 为纯虚数⇔a =0,b ≠0.④z =0⇔a =0,且b =0.[活学活用]当m 为何值时,复数z =m 2(1+i)-m (3+i)-6i ,m ∈R,是实数?是虚数?是纯虚数? 解:∵z =(m 2-3m )+(m 2-m -6)i ,∴(1)当m 满足m 2-m -6=0,即m =-2或m =3时,z 为实数. (2)当m 满足m 2-m -6≠0,即m ≠-2且m ≠3时,z 为虚数.(3)当m 满足⎩⎪⎨⎪⎧m 2-3m =0,m 2-m -6≠0,即m =0时,z 为纯虚数.复数相等[典例] 2m 的值为________,方程的实根x 为________.[解析] 设a 是原方程的实根, 则a 2+(1-2i)a +(3m -i)=0, 即(a 2+a +3m )-(2a +1)i =0+0i , 所以a 2+a +3m =0且2a +1=0, 所以a =-12且⎝ ⎛⎭⎪⎫-122-12+3m =0,所以m =112.[答案]112 -12[一题多变]1.[变条件]若将本例中的方程改为:x 2+mx +2x i =-1-m i 如何求解?解:设实根为x 0,代入方程,由复数相等定义,得⎩⎪⎨⎪⎧x 20+mx 0=-1,2x 0=-m ,解得⎩⎪⎨⎪⎧x 0=1,m =-2或⎩⎪⎨⎪⎧x 0=-1,m =2,因此,当m =-2时,原方程的实根为x =1,当m =2时,原方程的实根为x =-1. 2.[变条件]若将本例中的方程改为:3x 2-m2x -1=(10-x -2x 2)i ,如何求解?解:设方程实根为x 0,则原方程可变为3x 20-m2x 0-1=(10-x 0-2x 20)i ,由复数相等定义,得:⎩⎪⎨⎪⎧3x 20-m 2x 0-1=0,10-x 0-2x 20=0,解得⎩⎪⎨⎪⎧x 0=2,m =11或⎩⎪⎨⎪⎧x 0=-52,m =-715,因此,当m =11时,原方程的实根为x =2; 当m =-715时,原方程的实根为x =-52.复数相等问题的解题技巧(1)必须是复数的代数形式才可以根据实部与实部相等,虚部与虚部相等列方程组求解. (2)根据复数相等的条件,将复数问题转化为实数问题,为应用方程思想提供了条件,同时这也是复数问题实数化思想的体现.(3)如果两个复数都是实数,可以比较大小,否则是不能比较大小的.层级一 学业水平达标1.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是( ) A .3-3i B .3+i C .-2+2iD.2+2i解析:选A 3i -2的虚部为3,3i 2+2i =-3+2i 的实部为-3,故选A. 2.4-3a -a 2i =a 2+4a i ,则实数a 的值为( ) A .1 B .1或-4 C .-4D .0或-4解析:选C 由题意知⎩⎪⎨⎪⎧4-3a =a 2,-a 2=4a ,解得a =-4.3.下列命题中:①若x ,y ∈C,则x +y i =1+i 的充要条件是x =y =1;②纯虚数集相对于复数集的补集是虚数集;③若(z 1-z 2)2+(z 2-z 3)2=0,则z 1=z 2=z 3;④若实数a 与a i 对应,则实数集与复数集一一对应.正确的命题的个数是( )A .0B .1C .2D .3解析:选A ①取x =i ,y =-i ,则x +y i =1+i ,但不满足x =y =1,故①错; ②③错;对于④,a =0时,a i =0,④错,故选A.4.复数z =a 2-b 2+(a +|a |)i(a ,b ∈R)为实数的充要条件是( ) A .|a |=|b | B .a <0且a =-b C .a >0且a ≠bD .a ≤0解析:选D 复数z 为实数的充要条件是a +|a |=0,故a ≤0.5.若复数cos θ+isin θ和sin θ+icos θ相等,则θ值为( ) A.π4B.π4或54π C .2k π+π4(k ∈Z)D .k π+π4(k ∈Z)解析:选D 由复数相等定义得⎩⎪⎨⎪⎧cos θ=sin θ,sin θ=cos θ,∴ta n θ=1,∴θ=k π+π4(k ∈Z),故选D. 6.下列命题中:①若a ∈R,则a i 为纯虚数;②若a ,b ∈R,且a >b ,则a +i >b +i ;③两个虚数不能比较大小;④x +y i 的实部、虚部分别为x ,y .其中正确命题的序号是________.解析:①当a =0时,0i =0,故①不正确;②虚数不能比较大小,故②不正确;③正确;④x +y i 中未标注x ,y ∈R,故若x ,y 为复数,则x +y i 的实部、虚部未必是x ,y .答案:③7.如果(m 2-1)+(m 2-2m )i >1则实数m 的值为______.解析:由题意得⎩⎪⎨⎪⎧m 2-2m =0,m 2-1>1,解得m =2.答案:28.已知z 1=-3-4i ,z 2=(n 2-3m -1)+(n 2-m -6)i ,且z 1=z 2,则实数m =________,n =________.解析:由复数相等的充要条件有⎩⎪⎨⎪⎧n 2-3m -1=-3,n 2-m -6=-4⇒⎩⎪⎨⎪⎧m =2,n =±2.答案:2 ±29.设复数z =log 2(m 2-3m -3)+log 2(3-m )i ,m ∈R,如果z 是纯虚数,求m 的值.解:由题意得⎩⎪⎨⎪⎧m 2-3m -3>0,3-m >0,log 2(m 2-3m -3)=0,log 2(3-m )≠0,解得m =-1.10.求适合等式(2x -1)+i =y +(y -3)i 的x ,y 的值.其中x ∈R,y 是纯虚数. 解:设y =b i(b ∈R 且b ≠0),代入等式得(2x -1)+i =b i +(b i -3)i , 即(2x -1)+i =-b +(b -3)i ,∴⎩⎪⎨⎪⎧2x -1=-b ,1=b -3,解得⎩⎪⎨⎪⎧x =-32,b =4.即x =-32,y =4i.层级二 应试能力达标1.若复数(a 2-a -2)+(|a -1|-1)i(a ∈R)不是纯虚数,则( ) A .a =-1 B .a ≠-1且a ≠2 C .a ≠-1D .a ≠2解析:选C 若复数(a 2-a -2)+(|a -1|-1)i 不是纯虚数,则有a 2-a -2≠0或|a -1|-1=0,解得a ≠-1.故应选C.2.已知集合M ={1,(m 2-3m -1)+(m 2-5m -6)i},N ={1,3},M ∩N ={1,3},则实数m 的值为( )A .4B .-1C .4或-1D .1或6解析:选B 由题意知⎩⎪⎨⎪⎧m 2-3m -1=3,m 2-5m -6=0,∴m =-1.3.已知关于x 的方程x 2+(m +2i)x +2+2i =0(m ∈R)有实数根n ,且z =m +n i ,则复数z 等于( )A .3+iB .3-iC .-3-iD .-3+i解析:选B 由题意知n 2+(m +2i)n +2+2i =0,即⎩⎪⎨⎪⎧n 2+mn +2=0,2n +2=0.解得⎩⎪⎨⎪⎧m =3,n =-1.∴z =3-i ,故应选B.4.若复数z 1=sin 2θ+icos θ,z 2=cos θ+i 3sin θ(θ∈R),z 1=z 2,则θ等于( )A .k π(k ∈Z) B.2k π+π3(k ∈Z)C .2k π±π6(k ∈Z)D .2k π+π6(k ∈Z)解析:选D 由复数相等的定义可知,⎩⎨⎧sin 2θ=cos θ,cos θ=3sin θ.∴cos θ=32,sin θ=12.∴θ=π6+2k π,k ∈Z,故选D. 5.已知z 1=(-4a +1)+(2a 2+3a )i ,z 2=2a +(a 2+a )i ,其中a ∈R.若z 1>z 2,则a 的取值集合为________.解析:∵z 1>z 2,∴⎩⎪⎨⎪⎧2a 2+3a =0,a 2+a =0,-4a +1>2a ,∴a =0,故所求a 的取值集合为{0}. 答案:{0}6.若a -2i =b i +1(a ,b ∈R),则b +a i =________.解析:根据复数相等的充要条件,得⎩⎪⎨⎪⎧a =1,b =-2,∴b +a i =-2+i. 答案:-2+i7.定义运算=ad -bc ,如果(x +y )+(x +3)i =,某某数x ,y 的值.解:由定义运算=ad -bc ,得=3x +2y +y i ,故有(x +y )+(x +3)i =3x +2y +y i.因为x ,y 为实数,所以有⎩⎪⎨⎪⎧x +y =3x +2y ,x +3=y ,得⎩⎪⎨⎪⎧2x +y =0,x +3=y ,得x =-1,y =2.8.已知集合M ={(a +3)+(b 2-1)i,8},集合N ={3i ,(a 2-1)+(b +2)i}满足M ∩N ⊆M,某某数a,b的值.解:依题意,得(a+3)+(b2-1)i=3i,①或8=(a2-1)+(b+2)i.②由①,得a=-3,b=±2,由②,得a=±3,b=-2.综上,a=-3,b=2,或a=-3,b=-2或a=3,b=-2.。
3.1.1 实数系
3.1.2 复数的概念
明目标、知重点 1.了解引入虚数单位i 的必要性,了解数集的扩充过程.2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念.3.掌握复数代数形式的表示方法,理解复数相等的充要条件.
1.复数的有关概念
(1)复数
①定义:设a ,b 都是实数,形如a +b i 的数叫做复数,i 叫做虚数单位.a 叫做复数的实部,b 叫做复数的虚部.
②表示方法:复数通常用字母z 表示,即z =a +b i(a ,b ∈R ).
(2)复数集
①定义:全体复数所构成的集合叫做复数集.
②表示:通常用大写字母C 表示.
2.复数的分类及包含关系
(1)复数(a +b i ,a ,b ∈R )⎩
⎨⎧ 实数b =0虚数b ≠0⎩⎪⎨⎪⎧ 纯虚数a =0非纯虚数a ≠0
(2)集合表示:
3.复数相等的充要条件 设a ,b ,c ,d 都是实数,那么a +b i =c +d i ⇔a =c 且b =d .
[情境导学]
为解决方程x 2
=2,数系从有理数扩充到实数.数的概念扩充到实数集后,人们发现在实数范围内很多问题还不能解决,如从解方程的角度看,x 2=-1这个方程在实数范围内就无解,那么怎样解决方程x 2=-1在实数系中无根的问题呢?我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?本节我们就来研究这个问题.
探究点一 复数的概念
思考1 为解决方程x 2=2,数系从有理数扩充到实数;那么怎样解决方程x 2+1=0在实数系中无根的问题呢?
答 设想引入新数i ,使i 是方程x 2+1=0的根,即i·i=-1,方程x 2+1=0有解,同时得到一些新数.
思考2 如何理解虚数单位i?
答 (1)i 2=-1.
(2)i 与实数之间可以运算,亦适合加、减、乘的运算律.
(3)由于i 2<0与实数集中a 2≥0(a ∈R )矛盾,所以实数集中很多结论在复数集中,不再成立.
(4)若i 2=-1,那么i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i.
思考3 什么叫复数?怎样表示一个复数?什么叫虚数?什么叫纯虚数?
答 形如a +b i(a ,b ∈R )的数叫做复数,复数通常用字母z 表示,即z =a +b i ,这一表示形式叫做复数的代数形式,其中a 、b 分别叫做复数z 的实部与虚部.
对于复数z =a +b i(a ,b ∈R ),当b ≠0时叫做虚数;当a =0且b ≠0时,叫做纯虚数. 例1 请说出下列复数的实部和虚部,并判断它们是实数、虚数还是纯虚数.
①2+3i ;②-3+12
i ;③2+i ;④π;⑤-3i ;⑥0. 解 ①的实部为2,虚部为3,是虚数;②的实部为-3,虚部为12
,是虚数;③的实部为2,虚部为1,是虚数;④的实部为π,虚部为0,是实数;⑤的实部为0,虚部为-3,是纯虚数;⑥的实部为0,虚部为0,是实数.
反思与感悟 复数a +b i 中,实数a 和b 分别叫做复数的实部和虚部.特别注意,b 为复数的虚部而不是虚部的系数,b 连同它的符号叫做复数的虚部.
跟踪训练1 符合下列条件的复数一定存在吗?若存在,请举出例子;若不存在,请说明理由.
(1)实部为-2的虚数;
(2)虚部为-2的虚数;
(3)虚部为-2的纯虚数;
(4)实部为-2的纯虚数.
解 (1)存在且有无数个,如-2+i 等;(2)存在且不唯一,如1-2i 等;(3)存在且唯一,即-2i ;(4)不存在,因为纯虚数的实部为0.
例2 求当实数m 为何值时,z =m 2-m -6m +3
+(m 2+5m +6)i 分别是:(1)实数;(2)虚数;(3)纯虚数.
解 由已知得复数z 的实部为m 2-m -6m +3
,虚部为m 2+5m +6. (1)复数z 是实数的充要条件是
⎩⎪⎨⎪⎧ m 2+5m +6=0,m +3≠0⇔⎩⎪⎨⎪⎧ m =-2或m =-3,m ≠-3⇔m =-2.
∴当m =-2时,复数z 是实数.
(2)复数z 是虚数的充要条件是
⎩⎪⎨⎪⎧ m 2+5m +6≠0,m +3≠0⇔m ≠-3且m ≠-2.
∴当m ≠-3且m ≠-2时,复数z 是虚数.
(3)复数z 是纯虚数的充要条件是
⎩⎪⎨⎪⎧ m 2-m -6m +3
=0,m 2+5m +6≠0⇔⎩⎪⎨⎪⎧ m =-2或m =3,m ≠-3且m ≠-2⇔m =3.
∴当m =3时,复数z 是纯虚数.
反思与感悟 利用复数的概念对复数分类时,主要依据实部、虚部满足的条件,可列方程或不等式求参数.
跟踪训练2 实数m 为何值时,复数z =
m m +2m -1+(m 2+2m -3)i 是(1)实数;(2)虚数;(3)纯虚数.
解 (1)要使z 是实数,m 需满足m 2+2m -3=0,且
m m +2m -1有意义即m -1≠0,解得m =-3.
(2)要使z 是虚数,m 需满足m 2+2m -3≠0,且
m m +2m -1有意义即m -1≠0,解得m ≠1且m ≠-3.
(3)要使z 是纯虚数,m 需满足
m m +2m -1=0,m -1≠0, 且m 2+2m -3≠0,解得m =0或m =-2.
探究点二 两个复数相等
思考1 两个复数能否比较大小?
答 如果两个复数不全是实数,那么它们不能比较大小.
思考2 两个复数相等的充要条件是什么?
答 复数a +b i 与c +d i 相等的充要条件是a =c 且b =d (a ,b ,c ,d ∈R ).
例3 已知x ,y 均是实数,且满足(2x -1)+i =-y -(3-y )i ,求x 与y .
解 由复数相等的充要条件得⎩⎪⎨⎪⎧ 2x -1=-y ,1=y -3.
解得⎩⎪⎨⎪⎧ x =-32,y =4.
反思与感悟 两个复数相等,首先要分清两复数的实部与虚部,然后利用两个复数相等的充
要条件可得到两个方程,从而可以确定两个独立参数.
跟踪训练3 已知M ={1,(m 2-2m )+(m 2
+m -2)i},P ={-1,1,4i},若M ∪P =P ,求实数m 的值.
解 ∵M ∪P =P ,∴M ⊆P ,
∴(m 2-2m )+(m 2+m -2)i =-1或
(m 2-2m )+(m 2+m -2)i =4i.
由(m 2-2m )+(m 2+m -2)i =-1,
得⎩⎪⎨⎪⎧ m 2
-2m =-1,m 2+m -2=0,解得m =1;
由(m 2-2m )+(m 2+m -2)i =4i ,
得⎩
⎪⎨⎪⎧ m 2
-2m =0,m 2+m -2=4,解得m =2. 综上可知m =1或m =2.
1.已知复数z =a 2-(2-b )i 的实部和虚部分别是2和3,则实数a ,b 的值分别是(
) A.2,1 B.2,5 C .±2,5 D .±2,1
答案 C
解析 令⎩⎪⎨⎪⎧ a 2
=2-2+b =3,得a =±2,b
=5. 2.下列复数中,满足方程x 2+2=0的是( )
A .±1
B .±i
C .±2i
D .±2i
答案 C
3.如果z =m (m +1)+(m 2-1)i 为纯虚数,则实数m 的值为( )
A .1
B .0
C .-1
D .-1或1
答案 B
解析 由题意知⎩⎪⎨⎪⎧ m m +1=0m 2-1≠0,
∴m =0.
4.下列几个命题:
①两个复数相等的一个必要条件是它们的实部相等;
②两个复数不相等的一个充分条件是它们的虚部不相等;
③1-a i(a∈R)是一个复数;
④虚数的平方不小于0;
⑤-1的平方根只有一个,即为-i;
⑥i是方程x4-1=0的一个根;
⑦2i是一个无理数.
其中正确命题的个数为( )
A.3 B.4 C.5 D.6
答案 B
解析命题①②③⑥正确,④⑤⑦错误.
[呈重点、现规律]
1.对于复数z=a+b i(a,b∈R),可以限制a,b的值得到复数z的不同情况;
2.两个复数相等,要先确定两个复数的实、虚部,再利用两个复数相等的充要条件进行判断.。