每日一学:上海市上海市崇明区2018-2019学年九年级上学期数学期末考试试卷_压轴题解答
- 格式:pdf
- 大小:158.34 KB
- 文档页数:4
上海市崇明区2018届九年级上学期期末调研测试数学试题一、选择题:(本大题共6题,每题4分,满分24分)1. 在中,,,,那么的值是()A. B. C. D.【答案】A【解析】试题解析:在Rt△ABC中,∵∠C=90°,AB=5,BC=3,∴AC=4,∴tanA=.故选A.2. 抛物线的顶点坐标是()A. B. C. D.【答案】D【解析】试题解析:∵抛物线的解析式为:y=2(x+3)2-4,∴其顶点坐标为:(-3,-4).故选D.3. 如图,在中,点D,E分别在边AB,AC上,.已知,,那么EC的长是()A. 4.5B. 8C. 10.5D. 14【答案】B【解析】试题解析:∵DE∥BC.∴,而AE=6,,∴,∴EC=8,故选B.4. 如图,在平行四边形ABCD中,点E在边DC上,,联结AE交BD于点F,那么的面积与的面积之比为()A. B. C. D.【答案】B【解析】试题解析:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:16.故选B.5. 如果两圆的半径分别为2和5,圆心距为3,那么这两个圆的位置关系是()A. 外离B. 外切C. 相交D. 内切【答案】D【解析】分析:根据数量关系来判断两圆的位置关系.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R-r<d<R+r;内切,则d=R-r;内含,则d<R-r.解答:解:∵两圆半径之差=8-5=3=圆心距8,∴两个圆的位置关系是内切,故选D.点评:本题考查了由两圆位置关系的知识点,利用了两圆内切时,圆心距等于两圆半径的差求解.6. 如图,在中,,,,和的平分线相交于点E,过点E作交于点F,那么EF的长为()A. B. C. D.【答案】C【解析】试题解析:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,∵,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,设BD=BG=x,则AD=AH=6-x、CG=CH=8-x,∵AC==10,∴6-x+8-x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴,即,解得:DF=,则EF=DF-DE=-2=,故选C.二、填空题:(本大题共12题,每题4分,满分48分)7. 已知,那么__________.【答案】【解析】试题解析:∵2x=3y,∴,∴.故答案为:.8. 计算:_________.【答案】【解析】试题解析:==.故答案为:.9. 如果一幅地图的比例尺为,那么实际距离是km的两地在地图上的图距是_________cm.【答案】6【解析】试题解析:根据题意得,∴图上距离=6cm.故答案是6.10. 如果抛物线有最高点,那么a的取值范围是________.【答案】【解析】试题解析:∵抛物线有最高点,∴a+1<0,即a<-1.故答案为a<-1.11. 抛物线向左平移2个单位长度,得到新抛物线的表达式为_________.【答案】【解析】试题解析:∵二次函数解析式为y=2x2+4,∴顶点坐标(0,4)向左平移2个单位得到的点是(-2,4),可设新函数的解析式为y=2(x-h)2+k,代入顶点坐标得y=2(x+2)2+4,故答案为:y=2(x+2)2+4.点睛:函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.............. ..........................【答案】>【解析】试题解析:由抛物线得,a=2>0,∴a=2>0,有最小值为5,∴抛物线开口向上,∵抛物线y=2(x-3)2+5对称轴为直线x=3,∵,∴y1>y2.故填>.13. 在中,,,垂足为点D,如果,,那么AD的长度为________.【答案】4.8【解析】试题解析:∵∠BAC=90°,AB=8,AC=6,∴BC==10,∵AD⊥BC,∴6×8=AD×10,解得:AD=4.8.故答案为:4.8.14. 已知是等边三角形,边长为3,G是三角形的重心,那么G A的长度为___________.【答案】【解析】试题解析:∵△ABC是等边三角形,AB=,∴AD=,∵点G是△ABC的重心,∴AG=AD=.故答案为.15. 正八边形的中心角的度数为__________度.【答案】45【解析】试题解析:正八边形的中心角等于360°÷8=45°;故答案为:45°.16. 如图,一个斜坡长m,坡顶离水平地面的距离为m,那么这个斜坡的坡度为_________.【答案】1:2.4【解析】试题解析:如图,在Rt△ABC中,∵∠ACB=90°,AB=130m,BC=50m,∴AC==120m,∴tan∠BAC=.17. 如图,在正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是,点C的坐标是,那么这条圆弧所在圆的圆心坐标是___________.【答案】【解析】试题解析:如图线段AB的垂直平分线和线段CD的垂直平分线的交点M,即圆心的坐标是(-1,1),18. 如图,在中,,点D, E分别在上,且,将沿DE折叠,点C 恰好落在AB边上的点F处,如果,,那么CD的长为__________.【答案】【解析】试题解析:由折叠可得,∠DCE=∠DFE=90°,∴D,C,E,F四点共圆,∴∠CDE=∠CFE=∠B,又∵CE=FE,∴∠CFE=∠FCE,∴∠B=∠FCE,∴CF=BF,同理可得,CF=AF,∴AF=BF,即F是AB的中点,∴Rt△ABC中,CF=AB=5,由D,C,E,F四点共圆,可得∠DFC=∠DEC,由∠CDE=∠B,可得∠DEC=∠A,∴∠DFC=∠A,又∵∠DCF=∠FCA,∴△CDF∽△CFA,∴CF2=CD×CA,即52=CD×8,∴CD=.故答案为:.三、解答题:(本大题共7题,满分78分)19. 计算:【答案】【解析】试题分析:把各特殊角的三角函数值代入原式进行计算即可.试题解析:原式=20. 如图,在中,BE平分交AC于点E,过点E作交AB于点D,已知,.(1)求BC的长度;(2)如果,,那么请用、表示向量.【答案】(1);(2)【解析】试题分析:(1)由BE平分∠ABC交AC于点E,ED∥BC,可证得BD=DE,,从而可求出结论;(2)由,得.故又与同向,所以,由,得,因此试题解析:(1)∵平分,∴.∵,∴.∴.∴.∵,∴.又∵,,∴,∴,∴.(2)∵,∴.∴又∵与同向∴∵,∴∴21. 如图,CD为⊙O的直径,,垂足为点F,,垂足为点E,.(1)求AB的长;(2)求⊙O的半径.【答案】(1)4;(2)【解析】试题分析:(1)由,得,,结合可证.从而AF=CE,故可求得AB的长;(2)由垂径定理得BE=CE,故BE=AB,从而∠A=30°,在直角三角形AFO中即可求出AO的值.试题解析:(1)∵,∴在中∴∴∵,∴∵是的直径,∴∴.(2)∵是的半径,,∴,∵,∴.∵,∴.又∵∴∴即的半径是.22. 如图,港口B位于港口A的南偏东方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行km,到达E处,测得灯塔C在北偏东方向上.这时,E处距离港口A有多远?(参考数据:)【答案】【解析】试题分析:如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,可得AH=,在Rt△CEH 中,可得CH=EH=x,由CH∥BD,推出,由AC=CB,推出AH=HD,可得=x+5,求出x即可解决问题.试题解析:如图,作CH⊥AD于H.设CH=xkm,在Rt△ACH中,∠A=37°,∵tan37°=,∴AH=,在Rt△CEH中,∵∠CEH=45°,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH∥BD,∴,∵AC=CB,∴AH=HD,∴=x+5,∴x=≈15,∴AE=AH+HE=+15≈35km,∴E处距离港口A有35km.23. 如图,点E是正方形ABCD的边BC延长线上一点,联结DE,过顶点B作,垂足为F,BF交边DC于点G.(1)求证:;(2)连接CF,求证:.【答案】见解析【解析】试题分析:(1)结合条件易证,得,由BC=AB可得结论;(2)连接,由(1)得又,故,所以,由=45°可得结论.试题解析:(1)∵四边形是正方形∴,∵∴∴∵∴∴∴∵∴(2)连接∵∴∴又∵∴∴∵四边形是正方形,BD是对角线∴∴24. 如图,抛物线过点,.为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与相似,求点M的坐标.【答案】(1);(2);(3)【解析】试题分析:(1)运用待定系数法求解即可;(2)设,得,再由点坐标公式得出方程,求解即可;(3)分两种情况进行讨论即可得解.(1)解:设直线的解析式为()∵,∴解得∴直线的解析式为∵抛物线经过点,∴解得∴(2)∵轴,∴设,∴,∵点是的中点∴∴解得,(不合题意,舍去)∴(3)∵,,∴,∴∵∴当与相似时,存在以下两种情况:1°∴解得∴2°∴,解得∴25. 如图,已知中,,,,D是AB边的中点,E是AC边上一点,联结DE,过点D作交BC边于点F,联结EF.(1)如图1,当时,求EF的长;(2)如图2,当点E在AC边上移动时,的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出的正切值;(3)如图3,联结CD交EF于点Q,当是等腰三角形时,请直接写出....BF的长.【答案】(1);(2)不变;(3)或3或.【解析】试题分析:(1)由已知条件易求DE=3,DF=4,再由勾股定理EF=5;(2)过点作,,垂足分别为点、,由(1)可得DH=3,DG=4;再证,即可得出结论;(3)分三种情况讨论即可.(1)∵,∴∵∴∵是边的中点∴∵∴∴∴∴∵在中,∴∵∴又∵∴四边形是矩形∴∵在中,∴(2)不变过点作,,垂足分别为点、由(1)可得,∵,∴又∵,∴四边形是矩形∴∵∴即又∵∴∴∵∴(3)1°当时,易证,即又∵,D是AB的中点∴∴2°当时,易证∵在中,∴设,则,当时,易证,∴∵∴∴∴∵∴∴解得∴∴3°在BC边上截取BK=BD=5,由勾股定理得出当时,易证∴设,则,∴∵∴∴∴∵∴∴解得∴∴。
2024届上海市崇明县名校数学九上期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)1.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x ++=在同一坐标系内的图象大致为( )A .B .C .D .2.如图,PA 、PB 分别与⊙O 相切于A 、B 两点,点C 为⊙O 上一点,连AC 、BC ,若∠P =80°,则的∠ACB 度数为( )A .40°B .50°C .60°D .80°3.下列调查中,适合采用全面调查(普查)方式的是( )A .了解重庆市中小学学生课外阅读情况B .了解重庆市空气质量情况C .了解重庆市市民收看重庆新闻的情况D .了解某班全体同学九年级上期第一次月考数学成绩得分的情况4.下列一元二次方程,有两个不相等的实数根的是( )A .2690x x ++=B .2x x =C .()2110x ++=D .232x x +=5.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上.若∠AOD=30°,则∠BCD 等于( )A .75°B .95°C .100°D .105°6.一个不透明的袋子中装有2个红球、3个白球,每个球除颜色外都相同.从中任意摸出3个球,下列事件为必然事件的是( )A .至少有1个球是红球B .至少有1个球是白球C .至少有2个球是红球D .至少有2个球是白球7.在校田径运动会上,小明和其他三名选手参加100米预赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道.若小明首先抽签,则小明抽到1号跑道的概率是( )A .116B .14C .13D .128.下列正多边形中,绕其中心旋转72°后,能和自身重合的是( )A .正方形B .正五边形C .正六边形D .正八边形9.将抛物线y =ax 2+bx +c 向左平移2个单位,再向下平移3个单位得抛物线y =﹣(x +2)2+3,则( )A .a =﹣1,b =﹣8,c =﹣10B .a =﹣1,b =﹣8,c =﹣16C .a =﹣1,b =0,c =0D .a =﹣1,b =0,c =610.已知正比例函数的图象与反比例函数图象相交于点,下列说法正确的是( ) A .反比例函数的解析式是B .两个函数图象的另一交点坐标为C .当或时,D .正比例函数与反比例函数都随的增大而增大11.在比例尺为1:100000的城市交通图上,某道路的长为3厘米,则这条道路的实际距离为( )千米. A .3 B .30 C .3000 D .0.312.如图,四边形ABCD 是正方形,延长BC 到E ,使CE AC =,连接AE 交CD 于点F ,则AFD ∠=( )A .67.5°B .65°C .55°D .45°二、填空题(每题4分,共24分)13.如图,在边长为1的正方形网格中,()()1,14,4A B ,.线段AB 与线段CD 存在一种变换关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为__________.14.如图,⊙O 过正方形网格中的格点A ,B ,C ,D ,点E 也为格点,连结BE 交⊙O 于点F ,P 为CD 上的任一点,则tan P =_____.15.一个长方体木箱沿坡度1:3l =坡面下滑,当木箱滑至如图位置时,AB=3m ,已知木箱高BE=3m ,则木箱端点E 距地面AC 的高度EF 为_____m.16.一圆锥的侧面积为 15π ,底面半径为3,则该圆锥的母线长为________.17.如图,将Rt △ABC (其中∠B =30°,∠C =90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点B 、A 、B 1在同一条直线上,那么旋转角等于_____.18.已知:如图,在平面上将ABC ∆绕B 点旋转到A B C '''∆的位置时,//,65AA BC ABC ︒'∠=,则'CBC ∠为__________度.三、解答题(共78分)19.(8分)如图,抛物线y 1=a (x ﹣1)2+4与x 轴交于A (﹣1,0).(1)求该抛物线所表示的二次函数的表达式;(2)一次函数y 2=x +1的图象与抛物线相交于A ,C 两点,过点C 作CB 垂直于x 轴于点B ,求△ABC 的面积.20.(8分)如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,且CD ⊥AB 于点E .(1)求证:∠BCO=∠D ;(2)若CD=42AE=2,求⊙O 的半径.21.(8分)如图,在Rt △ABC 中,∠ACB=90°,以AC 为直径的⊙O 与AB 边交于点D ,过点D 作⊙O 的切线.交BC 于点E .(1)求证:BE=EC(2)填空:①若∠B=30°,AC=23,则DE=______; ②当∠B=______度时,以O ,D ,E ,C 为顶点的四边形是正方形.22.(10分)如图,AB 是O 的直径,弦CD AB ⊥于点E ,点M 在O 上,MD 恰好经过圆心O ,连接MB .(1)若16CD =,4BE =,求O 的直径;(2)若M D ∠=∠,求D ∠的度数.23.(10分)阅读材料,解答问题:观察下列方程:①23x x +=;②65x x +=;③127x x+=;…; (1)按此规律写出关于x 的第4个方程为 ,第n 个方程为 ;(2)直接写出第n 个方程的解,并检验此解是否正确.24.(10分)如图,已知△ABC 的顶点A 、B 、C 的坐标分别是A (﹣1,﹣1)、B (﹣4,﹣3)、C (﹣4,﹣1).(1)画出△ABC 关于原点O 中心对称的图形△A 1B 1C 1;(2)将△ABC 绕点A 按顺时针方向旋转90°后得到△AB 2C 2,画出△AB 2C 2并求线段AB 扫过的面积.25.(12分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度h (单位:米)与飞行时间t (单位:秒)之间具有函数关系2520h t t =-+,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15米时,需要多少飞行时间?(2)在飞行过程中,小球飞行高度何时达到最大?最大高度是多少?26.如图是四个全等的小矩形组成的图形,这些矩形的顶点称为格点.△ABC 是格点三角形(顶点是格点的三角形)(1)若每个小矩形的较短边长为1,则BC = ;(2)①在图1、图2中分别画一个格点三角形(顶点是格点的三角形),使它们都与△ABC 相似(但不全等),且图1,2中所画三角形也不全等).②在图3中只用直尺(没有刻度)画出△ABC 的重心M .(保留痕迹,点M 用黑点表示,并注上字母M )参考答案一、选择题(每题4分,共48分)1、D【分析】根据抛物线的图像,判断出24b b ac a b c -++,,的符号,从而确定一次函数、反比例函数的图像的位置即可.【题目详解】解:由抛物线的图像可知:横坐标为1的点,即()1a b c ++,在第四象限,因此0a b c ++<; ∴双曲线a b c y x++=的图像分布在二、四象限; 由于抛物线开口向上,∴0a >,∵对称轴为直线b x 02a=->,∴0b <; ∵抛物线与x 轴有两个交点,∴240b ac ->;∴直线24y bx b ac =+-经过一、二、四象限;故选:D .【题目点拨】本题主要考查二次函数,一次函数以及反比例函数的图象与解析式的系数关系,熟练掌握函数解析式的系数对图像的影响,是解题的关键.2、B【分析】先利用切线的性质得∠OAP =∠OBP =90°,再利用四边形的内角和计算出∠AOB 的度数,然后根据圆周角定理计算∠ACB 的度数.【题目详解】解:连接OA 、OB ,∵PA 、PB 分别与⊙O 相切于A 、B 两点,∴OA ⊥PA ,OB ⊥PB ,∴∠OAP =∠OBP =90°,∴∠AOB =180°﹣∠P =180°﹣80°=100°,∴∠ACB =12∠AOB =12×100°=50°. 故选:B .【题目点拨】本题考查圆的切线,关键在于牢记圆切线常用辅助线:连接切点与圆心.3、D【解题分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【题目详解】解:A 、了解重庆市中小学学生课外阅读情况,由于范围较大,适合用抽样调查;故此选项错误; B 、了解重庆市空气质量情况,适合抽样调查,故此选项错误;C 、了解重庆市市民收看重庆新闻的情况,由于范围较大,适合用抽样调查;故此选项错误;D 、了解某班全体同学九年级上期第一次月考数学成绩得分的情况,范围较小,采用全面调查;故此选项正确; 故选:D.【题目点拨】此题主要考查了适合普查的方式,一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.基于以上各点,“了解全班同学本周末参加社区活动的时间”适合普查,其它几项都不符合以上特点,不适合普查. 4、B【分析】分别计算出各选项中方程根的判别式的值,找出大于0的选项即可得答案.【题目详解】A.方程x 2+6x+9=0中,△=62-4×1×9=0,故方程有两个相等的实数根,不符合题意, B.方程2x x =中,△=(-1)2-4×1×0=1>0,故方程有两个不相等的实数根,符合题意,C.方程()2110x ++=可变形为(x+1)2=-1<0,故方程没有实数根,不符合题意,D.方程232x x +=中,△=(-2)2-4×1×3=-8<0,故方程没有实数根,不符合题意,故选:B .【题目点拨】本题考查一元二次方程根的判别式,对于一元二次方程ax 2+bx+c=0(a≠0),根的判别式为△=b 2-4ac ,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根.5、D【解题分析】试题解析:连接,AD,30,OA OD AOD =∠=()11803075.2OAD ∴∠=-= 18075105.BCD ∴∠=-=故选D.点睛:圆内接四边形的对角互补.6、B【解题分析】A. 至少有1个球是红球是随机事件,选项错误;B. 至少有1个球是白球是必然事件,选项正确;C. 至少有2个球是红球是随机事件,选项错误;D. 至少有2个球是白球是随机事件,选项错误.故选B.7、B【题目详解】解:小明选择跑道有4种结果,抽到跑道1只有一种结果,小明抽到1号跑道的概率是1 4故选B.【题目点拨】本题考查概率.8、B【解题分析】选项A,正方形的最小旋转角度为90°,绕其中心旋转90°后,能和自身重合;选项B,正五边形的最小旋转角度为72°,绕其中心旋转72°后,能和自身重合;选项C,正六边形的最小旋转角度为60°,绕其中心旋转60°后,能和自身重合;选项D,正八边形的最小旋转角度为45°,绕其中心旋转45°后,能和自身重合.故选B.9、D【分析】将所得抛物线解析式整理成顶点式形式,然后写出顶点坐标,再根据向右平移横坐标加,向下平移减逆向求出原抛物线的顶点坐标,从而求出原抛物线解析式,再展开整理成一般形式,最后确定出a、b、c的值.【题目详解】解:∵y=-(x+2)2+3,∴抛物线的顶点坐标为(-2, 3),∵抛物线y=ax2+bx+c向左平移 2 个单位,再向下平移3个单位长度得抛物线y=-(x+2)2+3,-2+2=0,3+3=1,∴平移前抛物线顶点坐标为(0,1),∴平移前抛物线为y=-x2+1,∴a=-1,b=0,c=1.故选D.【题目点拨】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减;本题难点在于逆运用规律求出平移前抛物线顶点坐标.10、C【解题分析】由题意可求正比例函数解析式和反比例函数解析式,由正比例函数和反比例函数的性质可判断求解.【题目详解】解:正比例函数的图象与反比例函数的图象相交于点, 正比例函数,反比例函数 两个函数图象的另一个角点为 ,选项错误 正比例函数中,随的增大而增大,反比例函数中,在每个象限内随的增大而减小,选项错误 当或时, 选项正确故选:C .【题目点拨】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键. 11、A【分析】根据比例尺=图上距离:实际距离,依题意列比例式直接求解即可.【题目详解】解:设这条道路的实际长度为x ,则1100000=3x , 解得x=300000cm=3km .∴这条道路的实际长度为3km .故选A .【题目点拨】本题考查成比例线段问题,能够根据比例尺正确进行计算,注意单位的转换12、A【分析】由三角形及正方形对角线相互垂直平分相等的性质进行计算求解,把各角之间关系找到即可求解.【题目详解】解:∵四边形ABCD 是正方形,CE=CA ,∴∠ACE=45°+90°=135°,∠E=22.5°,∴∠AFD=90°-22.5°=67.5°,故选A .【题目点拨】主要考查到正方形的性质,等腰三角形的性质和外角与内角之间的关系.这些性质要牢记才会灵活运用.二、填空题(每题4分,共24分)13、()3,5或()5,2【分析】根据旋转后的对应关系分类讨论,分别画出对应的图形,作出对应点连线的垂直平分线即可找到旋转中心,最后根据点A 的坐标即可求结论.【题目详解】解:①若旋转后点A 的对应点是点C ,点B 的对称点是点D ,连接AC 和BD ,分别作AC 和BD 的垂直平分线,两个垂直平分线交于点O ,根据垂直平分线的性质可得OA=OC ,OB=OD ,故点O 即为所求,∵()1,1A ,∴由图可知:点O 的坐标为(5,2);②若旋转后点A 的对应点是点D ,点B 的对称点是点C ,连接AD 和BC ,分别作AD 和BC 的垂直平分线,两个垂直平分线交于点O ,根据垂直平分线的性质可得OA=OD ,OB=OC ,故点O 即为所求,∵()1,1A ,∴由图可知:点O 的坐标为()3,5综上:这个旋转中心的坐标为()3,5或()5,2故答案为:()3,5或()5,2.【题目点拨】此题考查的是根据旋转图形找旋转中心,掌握垂直平分线的性质及作法是解决此题的关键.14、1【分析】根据题意,连接DF ,得出∠P =∠BDF ,由圆的性质,进而证明出∠BDF =∠BED ,利用正方形网格图形,结合锐角三角函数值求出tan ∠P 即可.【题目详解】解:连接DF ,如图,则∠P =∠BDF ,∵BD 为直径,∴∠BFD =90°,∵∠DBF +∠BDF =90°,∠EBD +∠BED =90°,∴∠BDF =∠BED ,∴∠P=∠BED,∵tan∠BED=BDDE=1,∴tan∠P=1.故答案为1.【题目点拨】本题考查了圆的基本性质,圆周角定理,同角的余角相等,锐角三角函数值应用,掌握圆的基本性质和相关知识点是解题的关键.15、1【分析】连接AE,在Rt△ABE中求出AE,根据∠EAB的正切值求出∠EAB的度数,继而得到∠EAF的度数,在Rt△EAF中,解出EF即可得出答案.【题目详解】解:连接AE,在Rt△ABE中,AB=1m,3,则22AB BE3,又∵tan∠EAB=BEAB=33,∴∠EAB=10°,在Rt△AEF中,∠EAF=∠EAB+∠BAC=60°,∴EF=AE×sin∠3×3,答:木箱端点E距地面AC的高度为1m.故答案为:1.【题目点拨】本题考查了坡度、坡角的知识,解答本题的关键是构造直角三角形,熟练运用三角函数求线段的长度.16、2【分析】圆锥的侧面积=底面周长×母线长÷1.【题目详解】解:底面半径为3,则底面周长=6π,设圆锥的母线长为x,圆锥的侧面积=12×6πx=12π.解得:x=2,故答案为2.17、180°【分析】根据旋转的性质可直接判定∠BAB1等于旋转角,由于点B、A、B1在同一条直线上,可知旋转角为180°.【题目详解】解:由旋转的性质定义知,∠BAB1等于旋转角,∵点B、A、B1在同一条直线上,∴∠BAB1为平角,∴∠BAB1=180°,故答案为:180°.【题目点拨】此题考查是旋转的性质,熟知图形旋转后所得图形与原图形全等是解答此题的关键.18、1【分析】结合旋转前后的两个图形全等的性质以及平行线的性质,进行计算.【题目详解】解:∵AA′∥BC,∴∠A′AB=∠ABC=65°.∵BA′=AB,∴∠BA′A=∠BAA′=65°,∴∠ABA′=1°,又∵∠A′BA+∠ABC'=∠CBC'+∠ABC',∴∠CBC′=∠ABA′=1°.故答案为:1.【题目点拨】本题考查旋转的性质以及平行线的性质.解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.三、解答题(共78分)19、(1)y1=﹣(x﹣1)2+4;(2)9 2 .【分析】(1)解答时先根据已知条件求出二次函数的表达式,(2)根据一次函数与抛物线相交的关系算出交点坐标,就可以算出三角形的面积【题目详解】(1)∵抛物线y1=a(x﹣1)2+4与x轴交于A(﹣1,0),∴0=a(﹣1﹣1)2+4,得a=﹣1,∴y1=﹣(x﹣1)2+4,即该抛物线所表示的二次函数的表达式是y1=﹣(x﹣1)2+4;(2)由2y=-14y=x1x⎧+⎨+⎩(﹣)得x=1y=0-⎧⎨⎩或x=2y=3⎧⎨⎩∵一次函数y2=x+1的图象与抛物线相交于A,C两点,点A(﹣1,0),∴点C的坐标为(2,3),∵过点C作CB垂直于x轴于点B,∴点B的坐标为(2,0),∵点A(﹣1,0),点C(2,3),∴AB=2﹣(﹣1)=3,BC=3,∴△ABC的面积是·2AB BC=332⨯=92【题目点拨】此题重点考察学生对二次函数的理解,一次函数与二次函数的性质是解题的关键20、(1)见解析;(2)1.【解题分析】试题分析:根据OC=OB 得到∠BCO=∠B ,根据弧相等得到∠B=∠D ,从而得到答案;根据题意得出CE 的长度,设半径为r ,则OC=r ,OE=r -2,根据Rt △OCE 的勾股定理得出半径.试题解析:(1)证明:∵ OC=OB ,∴ ∠BCO=∠B ∵AC AC =, ∴ ∠B=∠D , ∴ ∠BCO=∠D .(2)解:∵AB 是⊙O 的直径,CD ⊥AB , ∴ CE=11422222CD =⨯=. 在Rt △OCE 中,OC 2=CE 2+OE 2, 设⊙O 的半径为r ,则OC=r ,OE=OA -AE=r -2,∴222(22)(2)r r =+-,解得:r=1, ∴⊙O 的半径为1考点:圆的基本性质21、(1)见解析;(2)①3;②1.【分析】(1)证出EC 为⊙O 的切线;由切线长定理得出EC=ED ,再求得EB=ED ,即可得出结论;(2)①由含30°角的直角三角形的性质得出AB ,由勾股定理求出BC ,再由直角三角形斜边上的中线性质即可得出DE ;②由等腰三角形的性质,得到∠ODA=∠A=1°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论.【题目详解】(1)证明:连接DO .∵∠ACB=90°,AC 为直径,∴EC 为⊙O 的切线;又∵ED 也为⊙O 的切线,∴EC=ED ,又∵∠EDO=90°,∴∠BDE +∠ADO=90°,∴∠BDE +∠A=90°又∵∠B +∠A=90°,∴∠BDE=∠B ,∴BE=ED ,∴BE=EC ;(2)解:①∵∠ACB=90°,∠B=30°,∴,∴,∵AC 为直径,∴∠BDC=∠ADC=90°,由(1)得:BE=EC ,∴DE=12BC=3, 故答案为3;②当∠B=1°时,四边形ODEC 是正方形,理由如下:∵∠ACB=90°,∴∠A=1°,∵OA=OD ,∴∠ADO=1°,∴∠AOD=90°,∴∠DOC=90°,∵∠ODE=90°,∴四边形DECO 是矩形,∵OD=OC ,∴矩形DECO 是正方形.故答案为1.【题目点拨】本题考查了圆的切线性质、解直角三角形的知识、切线长定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22、(1)1;(2)30【分析】(1)由CD =16,BE =4,根据垂径定理得出CE =DE =8,设⊙O 的半径为r ,则4OE r =-,根据勾股定理即可求得结果;(2)由∠M =∠D ,∠DOB =2∠D ,结合直角三角形可以求得结果;(2)由OM =OB 得到∠B =∠M ,根据三角形外角性质得∠DOB =∠B +∠M =2∠B ,则2∠B +∠D =90°,加上∠B =∠D ,所以2∠D +∠D =90°,然后解方程即可得∠D 的度数;【题目详解】解:(1)∵AB ⊥CD ,CD =16,∴CE =DE =8,设OB r =,又∵BE =4,∴4OE r =-∴()22248r r =-+,解得:10r =,∴⊙O 的直径是1.(2)∵OM =OB ,∴∠B =∠M ,∴∠DOB =∠B +∠M =2∠B ,∵∠DOB +∠D =90°,∴2∠B +∠D =90°,∵M D ∠=∠,∴∠B =∠D ,∴2∠D +∠D =90°,∴∠D =30°;【题目点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.23、(1)9,2n+1;(2)2n+1,见解析【分析】(1)观察一系列等式左边分子为连续两个整数的积,右边为从3开始的连续奇数,即可写出第4个方程及第n 个方程;(2)归纳总结即可得到第n 个方程的解为n 与n+1,代入检验即可.【题目详解】解:(1)x+45x⨯=x+20x =9,x+(1)n n x +=2n+1; 故答案为:x+20x =9;x+(1)n n x+=2n+1. (2)x+(1)n n x +=2n+1, 观察得:x 1=n ,x 2=n+1,将x =n 代入方程左边得:n+n+1=2n+1;右边为2n+1,左边=右边,即x =n 是方程的解;将n+1代入方程左边得:n+1+n =2n+1;右边为2n+1,左边=右边,即x =n+1是方程的解,则经检验都为原分式方程的解.【题目点拨】本题主要考查的是分式方程的解,根据所给方程找出规律是解题的关键.24、(1)见解析;(2)134π 【分析】(1)分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)分别作出B ,C 的对应点B 2,C 2即可,再利用扇形的面积公式计算即可.【题目详解】解(1)如图,△A 1B 1C 1即为所求.(2)如图,△AB 2C 2即为所求.线段AB 扫过的面积=290(13)360π⋅=134π【题目点拨】本题考查作图-旋转变换,扇形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25、(1)飞行时间为1s 或3s 时,飞行高度是15m ;(2)飞行时间为2s 时,飞行高度最大为1m【分析】(1)把h=15直接代入2520h t t =-+,解关于t 的一元二次方程即可;(2)将2520h t t =-+进行配方变形,即可得出答案.【题目详解】解:(1)当h=15时,15=-5t 2+1t ,化简得:t 2-4t+3=0,解得:t 1=1,t 2=3,∴飞行时间为1s 或3s 时,飞行高度是15m .(2)h=-5(t 2-4t )=-5(t 2-4t+4-4)=-5(t-2)2+1,∴当t=2时,h 最大=1.∴飞行时间为2s 时,飞行高度最大为1m .【题目点拨】本题考查的知识点是二次函数的实际应用,掌握二次函数的图象及其性质是解此题的关键.26、(1)5;(2)①见解析;②见解析【分析】(1)根据勾股定理,计算BC即可;(2)①根据图形,令∠B′A′C′=∠BAC,且使得△A′B′C′与△ABC相似比为2作出图(1)即可;令∠B″A″C″=∠BAC,△A″B″C″与△ABC相似比为2作出图(2)即可;②根据格点图形的特征,以及中点的定义,连接格点如图所示,则交点M即为所求.【题目详解】解:(1)BC=22=5;12故答案为:5;(2)①如图1,2所示:∠B′A′C′=∠BAC,△A′B′C′与△ABC相似比为2,∠B″A″C″=∠BAC,△A″B″C″与△ABC相似比为2即为所求作图形;②如图3所示:利用格点图形的特征,中点的定义,作出点M即为所求.【题目点拨】本题考查了相似三角形的应用,格点图中作相似三角形,中点的定义,格点图形的特征,掌握格点图形的特征是解题的关键.。
上海市崇明区2018年九年级数学上学期教学质量调研测试(考试时间:100分钟 满分:150分)考生注意:1. 本试卷含三个大题,共25题2. 务必按答题要求在答题纸规定位置上作答,在草稿纸、本试卷上答题一律无效3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂的答题纸的相应位置上】 1. 如果23x y =,那么xy的值为( )A.23B.32C.53D.25 2. 在Rt △ABC 中,如果090C ∠=,那么ACBC表示A ∠的()A.正弦B.正切C.余弦D.余切3. 已知二次函数2y ax bx =+的图像如图所示,那么的a 、b 符号为( )A.0,0;a b >>B.0,0;a b <>C.0,0;a b ><D.0,0;a b <<4. 如图,如果BAD CAE ∠=∠,那么添加下列一个条件后,仍不能确定△ABC ∽△ADE 的是( )A.B D ∠=∠B.C AED ∠=∠C.AB DEAD BC=D.AB ACAD AE =(第3题图) (第4题图) 5. 已知向量a 和b 都是单位向量,那么下列等式成立的是( )A.a b =B.2a b +=C.0a b -=D.a b =6. 如果两圆的圆心距为2,其中一个圆的半径为3,另一个圆的半径1r >,那么这两个圆CBEDA的位置关系不可能是( )A. 内含B. 内切C. 外离D. 相交二、填空题(本大题共12 题,每题4分,满分48分) 【请直接将结果填入答题纸的相应位置】 7. 化简:3322a a b ⎛⎫--= ⎪⎝⎭___________.8. 已知线段b 是线段a 、c 的比例中项,且1a cm =,4c cm =,那么b =___________cm . 9. 在以O 为坐标原点的直角坐标平面内有一点()4,3A ,如果AO 与y 轴正半轴的夹角为α,那么cos α=___________.10. 如果一个正六边形的半径为2,那么这个正六边形的周长为___________. 11. 如果两个相似三角形的周长比为4:9,那么它们的面积比为___________.12. 已知线段AB 的长为10厘米,点C 是线段AB 的黄金分割点,且AC BC >,那么线段AC 的长为___________厘米.13. 已知抛物线()214y x =--,那么这条抛物线的顶点坐标为___________.14. 已知二次函数22y x =--,那么它的图像在对称轴的___________部分是下降的(填“左侧”或“右侧”).15. 已知△ABC 中,090ACB ∠=,6AC =,8BC =,G 为△ABC 的重心,那么CG =___________.16. 如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知6BC =,△ABC 的高3AH =,则正方形的DEFG 边长为___________.(第16题图) (第18题图)17. 已知Rt △ABC 中,090ACB ∠=,10AB =,8AC =,如果以点C 为圆心的圆与斜边AB 有唯一的公共点,那么C 的半径R 的取值范围为___________.18. 如果从一个四边形一边上的点到对边的视角是直角,那么称该点为直角点.例如,如CBMADHGFEDCBA图的四边形ABCD 中,点M 在边CD 上,连结AM 、BM ,090AMB ∠=,则点M 为直角点.若点E 、F 分别为矩形ABCD 边AB 、CD 上的直角点,且5AB =,BC =,则线段EF 的长为___________.三、解答题(本大题共7题,满分78分) 19.(本题满分10分) 计算:2tan30cos 45cot 30sin 602cos30-+.20.(本题满分10分,每小题各5分)如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,且23DE BC =.(1)如果AC=6,求AE 的长;(2)设AB a =,AC b =,求向量DE (用向量a 、b 表示).21.(本题满分10分,每小题各5分)已知:如图,AO 是O 的半径,AC 为O 的弦,点F 为AC 的中点,OF 交AC 于点E ,AC=8,EF=2.(1)求AO 的长;(2)过点C 作CD ⊥AO ,交AO 延长线于点D ,求sin ∠ACD 的值.22.(本题满分10分,每小题各5分)(第20题图)(第21题图)E DCBAF安装在屋顶的太阳能热水器的横截面示意图如图所示,已知集热管AE与支架BF所在直线相交于水箱横截面O的圆心O,O的半径为0.2米,AO与屋面AB的夹角为32°,与铅垂线OD的夹角为40°,BF⊥AB,垂足为B,OD⊥AD,垂足为D,AB=2米.(1)求支架BF的长;(2)求屋面AB的坡度.(参考数据:tan18°≈13,tan32°≈3150,tan40°≈2125)23. (本题满分12分,每小题各6分)如图,△ABC中,D是BC上一点,E是AC上一点,点G在BE上,联结DG并延长交AE 于点F,∠BGD=∠BAD=∠C.(1)求证:BD BC BG BE;(2)如果∠BAC=90°,求证:AG⊥BE.24. (本题满分12分,每小题各4分)(第23题图)(第22题图)FEBDAOGFDEC AB如图,在平面直角坐标系xOy中,二次函数26y ax bx=++(a、b都是常数,且a<0)的图像与x轴交于点(2,0)A-、(6,0)B,顶点为点C.(1)求这个二次函数的解析式及点C的坐标;(2)过点B的直线132y x=-+交抛物线的对称轴于点D,联结BC,求∠CBD的余切值;(3)点P为抛物线上一个动点,当∠PBA=∠CBD时,求点P的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,在△ABC中,AB=AC=5,BC=6,AD⊥BC,垂足为D,点P是边AB上的一个动点,过点P作PF∥AC交线段BD于点F,作PG⊥AB交AD于点E,交线段CD于点G,设BP=x. (1)用含x的代数式表示线段DG的长;(2)设△DEF的面积为y,求y与x之间的函数关系式,并写出定义域;(3)△PEF能否为直角三角形?如果能,求出BP的长;如果不能,请说明理由.参考答案CGDFEBPA一、选择题 1、B2、D3、A4、C5、D6、C二、填空题7、1322a b + 8、2 9、3510、12 11、16:8112、5 13、()1,4- 14、右侧 15、10316、2 17、68R <≤或245R = 18三、解答题19、5320、(1)4;(2)2233a b -+21、(1)5;(2)4522、(1)1.04米;(2)1:3 23、(1)证明略;(2)证明略24、(1)21262y x x =-++,()2,8C ;(2)43;(3)757,28⎛⎫-- ⎪⎝⎭或139,28⎛⎫- ⎪⎝⎭25、(1)533DG x =-;(2)23129274408y x x =-+-(9552x <<);(3)能,12557或9043。
某某市崇明县2016届九年级数学上学期期末考试试题一. 选择题1. 已知23a b =,那么a a b +的值为( ) A.13; B.25; C. 35; D.34;2. 已知Rt △ABC 中,90C ∠=︒,3BC =,5AB =,那么sin B 的值是( ) A.35; B.34; C.45; D.43;3. 将抛物线2y x =先向右平移2个单位,再向下平移3个单位,所得抛物线的函数解析式是( )A.2(2)3y x =++;B.2(2)3y x =+-; C.2(2)3y x =-+; D.2(2)3y x =--; 4. 如图,在△ABC 中,点D 、E 分别在AB 、AC 上,AED B ∠=∠,那么下列各式中一定正确的是( )A.AE AC AD AB ⋅=⋅;B. CE CA BD AB ⋅=⋅;C. AC AD AE AB ⋅=⋅;D. AE EC AD DB ⋅=⋅;5. 已知两圆的半径分别是3和5,圆心距是1,那么这两圆的位置关系是( )A. 内切;B. 外切;C. 相交;D. 内含;6. 如图所示,一X 等腰三角形纸片,底边长18cm ,底边上的高长18cm ,现沿底边依次向下往上裁剪宽度均为3cm 的矩形纸条,已知剪得的纸条中有一X 是正方形,则这X 正方形纸条是( )A. 第4X ;B. 第5X ;C. 第6X ;D. 第7X ;二. 填空题7. 化简:2(2)3()a b a b --+=;8. 如果在比例1:1000000的地图上,A 、B 两地的图上距离为2.4厘米,那么A 、B 两地的实际距离为千米;9. 抛物线2(2)3y a x x a =++-的开口向下,那么a 的取值X 围是; 10. 一斜面的坡度1:0.75i =,一物体由斜面底部沿斜面向前推进了20米,那么这个物体升高了 米;11. 如果一个正多边形的一个外角是36°,那么该正多边形的边数为;12. 已知AB 是○O 的直径,弦CD ⊥AB 于点E ,如果8AB =,6CD =,那么OE =;13. 如图所示,某班上体育课,甲、乙两名同学分别站在C 、D 的位置时,乙的影子为线段AD ,甲的影子为线段AC ,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙同学相距米;14. 如图,点(3,)A t 在第一象限,OA 与x 轴正半轴所夹的锐角为α,如果3tan 2α=,那么t 的值为; 15. 如图,平行四边形ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,2CD DE =, 如果△DEF 的面积为1,那么平行四边形ABCD 的面积为;16. 如图,在矩形ABCD 中,3AB =,5BC =,以B 为圆心BC 为半径画弧交AD 于点E ,如果点F是弧EC 的中点,联结FB ,那么tan FBC ∠的值为;17. 新定义:我们把两条中线互相垂直的三角形称为“中垂三角形”,如图所示,△ABC 中,AF 、BE是中线,且AF BE ⊥,垂足为P ,像△ABC 这样的三角形称为“中垂三角形”,如果30ABE ∠=︒, 4AB =,那么此时AC 的长为;18. 如图,等边△ABC 中,D 是边BC 上的一点,且:1:3BD DC =,把△ABC 折叠,使点A 落在边BC上的点D 处,那么AMAN 的值为;三. 解答题19. 计算:cot 45tan 60cot 302(sin 60cos 60)︒+︒-︒︒-︒;20. 已知,平行四边形ABCD 中,点E 在DC 边上,且3DE EC =,AC 与BE 交于点F ;(1)如果AB a =,AD b =,那么请用a 、b 来表示AF ;(2)在原图中求作向量AF 在AB 、AD 方向上的分向量;(不要求写作法,但要指出所作图中表示结论的向量)21. 如图,已知AD ∥BE ∥CF ,它们依次交直线1l 、2l于点A 、B 、C 和点D 、E 、F ,25DE EF =,14AC =;(1)求AB 、BC 的长;(2)如果7AD =,14CF =,求BE 的长;22. 目前,崇明县正在积极创建全国县级文明城市,交通部门一再提醒司机:为了安全,请勿超速,并在进一步完善各类监测系统,如图,在陈海公路某直线路段MN 内限速60千米/小时,为了检测车辆是否超速,在公路MN 旁设立了观测点C ,从观测点C 测得一小车从点A 到达点B 行驶了5秒钟,已知 45CAN ∠=︒,60CBN ∠=︒,200BC =米,此车超速了吗?请说明理由;1.41= 1.73=)23. 如图1,△ABC 中,90ACB ∠=︒,CD AB ⊥,垂足为D ;(1)求证:△ACD ∽△CBD ;(2)如图2,延长DC 至点G ,联结BG ,过点A 作AF BG ⊥,垂足为F ,AF 交CD 于点E , 求证:2CD DE DG =⋅;24. 如图,在直角坐标系中,一条抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(3,0)B ,(0,4)C ,点A 在x 轴的负半轴上,4OC OA =;(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC 、BC ,点P 是x 轴正半轴上一个动点,过点P 作PM ∥BC 交射线AC 于点M ,联结CP ,若△CPM 的面积为2,则请求出点P 的坐标;25. 如图,已知矩形ABCD 中,6AB =,8BC =,E 是BC 边上一点(不与B 、C 重合),过点E 作EF AE ⊥交AC 、CD 于点M 、F ,过点B 作BG AC ⊥,垂足为G ,BG 交AE 于点H ;(1)求证:△ABH ∽△ECM ;(2)设BE x =,EH yEM =,求y 关于x 的函数解析式,并写出定义域;(3)当△BHE 为等腰三角形时,求BE 的长;016年崇明县中考数学一模卷一、选择题(本大题共6题,每题4分,满分24分)二、填空题(本大题共12题,每题4分,满分48分)7.7a b -- 8.24 9.a <-213.1 14.92 15.12 16.1317.57三、解答题(本大题共7题,满分78分)19.(本题满分10分)【解】原式2(22= ……………………………………………………………5分=…………………………………………………………………1分2=+………………………………………………………………………3分 2= ……………………………………………………………………………1分20.(本题满分10分,第1小题5分,第2小题5分)【解】(1)∵四边形ABCD 是平行四边形∴AD ∥BC 且AD =BC ,CD ∥AB 且CD =AB∴BC AD b ==又∵AB a =∴AC AB BC a b =+=+ ……………………………………………………2分∵DE =3EC ∴DC =4EC 又∵AB =CD ∴AB =4EC∵CD ∥AB∴4AF AB CF EC== ∴45AF AC = ∴45AF AC = ……………………………………………2分 ∴4444()5555AF AC a b a b ==+=+ ………………………………………1分 (2)略,画图正确得3分,结论正确得2分21.(本题满分10分,第1小题5分,第2小题5分)【解】(1)∵AD ∥BE ∥CF∴25AB DE BC EF == …………………………………………………………2分 ∴27AB AC = ∵AC =14 ∴AB =4 …………………………………………………2分∴BC =14410-= ……………………………………………………1分(2)过点A 作AG ∥DF 交BE 于点H ,交CF 于点G又∵AD ∥BE ∥CF ,AD =7∴AD =HE =GF =7 ……………………………………………………………1分∵CF =14 ∴CG =14-7=7 ………………………………………………1分∵BE ∥CF∴27BH AB CG AC == ………………………………………………………1分 ∴BH =2 ……………………………………………………………………1分∴BE =2+7=9 …………………………………………………………………1分第21题图22.(本题满分10分)【解】此车没有超速.理由如下:过C作CH⊥MN,垂足为H ∵∠CBN=60°,BC=200米,∴CH=BC•sin60°=200×32=1003(米),……………………………2分BH=BC•cos60°=100(米),……………………………………………2分∵∠CAN=45°,∴AH=CH=1003米,…………………………………2分∴AB=1003﹣100≈73(m),……………………………………………1分∴车速为7314.65m/s ………………………………………………………1分∵60千米/小时=503m/s,又∵14.6<503………………………………………………………………1分∴此车没有超速.…………………………………………………………1分第22题图23.(本题满分12分,第1小题5分,第2小题7分)【证明】(1)∵CD⊥AB∴∠ADC=∠CDB=90° …………………………1分∴∠BCD+∠B=90°……………………………………………1分∵∠ACB=90°∴∠ACD+∠BCD=90°……………………………………………1分∴∠ACD=∠B……………………………………………………1分又∵∠ADC=∠CDB∴△ACD ∽△CBD ………………………………………………1分(2)∵AF ⊥BG ∴∠AFB =90°∴∠FAB +∠GBA =90°…………………1分 ∵∠GDB =90°∴∠G +∠GBA =90°∴∠G =∠FAB ………………………………………………………1分 又∵∠ADE =∠GDB =90°∴△ADE ∽△GDB ……………………………………………………1分 ∴AD DE GD BD= ∴AD BD DE DG ⋅=⋅ …………………………1分 ∵△ACD ∽△CBD ∴AD CD CD BD= ∴2CD AD BD =⋅ ………………………………2分 ∴2CD DE DG = ……………………………………………… 1分24.(本题满分12分,第1小题6分,第2小题6分)【解】(1)∵C (0,4),O (0,0) ∴OC =4∵OC =4OA ∴OA =1∵点A 在x 轴的负半轴上 ∴A )0,1(- …………………………1分 设这条抛物线的解析式为2(0)y ax bx c a =++≠…………………1分 ∵抛物线过点 A )0,1(-,B (3,0),C (0,4) ∴09304a b c a b c c -+=⎧⎪++=⎨⎪=⎩ 解得43834a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩………………………………1分 ∴这条抛物线的解析式为248433y x x =-++ ……………………1分 它的顶点坐标为16(1,)3…………………………………………2分 (2)过点P 作PH ⊥AC ,垂足为H .第24题图∵P 点在x 轴的正半轴上,∴设P (x ,0). ∵ A )0,1(-,∴PA =1x +.∵在Rt △AOC 中,222OA OC AC +=又∵OA =1,OC =4 ∴17AC =∵∠AOC =90° ∴sin∠CAO =17OC AC = ∵∠PHA =90° ∴sin∠CAO =117PH PH AP x ==+ ∴17PH = ……………………………………………………………2分 ∵PM ∥BC ∴BP CM AB AC= ∵B (3,0),P (x ,0)①点P 在点B 的左侧时,3BP x =-∴3417x -=∴17(3)x CM -= ∵2PCM S =△ ∴122CM PH ⋅⋅= ∴17(3)12217x -= 解得x =1. ∴P (1,0) ………………………………………………………………2分 ②点P 在点B 的右侧时,3BP x =- ∴3417x -=∴17(3)x CM -=∵2PCM S =△ ∴122CM PH ⋅⋅=∴122=解得11x =+21x =-(不合题意,舍去)∴P (1+0). ………………………………………………………2分综上所述,P 的坐标为(1,0)或(1+0)25.(本题满分14分,第1小题4分,第2小题5分,第3小题5分)【解】(1)证明:∵四边形ABCD 是矩形, ∴∠ABC =90°……………………………1分 即∠ABG +∠CBG =90°∵EF ⊥AE ,BG ⊥AC ,∴∠AEF =∠BGA =90°∴∠AEF =∠ABC ,∠ACB +∠CBG =90°∴∠ABG =∠ACB .………………………………………………………………1分∵∠AEC =∠ABC +∠BAE即∠AEF +∠CEF =∠ABC +∠BAE∴∠BAE =∠CEF ………………………………………………………………1分 又∵∠ABG =∠ACB∴△ABH ∽△ECM ……………………………………………………………1分(2)延长BG 交AD 于点K∵∠ABG =∠ACB ,又∵在矩形ABCD 中,∠BAK =∠ABC =90°∴△ABK ∽△BCA ∴AK AB AB BC =∴668AK =∴92AK = …………………………………1分 ∵在矩形ABCD 中,AD ∥BC ,又∵BE x = ∴29BE EH x AK AH == ∴29x EH AH =⋅ ……………………………………………………………………1分∵△ABH ∽△ECM ∴68AH AB EM EC x ==- ∵EH y EM= ∴222649998243x AH x AH x x y EM EM x x⋅==⋅=⋅=-- ………………………………2分 定义域为(0<x <8) ……………………………………………………………1分(3)当△BHE 为等腰三角形时,存在以下三种情况:1°BH =BE则∠BHE =∠BEH∵∠BHE =∠AHG ∴∠BEH =∠AHG∵∠ABC =∠BGA =90° ∴∠BEH +∠BAE =∠AHG +∠EAM =90°∴∠BAE =∠EAM过点E 作EQ ⊥AC ,垂足为Q ,则EQ =EB =x ,CE =8x -∵sin∠ACB=385EQ x EC x ==- ∴3x = 即BE =3 ………………………………………………2分 2°HB =HE则∠HBE =∠HEB∵∠ABC =∠BGC =90° ∴∠BAE +∠HEB =∠BCG +∠HBE =90°∴∠BAE =∠BCG∴tan∠BAE =tan∠BCA =34 ∴364x = ∴92x = 即BE =92…………………………………………1分 3°EB =EH则∠EHB =∠EBH 又∵∠EHB =∠AHG ∴∠AHG =∠EBH∵∠BGA =∠BGC =90° ∴∠CAE +∠AHG =∠BCG +∠EBH =90°∴∠CAE =∠BCG∴8EA EC x ==-∵在Rt△ABE 中,222AB BE AE +=∴2226(8)x x +=- 解得74x = 即74BE = ………………………2分 综上所述,当△BHE 是等腰三角形时,BE 的长为3或92或74.第25题图。
2018—2019学年度xxx学校九年级(上)期末试卷数学试题命题人:xxx 审题人:xxx 考试时间:120分钟满卷分值:120分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题(本大题共6小题,每小题3分,共18分)1.下列方程中,是关于x的一元二次方程的是()A.x2﹣2018B.x﹣2018=0C.﹣2018=0D.x2﹣2018=02.已知∠A为锐角,且sinA=,那么∠A等于()A.15°B.30°C.45°D.60°3.如图是一个全封闭的物体,则它的俯视图是()A.B.C.D.4.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.5.二次函数y=﹣2x2+4x+1的图象如何平移可得到y=﹣2x2的图象()A.向左1个单位,再向上3个单位B.向右1个单位,再向上3个单位C.向左1个单位,再向下3个单位D.向右1个单位,再向下3个单位6.正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形.以下结论:①EC=FC;②∠AED=75°;③AF=CE;④EF的垂直平分线是直线AC.正确结论个数有()个.A.1 B.2C.3 D.4二、填空题(本大题共6小题,每小题3分,共18分)7.已知=3,则的值为.8.已知a、b是方程x2﹣2x﹣1=0的两个根,则a2﹣a+b的值是.9.两个相似三角形周长之比为9:5,则面积比为.10.如图,在菱形ABCD中,BE⊥AB交对角线AC于点E,若∠D=120°,BE=1,则AC=.11.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC、BC,若△ABC的面积为3,则k的值是.12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若、是抛物线上的两点,则y1<y2;⑤(其中m≠).其中说法正确的是.三、(本大题共5小题,每小题6分,共30分)13.(1).计算:sin245°+cos30°•tan60°(2).如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3,AB=5,求:的值.14.如图(1),将平行四边形剪一刀,再拼成一个与其面积相等的矩形如图(2),将菱形剪两刀,再拼成一个与其面积相等的矩形15.为响应吉安市中心城区创建全国文明城市的号召,某校从甲、乙、丙3名老师中随机抽取文明行为劝导志愿者,求下列事件的概率.(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.(请用画树状图或列表的方法求)16.已知关于x的一元二次方程kx2﹣2x﹣1=0(1)若方程有实数根,求k的取值范围.(2)选取一个你喜欢的正整数值作为k的值,使方程有实数根,并解方程.17.如图,在等边△ABC中,边长为6,D是BC边上的动点,∠EDF=60°.(1)求证:△BDE∽△CFD;(2)当BD=1,CF=3时,求BE的长.四、(本大题3小题,每小题8分,共24分)18.收发微信红包已成为各类人群进行交流联系、增强感情的一部分,下面是甜甜和她的妹妹在六一儿童节期间的对话:甜甜:2017年六一,我们共收到484元微信红包.妹妹:2015年六一,我们共收到400元微信红包,不过我今年收到的钱数是你的2倍多34元.请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2017年六一甜甜和她妹妹各收到多少钱的微信红包?19.如图,在平面直角坐标中,点O是坐标原点,一次函数y1=﹣x+4与反比例函数y2=(x>0)的图象交于A(1,m)、B(n,1)两点.(1)求k、m、n的值.(2)根据图象写出当y1>y2时,x的取值范围.(3)若一次函数图象与x轴、y轴分别交于点N、M,则求出△AON的面积.20.博鳌亚洲论坛2018年年会于4月8日在海南博鳌拉开帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE的两边DE,DC长分别为1.6m,1.2m.旗杆DB的长度为2m,DB与墙面AB的夹角∠DBG为35°.当会旗展开时,如图所示,(1)求DF的长;(2)求点E到墙壁AB所在直线的距离.(结果精确到0.1m.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)五、(本大题2小题,每小题9分,共18分)21.如图,在矩形ABCD中,AD=6,CD=8,菱形EFGH的三个顶点E、G、H分别在矩形ABCD的边AB、CD、DA上,AH=2,连接CF.(1)当DG=2时,求证:四边形EFGH是正方形;(2)当△FCG的面积为2时,求CG的值.22.如图,已知抛物线y=x2﹣x﹣6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.六、(本大题共12分)23.如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s,连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.参考答案与试题解析一、(本大题共6小题,每小题3分,共18分)1.下列方程中,是关于x的一元二次方程的是()A.x2﹣2018B.x﹣2018=0C.﹣2018=0D.x2﹣2018=0【分析】只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.【解答】解:A、不是等式,不符合题意;B、为一元一次方程,不符合题意;C、为分式方程,不符合题意;D、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意;故选:D.【点评】本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.2.已知∠A为锐角,且sinA=,那么∠A等于()A.15°B.30°C.45°D.60°【分析】根据特殊角的三角函数值求解.【解答】解:∵sinA=,∠A为锐角,∴∠A=30°.故选:B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.3.如图是一个全封闭的物体,则它的俯视图是()A.B.C.D.【分析】根据俯视图是从物体上面看,从而得到出物体的形状.【解答】解:从上面观察可得到:.故选:D.【点评】本题考查了三视图的概简单几何体的三视图,本题的关键是要考虑到俯视图中看不见的部分用虚线表示.4.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.【分析】列举出所有情况,看每个路口都是绿灯的情况数占总情况数的多少即可.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.【点评】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到每个路口都是绿灯的情况数是解决本题的关键.5.二次函数y=﹣2x2+4x+1的图象如何平移可得到y=﹣2x2的图象()A.向左1个单位,再向上3个单位B.向右1个单位,再向上3个单位C.向左1个单位,再向下3个单位D.向右1个单位,再向下3个单位【分析】根据配方法,可得顶点式解析式,根据右移减,上移加,可得答案.【解答】解:二次函数y=﹣2x2+4x+1的顶点坐标为(1,3),y=﹣2x2的顶点坐标为(0,0),只需将函数y=﹣2x2+4x+1的图象向左移动1个单位,向下移动3个单位即可.故选:C.【点评】本题考查函数的图象变换,讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.6.正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形.以下结论:①EC=FC;②∠AED=75°;③AF=CE;④EF的垂直平分线是直线AC.正确结论个数有()个.A.1B.2C.3D.4【分析】由题意可证△ABF≌△ADE,可得BF=DE,即可得EC=CF,由勾股定理可得EF= EC,由平角定义可求∠AED=75°,由AE=AF,EC=FC可证AC垂直平分EF,则可判断各命题是否正确.【解答】解:∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠C=∠D=∠DAB=90°∵△AEF是等边三角形∴AE=AF=EF,∠EAF=∠AEF=60°∵AD=AB,AF=AE∴△ABF≌△ADE∴BF=DE∴BC﹣BF=CD﹣DE∴CE=CF故①正确∵CE=CF,∠C=90°∴EF=CE,∠CEF=45°∴AF=CE,∵∠AED=180°﹣∠CEF﹣∠AEF∴∠AED=75°故②③正确∵AE=AF,CE=CF∴AC垂直平分EF故④正确故选:D.【点评】本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,线段垂直平分线的判定,熟练运用这些性质和判定解决问题是本题的关键.二、(本大题共6小题,每小题3分,共18分)7.已知=3,则的值为.【分析】由已知比例式得到a=3b,将其代入所求的代数式,进行约分求值.【解答】解:由=3,得a=3b,所以==.故答案是:.【点评】考查了比例的性质.比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.8.已知a、b是方程x2﹣2x﹣1=0的两个根,则a2﹣a+b的值是3.【分析】根据一元二次方程的解及根与系数的关系,可得出a2﹣2a=1、a+b=2,将其代入a2﹣a+b中即可求出结论.【解答】解:∵a、b是方程x2﹣2x﹣1=0的两个根,∴a2﹣2a=1,a+b=2,∴a2﹣a+b=a2﹣2a+(a+b)=1+2=3.故答案为:3.【点评】本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.9.两个相似三角形周长之比为9:5,则面积比为81:25.【分析】根据相似三角形的周长的比等于相似比求出相似比,再根据相似三角形面积的比等于相似比的平方解答.【解答】解:∵两个相似三角形周长之比为9:5,∴它们的相似比是9:5:∴它们的面积的比是81:25.故答案为:81:25【点评】本题考查了相似三角形的性质,熟记性质并求出两三角形的相似比是解题的关键.10.如图,在菱形ABCD中,BE⊥AB交对角线AC于点E,若∠D=120°,BE=1,则AC= 3.【分析】分别求出AE、EC即可解决问题;【解答】解:∵四边形ABCD是菱形,∠D=120°,∴CD∥AB,∠ABC=∠D=120°,∴∠DAB=180°﹣120°=60°,∴∠BAE=∠DAB=30°,∵BE⊥AB,∴∠ABE=90°,∠EBC=∠ECB=30°,∴EB=EC=1,在Rt△ABE中,∵∠EAB=30°,∴AE=2BE=2,∴AC=AE+EC=2+1=3,故答案为3.【点评】本题考查菱形的性质、解直角三角形、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC、BC,若△ABC的面积为3,则k的值是﹣6.=S△CAB=3,再根据反比例函数【分析】连结OA,如图,利用三角形面积公式得到S△OAB的比例系数k的几何意义得到|k|=3,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S=S△CAB=3,△OAB=|k|,而S△OAB∴|k|=3,∵k<0,∴k=﹣6.故答案为:﹣6.【点评】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若、是抛物线上的两点,则y1<y2;⑤(其中m≠).其中说法正确的是①②④⑤.【分析】根据二次函数的性质即可求出答案.【解答】解:①由抛物线的开口可知:a<0,又抛物线与y轴的交点可知:c>0,对称轴>0,∴b>0,∴abc<0,故①正确;②将(2,0)代入y=ax2+bx+c(a≠0),∴4a+2b+c=0,∵=,∴a=﹣b,∴﹣4b+2b+c=0,∴﹣2b+c=0,故②正确;③由②可知:4a+2b+c=0,故③错误;④由于抛物线的对称轴为x=,∴(,y1)与(,y1)关于x=对称,由于x>时,y随着x的增大而减小,∵>,∴y1<y2,故④正确;⑤由图象可知:x=时,y可取得最大值,且最大值为a+b,∴m≠∴a+b+c>am2+bm+c,∴,故⑤正确;故答案为:①②④⑤;【点评】本题考查二次函数的性质,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.三、(本大题共5小题,每小题6分,共30分)13.(1).计算:sin245°+cos30°•tan60°【分析】根据特殊胶,可得答案.【解答】解:sin245°+cos30°•tan60°=()2+×=+=2.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.(2).如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3,AB=5,求:的值.【分析】由于DE∥BC,由平行线分线段成比例即可求出答案.【解答】解:∵DE∥BC,∴∵AD=3,AB=5,∴=.【点评】本题考查平行线的性质,解题的关键是熟练运用平行线分线段成比例的性质,本题属于基础题型.14.如图(1),将平行四边形剪一刀,再拼成一个与其面积相等的矩形如图(2),将菱形剪两刀,再拼成一个与其面积相等的矩形【分析】(1)可沿平行四边形的高剪切即可;(2)沿对角线剪开,拼接即可.【解答】解:(1)如图所示:,(2)如图所示:,【点评】本题一方面考查了学生的动手操作能力,另一方面考查了学生的空间想象能力,重视知识的发生过程,让学生体验学习的过程.15.为响应吉安市中心城区创建全国文明城市的号召,某校从甲、乙、丙3名老师中随机抽取文明行为劝导志愿者,求下列事件的概率.(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.(请用画树状图或列表的方法求)【分析】(1)由从甲、乙、丙3名同学中随机抽取文明行为劝导志愿者,直接利用概率公式求解即可求得答案;(2)利用列举法可得抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.【解答】解:(1))∵从甲、乙、丙3名同学中随机抽取文明行为劝导志愿者,∴抽取1名,恰好是甲的概率为:;(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:.【点评】本题考查的是列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.16.已知关于x的一元二次方程kx2﹣2x﹣1=0(1)若方程有实数根,求k的取值范围.(2)选取一个你喜欢的正整数值作为k的值,使方程有实数根,并解方程.【分析】(1)根据二次项系数非零及根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(2)取k=3,再利用因式分解法解方程.【解答】解:(1)∵关于x的一元二次方程kx2﹣2x﹣1=0有实数根,∴,解得:k≥﹣1且k≠0.(2)取k=3,此时原方程为3x2﹣2x﹣1=0,即(3x+1)(x﹣1)=0,解得:x1=﹣,x2=1.【点评】本题考查了根的判别式、一元二次方程的定义以及因式分解法解一元二次方程,解题的关键是:(1)根据二次项系数非零及根的判别式△≥0,找出关于k的一元一次不等式;(2)熟练掌握一元二次方程的各种解法.17.如图,在等边△ABC中,边长为6,D是BC边上的动点,∠EDF=60°.(1)求证:△BDE∽△CFD;(2)当BD=1,CF=3时,求BE的长.【分析】(1)由条件可得出∠BED+∠EDB=∠EDB+∠FDC=120°,可得到∠BED=∠FDC,且∠B=∠C,可证得结论;(2)利用(1)结论可得出,且CD=BC﹣BD=5,代入可求得BE.【解答】(1)证明:∵△ABC为等边三角形,∴∠B=∠C=60°,∵∠EDF=60°,∴∠BED+∠EDB=∠EDB+∠FDC=120°,∴∠BED=∠FDC,∴△BDE∽△CFD;(2)由(1)知△BDE∽△CFD,∴,∵BC=6,BD=1,∴CD=BC﹣BD=5,∴,解得BE=.【点评】本题主要考查相似三角形的判定和性质,利用条件得到∠BED=∠FDC是解题的关键,注意等边三角形性质的应用.四、(本大题共3小题,每小题8分,共24分)18.收发微信红包已成为各类人群进行交流联系、增强感情的一部分,下面是甜甜和她的妹妹在六一儿童节期间的对话:甜甜:2017年六一,我们共收到484元微信红包.妹妹:2015年六一,我们共收到400元微信红包,不过我今年收到的钱数是你的2倍多34元.请问:(1)2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?(2)2017年六一甜甜和她妹妹各收到多少钱的微信红包?【分析】(1)一般用增长后的量=增长前的量×(1+增长率),2016年收到微信红包金额400(1+x)万元,在2016年的基础上再增长x,就是2017年收到微信红包金额400(1+x)(1+x),由此可列出方程400(1+x)2=484,求解即可.(2)设甜甜在2017年六一收到微信红包为y元,则她妹妹收到微信红包为(2y+34)元,根据她们共收到微信红包484元列出方程并解答.【解答】解:(1)设2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是x,依题意得:400(1+x)2=484,解得x1=0.1=10%,x2=﹣2.1(舍去).答:2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是10%;(2)设甜甜在2017年六一收到微信红包为y元,依题意得:2y+34+y=484,解得y=150所以484﹣150=334(元).答:甜甜在2017年六一收到微信红包为150元,则她妹妹收到微信红包为334元.【点评】本题考查了一元一次方程的应用,一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.19.如图,在平面直角坐标中,点O是坐标原点,一次函数y1=﹣x+4与反比例函数y2=(x>0)的图象交于A(1,m)、B(n,1)两点.(1)求k、m、n的值.(2)根据图象写出当y1>y2时,x的取值范围.(3)若一次函数图象与x轴、y轴分别交于点N、M,则求出△AON的面积.【分析】(1)把A(1,m)、B(n,1)两点的坐标代入一次函数的解析式即可求出m、n的值,再把B的坐标代入反比例函数的解析式即可求出k的值;(2)根据函数的图象和A、B的坐标即可得出答案;(3)先根据一次函数的解析式求出N的坐标,再利用三角形面积公式即可求出△AON 的面积.【解答】解:(1)把A(1,m)、B(n,1)两点的坐标代入y1=﹣x+4,得m=﹣1+4=3,﹣n+4=1,n=3,则A(1,3)、B(3,1).把B(3,1)代入y2=,得k=3×1=3;(2)∵A(1,3)、B(3,1),∴由函数图象可知,y1>y2时,x的取值范围是1<x<3;(3)∵一次函数y1=﹣x+4的图象与x轴交于点N,∴N(4,0),ON=4,∵A(1,3),∴△AON的面积=×4×3=6.【点评】本题考查了反比例函数与一次函数的交点问题,函数图象上点的坐标特征,三角形面积的计算;求出反比例函数的解析式是解决问题的关键.20.博鳌亚洲论坛2018年年会于4月8日在海南博鳌拉开帷幕,组委会在会议中心的墙壁上悬挂会旗,已知矩形DCFE的两边DE,DC长分别为1.6m,1.2m.旗杆DB的长度为2m,DB与墙面AB的夹角∠DBG为35°.当会旗展开时,如图所示,(1)求DF的长;(2)求点E到墙壁AB所在直线的距离.(结果精确到0.1m.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)【分析】(1)由题意知ED=1.6 m,BD=2 m,利用勾股定理得出DF=求出即可;(2)首先分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,利用sin∠DBM=,以及cos∠EDH=,求出EH,HN即可得出答案.【解答】解:(1)在Rt△DEF中,由题意知ED=1.6 m,BD=2 m,DF==2.答:DF长为2m.(2)分别做DM⊥AB,EN⊥AB,DH⊥EN,垂足分别为点M、N、H,在Rt△DBM中,sin∠DBM=,∴DM=2•sin35°≈1.14.∵∠EDC=∠CNB,∠DCE=∠NCB,∴∠EDC=∠CBN=35°,在Rt△DEH中,cos∠DEH=,∴EH=1.6•cos35°≈1.31.∴EN=EH+HN=1.31+1.14=2.45≈2.5m.答:E点离墙面AB的最远距离为2.5 m.【点评】此题主要考查了解直角三角形的应用,根据已知构造角三角形得出EH,HN的长度是解题关键.五、(本大题共2小题,每小题9分,共18分)21.如图,在矩形ABCD中,AD=6,CD=8,菱形EFGH的三个顶点E、G、H分别在矩形ABCD的边AB、CD、DA上,AH=2,连接CF.(1)当DG=2时,求证:四边形EFGH是正方形;(2)当△FCG的面积为2时,求CG的值.【分析】(1)由于四边形ABCD为矩形,四边形HEFG为菱形,那么∠D=∠A=90°,HG=HE,而AH=DG=2,易证△AHE≌△DGH,从而有∠DHG=∠HEA,等量代换可得∠AHE+∠DHG=90°,易证四边形HEFG为正方形;(2)过F作FM⊥DC于M,根据AB∥CD,可得∠AEG=∠MGE,同理有∠HEG=∠FGE,利用等式性质有∠AEH=∠MGF,再结合∠A=∠M=90°,HE=FG,可证△AHE≌△MFG,利用三角形面积解答即可.【解答】(1)证明:在矩形ABCD中,有∠A=∠D=90°,∴∠DGH+∠DHG=90°.在菱形EFGH中,EH=GH∵AH=2,DG=2,∴AH=DG,∴△AEH≌△DHG.∴∠AHE=∠DGH.∴∠AHE+∠DHG=90°.∴∠EHG=90°.∴四边形EFGH是正方形.(2)过F作FM⊥DC于M,则∠FMG=90°.∴∠A=∠FMG=90°.连接EG.由矩形和菱形性质,知AB∥DC,HE∥GF,∴∠AEG=∠MGE,∠HEG=∠FGE,∴∠AEH=∠MGF.∵EH=GF,∴△AEH≌△MGF.∴FM=AH=2.=,∵S△FCG∴CG=2.【点评】本题考查了矩形、菱形的性质、全等三角形的判定和性质、勾股定理.解题的关键是作辅助线:过F作FM⊥DC,交DC延长线于M,连接GE,构造全等三角形和内错角.22.如图,已知抛物线y=x2﹣x﹣6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.【分析】(1)根据配方法,可得顶点式解析式,根据顶点式解析式,可得抛物线的顶点;(2)根据函数值为0,可得B点坐标,根据自变量为0,可得C点坐标,根据勾股定理,可得BC的长,根据正弦的意义,可得答案;(3)根据图象上的点的坐标满足函数解析式,可得一元二次方程,根据解一元二次方程,可得答案.【解答】解:(1)∵,∴抛物线的顶点坐标为(,);(2)令x2﹣x﹣6=0,解得x1=﹣2,x2=3,∴点B的坐标为(3,0),又点C的坐标为(0,﹣6),∴,∴;(3)∵点P(m,m)在这个二次函数的图象上,∴m2﹣m﹣6=m,即m2﹣2m﹣6=0,解得,.【点评】本题考查了二次函数的性质,配方法可把一般式转化成顶点式,图象上点的坐标满足函数解析式.六、(本大题共12分)23.如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s,连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.【分析】(1)根据PQ∥BC,得出△APQ∽△ABC,根据相似三角形对应边成比例,列出比例式,求出方程的解即可;(2)假设存在某时刻t,使线段PQ恰好把△ABC的面积平分,据此得出一元二次方程;由于此一元二次方程的判别式小于0,则可以得出结论:不存在这样的某时刻t,使线段PQ恰好把△ABC的面积平分;(3)首先根据菱形的性质及相似三角形比例线段关系,求得PQ、QD和PD的长度;然后在Rt△PQD中,根据勾股定理列出方程(8﹣t)2+(6﹣t)2=(2t)2,求得时间t的值;最后根据菱形的面积等于△AQP面积的2倍,进行计算即可.【解答】解:(1)由题意知:BP=2t,AP=10﹣2t,AQ=2t,∵PQ∥BC,∴△APQ∽△ABC,∴=,即=,解得:t=,∴当t=时,PQ∥BC;(2)如图1所示,过P点作PD⊥AC于点D,∴PD∥BC,∴=,即=,解得,∴△AQP的面积,假设存在某时刻t,使线段PQ恰好把△ABC的面积平分,=S△ABC,则有S△AQP∵△ABC中,AB=10cm,AC=8cm,BC=6cm,∴△ABC是直角三角形,且∠C=90°,=AC•BC=24,∴S△ABC=12,∴S△AQP而S=,△AQP∴,化简得:t2﹣5t+10=0,∵△=(﹣5)2﹣4×1×10=﹣15<0,∴此方程无解,∴不存在某时刻t,使线段PQ恰好把△ABC的面积平分;(3)假设存在时刻t,使四边形AQPQ′为菱形,则有AQ=PQ=BP=2t.如图2所示,过P点作PD⊥AC于点D,则有PD∥BC,∴==,即==,解得:PD=6﹣t,AD=8﹣t,∴QD=AD﹣AQ=8﹣t﹣2t=8﹣t,在Rt△PQD中,由勾股定理得:QD2+PD2=PQ2,即(8﹣t)2+(6﹣t)2=(2t)2,化简得:13t2﹣90t+125=0,解得:t1=5,t2=,∵当t=5时,AQ=10cm>AC,不合题意,舍去,∴t=,==6×﹣×()2=cm2,∵当t=时,S△AQP∴S=2S△AQP=2×=cm2.菱形AQPQ′故存在时刻t=s,使四边形AQPQ′为菱形,此时菱形的面积为cm2.【点评】本题属于四边形综合题,主要考查了菱形的性质,三角形的面积计算,勾股定理的逆定理,解一元二次方程以及相似三角形的性质和判定的综合应用,解决问题的关键是作辅助线构造相似三角形以及直角三角形,根据相似三角形的对应边成比例以及勾股定理进行列式求解.。
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.如图是某体育馆内的颁奖台,其左视图是( )A .B .C .D .【答案】D【分析】找到从左面看所得到的图形即可.【详解】解:从左边看去是上下两个矩形,下面的比较高.故选D. 【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图的观察方法. 2.关于二次函数y=2x 2+4,下列说法错误的是( ) A .它的开口方向向上 B .当x=0时,y 有最大值4 C .它的对称轴是y 轴 D .顶点坐标为(0,4)【答案】B【分析】根据二次函数的图象及性质与各项系数的关系,逐一判断即可. 【详解】解:A. 因为2>0,所以它的开口方向向上,故不选A ; B. 因为2>0,二次函数有最小值,当x=0时,y 有最小值4,故选B ; C. 该二次函数的对称轴是y 轴,故不选C ;D. 由二次函数的解析式可知:它的顶点坐标为(0,4),故不选D. 故选:B. 【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与各项系数的关系是解决此题的关键.3.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A .232x x ++B .22x +C .221x x ++D .223x x +【答案】A【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【详解】∵S主=x1+1x=x(x+1),S左=x1+x=x(x+1),∴俯视图的长为x+1,宽为x+1,则俯视图的面积S俯=(x+1)(x+1)=x1+3x+1.故选A.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.4.下列说法正确的是()A.可能性很大的事情是必然发生的B.可能性很小的事情是不可能发生的C.“掷一次骰子,向上一面的点数是6”是不可能事件D.“任意画一个三角形,其内角和是180 ”【答案】D【分析】了解事件发生的可能性与必然事件、不可能事件、可能事件之间的关系.【详解】解:A错误.可能性很大的事件并非必然发生,必然发生的事件的概率为1;B错误.可能性很小的事件指事件发生的概率很小,不可能事件的概率为0;C错误.掷一枚普通的正方体骰子,结果恰好点数“6”朝上的概率为16.为可能事件.D正确.三角形内角和是180°.故选:D.【点睛】本题考查事件发生的可能性,注意可能性较小的事件也有可能发生;可能性很大的事也有可能不发生.5.如图,四边形ABCD与四边形GBEF是位似图形,则位似中心是()A.点A B.点B C.点F D.点D【答案】B【分析】根据位似图形的定义: 如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形,这个点叫做位似中心,判断即可.【详解】解:由图可知,对应边AG与CE的延长线交于点B,∴点B为位似中心故选B. 【点睛】此题考查的是找位似图形的位似中心,掌握位似图形的定义是解决此题的关键.6.如图,已知四边形 ABCD 内接于⊙O ,AB 是⊙O 的直径,EC 与⊙O 相切于点 C ,∠ECB=35°, 则∠D 的度数是( )A .145°B .125°C .90°D .80°【答案】B【解析】试题解析:连接.OC∵EC 与O 相切,35ECB ∠=,55OCB ∴∠=,,OB OC =55OBC OCB ∴∠=∠=,180********.D OBC ∴∠=-∠=-=故选B.点睛:圆内接四边形的对角互补.7.用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A .cmB .3cmC .4cmD .4cm【答案】C【解析】利用扇形的弧长公式可得扇形的弧长;根据扇形的弧长=圆锥的底面周长,让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高: ∵扇形的弧长=1206=4180ππ⋅⋅cm ,圆锥的底面半径为4π÷2π=2cm ,∴这个圆锥形筒的高为2262=42-cm .故选C .8.如图,△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AED 的位置,使得DC ∥AB ,则∠BAE 等于( )A .30°B .40°C .50°D .60°【答案】C【解析】试题分析:∵DC ∥AB ,∴∠DCA=∠CAB=65°.∵△ABC 绕点A 旋转到△AED 的位置,∴∠BAE=∠CAD ,AC=AD.∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC ﹣∠DCA="50°." ∴∠BAE=50°. 故选C .考点:1.面动旋转问题; 2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质. 9.如图,在▱ABCD 中,若∠A+∠C=130°,则∠D 的大小为( )A .100°B .105°C .110°D .115°【答案】D【解析】根据平行四边形对角相等,邻角互补即可求解. 【详解】解:在▱ABCD 中,∠A=∠C,∠A+∠D=180°, ∵∠A+∠C=130°, ∴∠A=∠C=65°, ∴∠D=115°, 故选D. 【点睛】本题考查了平行四边形的性质,属于简单题,熟悉平行四边形的性质是解题关键.10.已知关于x 的一元二次方程x 2+(2k+1)x+k 2=0①有两个不相等的实数根.则k 的取值范围为( ) A .k >﹣14B .k >4C .k <﹣1D .k <4【答案】A【分析】根据方程的系数结合根的判别式△>0;即可得出关于k的一元一次不等式;解之即可得出结论.【详解】∵关于x的一元二次方程x2+(2k+1)x+k2=0有两个不相等的实数根,∴△=(2k+1)2﹣4×1×k2=4k+1>0,∴k>﹣14.故选A.【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.11.在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC 相似的是()A.B.C.D.【答案】D【解析】解:三角形纸片ABC中,AB=8,BC=4,AC=1.A.44182AB==,对应边631842ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B.338AB=,对应边633848ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C.22163AC==,对应边631843ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D.22142BC==,对应边411822BCAB===,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选D.点睛:此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.12.下列事件中是随机事件的个数是()①投掷一枚硬币,正面朝上;②五边形的内角和是540°;③20件产品中有5件次品,从中任意抽取6件,至少有一件是次品;④一个图形平移后与原来的图形不全等.A.0 B.1 C.2 D.3【答案】C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】①掷一枚硬币正面朝上是随机事件;②五边形的内角和是540°是必然事件;③20件产品中有5件次品,从中任意抽取6件,至少有一件是次品是随机事件;④一个图形平移后与原来的图形不全等是不可能事件;则是随机事件的有①③,共2个;故选:C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(本题包括8个小题)13.如图,在平面直角坐标系中,CO、CB是⊙D的弦,⊙D分别与x轴、y轴交于B、A两点,∠OCB=60º,点A的坐标为(0,1),则⊙D的弦OB的长为____________。
崇明区第一学期教学质量调研测试卷九年级数学(完卷时间:100分钟,满分:150分)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.在Rt ABC △中,90C ∠=︒,5AB =,3BC =,那么tan A 的值是………………………( ▲ )(A)34;(B)43;(C)35;(D)45.2.抛物线22(3)4y x =+-的顶点坐标是 ……………………………………………………( ▲ )(A)(3,4);(B)(3,4)-;(C)(3,4)-;(D)(3,4)--.3.如图,在ABC △中,点D ,E 分别在边AB ,AC 上,DE BC ∥.已知6AE =,34AD DB =, 那么EC 的长是 ………………………………………………………………………………( ▲ ) (A) 4.5;(B) 8;(C) 10.5;(D) 14.4.如图,在平行四边形ABCD 中,点E 在边DC 上,:3:1DE EC =,联结AE 交BD 于点F ,那么DEF △的面积与BAF △的面积之比为………………………………………………( ▲ ) (A)3:4;(B)9:16;(C)9:1;(D)3:1.5.如果两圆的半径分别为2和5,圆心距为3,那么这两个圆的位置关系是……………( ▲ ) (A) 外离;(B) 外切;(C) 相交;(D) 内切.6.如图,在Rt ABC △中,90ABC ∠=︒,6AB =,10AC =,BAC ∠和ACB ∠的平分线相交于点E ,过点E 作EF BC ∥交AC 于点F ,那么EF 的长为………………………………( ▲ )(A)52;(B)83; (C)103; (D)154. 二、填空题:(本大题共12题,每题4分,满分48分)7.已知23x y =(0)y ≠,那么x yy+= ▲ .8.计算:13222a b a b ⎛⎫⎛⎫---= ⎪ ⎪⎝⎭⎝⎭r r rr ▲ .9.如果一幅地图的比例尺为1:50000,那么实际距离是3m 的两地在地图上的图距是 ▲ cm .10.如果抛物线2(1)4y a x =+-有最高点,那么a 的取值范围是 ▲ . 11.抛物线224y x =+向左平移2个单位长度,得到新抛物线的表达式为 ▲ . 12.已知点11(,)A x y 和22(,)B x y 是抛物线22(3)5y x =-+上的两点,如果124x x >>,那么1y 2y .(填“>”、“=”或“<”)13.在Rt ABC △中,90BAC ∠=︒,AD BC ⊥,垂足为点D ,如果6AC =,8AB =,那么AD 的长度为 ▲ .14.已知ABC △是等边三角形,边长为3,G 是三角形的重心,那么G A 的长度为 ▲ . 15.正八边形的中心角的度数为 ▲ 度.16.如图,一个斜坡长130m ,坡顶离水平地面的距离为50m ,那么这个斜坡的坡度为 ▲ . 17.如图,在55⨯正方形网格中,一条圆弧经过A ,B ,C 三点,已知点A 的坐标是(2,3)-,点C 的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是 ▲ .18.如图,在ABC △中,90ACB ∠=︒,点D , E 分别在,AC BC 上,且CDE B ∠=∠,将CD E △沿DE 折叠,点C 恰好落在AB 边上的点F 处,如果8AC =,10AB =,那么CD 的长为 ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:tan 453sin602cos45cot302sin 45︒-︒+︒︒-︒20.(本题满分10分,每小题各5分)如图,在ABC △中,BE 平分ABC ∠交AC 于点E ,过点E 作ED BC ∥交AB 于点D , 已知5AD =,4BD =. (1)求BC 的长度;(2)如果AD a =,AE b =,那么请用a 、b 表示向量CB .21.(本题满分10分,每小题各5分)如图,CD 为⊙O 的直径,CD AB ⊥,垂足为点F ,AO BC ⊥,垂足为点E ,2CE =. (1)求AB 的长; (2)求⊙O 的半径.ABCDE(第20题图)22.(本题满分10分)如图,港口B 位于港口A 的南偏东37︒方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5m ,到达E 处,测得灯塔C 在北偏东45︒方向上.这时,E 处距离港口A 有多远?(参考数据:sin370.60,cos370.80,tan370.75︒≈︒≈︒≈)23.(本题满分12分,每小题各6分)如图,点E 是正方形ABCD 的边BC 延长线上一点,联结DE ,过顶点B 作BF DE ⊥,垂足为F ,BF 交边DC 于点G .(1)求证:GD AB DF BG ⋅=⋅; (2)联结CF ,求证:45CFB ∠=︒.(第22题图)(第23题图)A BDECG F24.(本题满分12分,每小题各4分)如图,抛物线243y x bx c =-++过点(3,0)A ,(0,2)B .(,0)M m 为线段OA 上一个动点(点M 与点A(1(2N (3(第24题图) (备用图)A25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 如图,已知ABC △中,90ACB ∠=︒,8AC =,4cos 5A =,D 是AB 边的中点,E 是AC 边上一点,联结DE ,过点D 作DF DE ⊥交BC 边于点F ,联结EF . (1)如图1,当DE AC ⊥时,求EF 的长;(2)如图2,当点E 在AC 边上移动时,DFE ∠的正切值是否会发生变化,如果变化请说出变化情况;如果保持不变,请求出DFE ∠的正切值;(3)如图3,联结CD 交EF 于点Q ,当CQF △是等腰三角形时,请直接写出....BF 的长.(第25题图1)ABCDFEBDFECA(第25题图2)BDF ECA(第25题图3)崇明区第一学期教学质量调研测试卷九年级数学参考答案一、选择题(本大题共6题,每题4分,满分24分)1、A2、D3、B4、B5、D6、C二、填空题(本大题共12题,每题4分,满分48分)7、528、 a b -+ 9、 6 10、 1a <-11、 22(2)4y x =++ 12、> 13、4.8 14、 15、45 16、 1:2.4 17、 (1,1)-- 18、258三、解答题:(本大题共7题,满分78分)19、解:原式3222-⨯+⨯…………………………………………5分=………………………………………………3分= ………………………………………………………2分 20、(1)∵BE 平分ABC ∠ ∴ABE CBE =∠∠ ∵ED BC ∥ ∴DEB CBE =∠∠∴ABE DEB =∠∠ ………………………………………………………2分 ∴4BD DE == ∵ED BC ∥ ∴DE ADBC AB=……………………………………1分 又∵5AD =,4BD = ∴9AB = ∴459BC = ∴365BC =………………………………………2分(2)∵ED BC ∥ ∴5=9DE AD BC AB = ∴95BC DE =…………………………………………………………1分 又∵ED 与CB 同向 ∴95CB ED =………………………………1分 ∵AD a =,AE b = ∴ED a b =- ……………………………1分 ∴9955CB a b =- …………………………………………………………2分 21、(1)∵CD AB ⊥,AO BC ⊥∴90AFO CEO ==︒∠∠ ………………………………………1分 在AOF COE △和△中AFO CEO AOF COE AO CO =⎧⎪=⎨⎪=⎩∠∠∠∠∴AOF COE △≌△ ……………………………………………1分 ∴CE AF = ………………………………………………………1分 ∵2CE = ∴2AF =∵CD 是O 的直径,CD AB ⊥∴12AF BF AB ==……………………………………………1分 ∴4AB = …………………………………………………………1分(2) ∵AO 是O 的半径,AO BC ⊥∴2CE BE == ………………………………………………1分 ∵4AB = ∴12BE AB =∵90AEB =︒∠ ∴30A =︒∠ ……………………2分 又∵90AFO =︒∠∴2AF CosA AO AO === …………1分∴AO =即O………………………1分 22、解:由题意可得37A =︒∠,45AEC =︒∠,90D =︒∠,5DE km = 过点C 作CH AD ⊥,垂足为点H 则90AHC EHC ==︒∠∠∴34CH tanA AH == ………………………………………………………1分 1CH tan HEC EH ==∠ ………………………………………………………1分 设CH x = 则43AH x =,EH x = …………………………………………2分 ∴5DH x =+ ………………………………………………………1分∵90AHC D ==︒∠∠ ∴CH BD ∥ ∴AH AC DH BC= …………2分 ∵C 点是AB 边的中点 ∴AC BC = ∴AHDH = …………1分 ∴453x x =+ 解得15x = ………………………………………………1分 ∴42015353AE x x km =+=+= ………………………………………1分 23、(1)∵四边形ABCD 是正方形∴90BCD ADC ==︒∠∠,AB BC = …………………………1分 ∵BF DE ⊥ ∴90GFD =︒∠∴BCD GFD =∠∠∵BGC FGD =∠∠∴BGC DGF △∽△ ………………………………………………2分 ∴BG BC DG DF= ………………………………………………………1分 ∴DG BC DF BG ⋅=⋅ ……………………………………………1分∵AB BC =∴DG AB DF BG ⋅=⋅ ……………………………………………1分(2)联结BD∵BGC DGF △∽△ ∴BG CG DG FG= ………………………………………………………1分 ∴BG DG CG FG = 又∵BGD CGF =∠∠∴BGD CGF △∽△ ………………………………………………2分∴BDG CFG =∠∠ ………………………………………………1分∵四边形ABCD 是正方形,BD 是对角线 ∴1452BDG ADC ==︒∠∠ ……………………………………1分∴45CFG =︒∠ ……………………………………………………1分24、(1)解:设直线AB 的解析式为y kx b =+(0k ≠)∵(3,0)A ,(0,2)B ∴302k b b +=⎧⎨=⎩ 解得232k b ⎧=-⎪⎨⎪=⎩ ……………………………………1分 ∴直线AB 的解析式为223y x =-+ ………………………………1分 ∵抛物线243y x bx c =-++经过点(3,0)A ,(0,2)B ∴493032b c c ⎧-⨯++=⎪⎨⎪=⎩ 解得1032b c ⎧=⎪⎨⎪=⎩ …………………………1分∴2410233y x x =-++ ……………………………………………1分 (2)∵MN x ⊥轴, (,0)M m∴设2410(,2)33N m m m -++,2(,2)3P m m -+ ∴2443NP m m =-+, 223P M m =-+ ……………………1分 ∵P 点是MN 的中点∴NP PM =∴2424233m m m -+=-+ ………………………………………1分 解得112m =,23m =(不合题意,舍去) ………………………1分 ∴110(,)23N ……………………………………………………1分 (3)∵(3,0)A ,(0,2)B , 2(,2)3P m m -+∴AB =3BP m =∴AP = ∵BPN APM =∠∠∴当BPN △与APM △相似时,存在以下两种情况:1° BP PM PN PA=∴2223443m m m -+=-+ 解得118m = ……………………1分 ∴11(,0)8M …………………………………………………………1分 2° BP PA PN PM=∴233424233m m m =-+-+ 解得52m = ……………………1分 ∴5(,0)2M ……………………………………………………………1分25、(1)∵90ACB =︒∠,45cosA =∴45AC AB = ∵8AC = ∴10AB = ……………………………1分 ∵D 是AB 边的中点 ∴152AD AB == ∵DE AC ⊥ ∴90DEA DEC ==︒∠∠ ∴45AE cosA AD == ∴4AE = ∴844CE =-= ∵在Rt AED △中,222AE DE AD += ∴3DE = ……………………1分∵DF DE ⊥ ∴90FDE =︒∠又∵90ACB =︒∠ ∴四边形DECF 是矩形∴4DF EC == ………………………………………………………………1分 ∵在Rt EDF △中,222DF DE EF += ∴5EF = …………………1分(2)不变 ……………………………………………………………………………1分过点D 作DH AC ⊥,DG BC ⊥,垂足分别为点H 、G由(1)可得3DH =,4DG =∵DH AC ⊥,DG BC ⊥∴90DHC DGC ==︒∠∠又∵90ACB =︒∠ ∴四边形DHCG 是矩形∴90HDG =︒∠∵90FDE =︒∠∴HDG HDF EDF HDF -=-∠∠∠∠ 即EDH FDG =∠∠ ……1分 又∵90DHE DGF ==︒∠∠∴EDH FDG △∽△ ……………………………………………………1分 ∴34DE DH DF DG == …………………………………………………………1分 ∵90FDE =︒∠ ∴34DE tan DFE DF ==∠ ……………………1分 (3)1° 当QF QC =时,易证90DFE QFC +=︒∠∠,即90DFC =︒∠ 又∵90ACB =︒∠,D 是AB 的中点∴152CD BD AB === ∴132BF CF BC === …………………………………………………1分 2° 当FQ FC =时,易证FQC DEQ DCB △∽△∽△∵在Rt EDF △中,34DE tan DFE DF ==∠ ∴设=3DE k ,则4DF k =,5EF k =当FQ FC =时,易证3DE DQ k ==,∴53CQ k =-∵DEQ DCB △∽△ ∴56DE DC EQ BC == ∴185EQ k = ∴75FQ FC k == ∵FQC DCB △∽△ ∴56FQ DC CQ BC == ∴755536k k =- 解得125117k = ∴71251755117117FC =⨯=∴1755276117117BF =-= ……………………………………………………2分 3° 在BC 边上截取B=BD=5,由勾股定理得出DK =当CF CQ =时,易证CFQ EDQ BDK △∽△∽△ ∴设=3DE k ,则3EQ k =,5EF k = ∴2FQ k = ∵EDQ BDK △∽△∴DE BD DQ DK ==∴DQ =∴5CQ FC == ∵CQF BDK △∽△∴CQ BD FQ DK ==∴552k -=解得11k = ∴2511FC = ∴254161111BF =-= ………………………………………………………2分Q。
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.《朗读者》是中央电视台推出的大型文化情感类节目,节目旨在实现文化感染人、鼓舞人、教育人的引导作用.为此,某校举办演讲比赛,李华根据演讲比赛时九位评委所给的分数制作了如下表格: 平均数 中位数 众数 方差8.5 8.3 8.1 8.15对9位评委所给的分数,去掉一个最高分和一个最低分后,表格中数据一定不发生变化的是( ) A .平均数B .中位数C .众数D .方差【答案】B 【分析】根据方差、平均数、众数和中位数的定义进行判断.【详解】解:对9位评委所给的分数,去掉一个最高分和一个最低分后,中位数一定不发生变化. 故选B .【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数、众数和中位数. 2.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >4【答案】B 【详解】当函数值y >0时,自变量x 的取值范围是:﹣2<x <1.故选B .3.如图,点A 是以BC 为直径的半圆的中点,连接AB ,点D 是直径BC 上一点,连接AD ,分别过点B 、点C 向AD 作垂线,垂足为E 和F ,其中,EF=2,CF=6,BE=8,则AB 的长是( )A .4B .6C .8D .10 【答案】D【分析】延长BE 交O 于点M ,连接CM ,AC ,依据直径所对的圆周角是90度,及等弧对等弦,得到直角三角形BMC 和等腰直角三角形BAC ,依据等腰直角三角形三边关系,知道要求AB 只要求直径BC ,直径BC 可以在直角三角形BMC 中运用勾股定理求,只需要求出BM 和CM ,依据三个内角是直角的四边形是矩形,可以得到四边形EFCM 是矩形,从而得到CM 和EM 的长度,再用BE+EM 即得BM ,此题得解.【详解】解:延长BE 交O 于点M ,连接CM ,AC ,∵BC 为直径,∴90M ∠=︒,90BAC ∠=︒又∵由,BE AF CF AF ⊥⊥得:90MEF F ∠=∠=︒,∴四边形EFCM 是矩形,∴MC=EF =2,EM=CF=6又∵BE=8,∴BM=BE+EM=8+6=14, ∴2222142102BC BM MC =+=+=∵点A 是以BC 为直径的半圆的中点,∴AB=AC,又∵90BAC ∠=︒,∴2222=2BC AB AC AB =+,∴AB=10.故选:D.【点睛】本题考查了圆周角定理的推理——直径所对的圆周角是90度, 矩形的判定与性质,勾股定理,解题的关键是构造两个直角三角形,将已知和待求用勾股定理建立等式.4.四边形ABCD 为平行四边形,点E 在DC 的延长线上,连接AE 交BC 于点F ,则下列结论正确的是( )A .BF EF BC AE =B .AF FC AE AD = C .AF EC EF AB = D .AB AF DE AE= 【答案】D【分析】根据四边形ABCD 为平行四边形证明BAF CEF △∽△,从而出AB BF AF CE CF EF==,对各选项进行判断即可.【详解】∵四边形ABCD 为平行四边形∴//AB CD∴BAE E B BCE ==∠∠,∠∠∴BAF CEF △∽△ ∴AB BF AF CE CF EF== ∵1AF AF AF AE AF EF EF ==++,1AB AB AB DE CE CD CE ==++ ∴AB AF DE AE= 故答案为:D .【点睛】本题考查了平行四边形的线段比例问题,掌握平行四边形的性质、相似三角形的性质以及判定是解题的关键.5.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E ,若∠A=54°,∠B=48°,则∠CDE 的大小为( )A .44°B .40°C .39°D .38°【答案】C 【解析】根据三角形内角和得出∠ACB ,利用角平分线得出∠DCB ,再利用平行线的性质解答即可.【详解】∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD 平分∠ACB 交AB 于点D ,∴∠DCB=12×78°=39°, ∵DE ∥BC , ∴∠CDE=∠DCB=39°,故选C .【点睛】本题考查了三角形内角和定理、角平分线的定义、平行线的性质等,解题的关键是熟练掌握和灵活运用根据三角形内角和定理、角平分线的定义和平行线的性质.6.如图,一个透明的玻璃正方体表面嵌有一根黑色的铁丝.这根铁丝在正方体俯视图中的形状是( )A .B .C .D .【答案】A 【解析】从上面看得到的图形是A 表示的图形,故选A .7.如图,在ABC ∆中,90ACB ∠=,30B ∠=,AD 平分BAC ∠,E 是AD 的中点,若8AB =,则CE 的长为( )A .4B .33C 3D .233 【答案】B 【分析】首先证明AD BD =,然后再根据在直角三角形中,斜边上的中线等于斜边的一半,即12CE AD =. 【详解】解:90,30,ACB B ∠=︒∠=︒60.CAB ∴∠=︒AD CAB ∠又平分30CAD DAB ∴∠=∠=︒DAB B ∴∠=∠.AD BD ∴=1.2Rt ACD CD AD =在中, 设,AD BD x == 则12CD x =, 142AC AB == 在Rt ACD 中,222AC CD AD += 即222142x x ⎛⎫+= ⎪⎝⎭解得x = E 为AD 中点, 12CE AD ∴== 故选B【点睛】本题主要考查了角平分线的性质、直角三角形斜边上的中线,含30度角的直角三角形.8.已知关于x 的一元二次方程()22110x m x m +++-=的两个根分别是1x ,2x ,且满足22123x x +=,则m 的值是( )A .0B .2-C .0或12-D .2-或0 【答案】C【分析】首先根据一元二次方程根与系数关系得到两根之和和两根之积,然后把x 12+x 22转换为(x 1+x 2)2-2x 1x 2,然后利用前面的等式即可得到关于m 的方程,解方程即可求出结果.【详解】解:∵x 1、x 2是一元二次方程x 2-mx+2m-1=0的两个实数根,∴x 1+x 2=-(2m+1),x 1x 2=m-1,∵x 12+x 22=(x 1+x 2)2-2x 1x 2=3,∴[-(2m+1)]2-2(m-1)=3,解得:m 1=0,m 2=12-, 又∵方程x 2-mx+2m-1=0有两个实数根,∴△=(2m+1)2-4(m-1)≥0,∴当m=0时,△=5>0,当m=12-时,△=6>0 ∴m 1=0,m 2=12-都符合题意. 故选:C.【点睛】本题考查一元二次方程根与系数的关系、完全平方公式,解题关键是熟练掌握一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=-b a ,x 1•x 2=c a . 9.点A(1,y 1)、B(3,y 2)是反比例函数y =9x 图象上的两点,则y 1、y 2的大小关系是( ) A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定 【答案】A【解析】∵反比例函数y =9x中的9>0, ∴经过第一、三象限,且在每一象限内y 随x 的增大而减小,又∵A(1,y ₁)、B(3,y ₂)都位于第一象限,且1<3,∴y ₁>y ₂,故选A.10.数据3、4、6、7、x 的平均数是5,这组数据的中位数是( )A .4B .4.5C .5D .6【答案】C【分析】首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可.【详解】由3、4、6、7、x 的平均数是1,即(3467)55++++÷=x得5x =这组数据按照从小到大排列为3、4、1、6、7,则中位数为1.故选C【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.11.如图,线段CD 两个端点的坐标分别为C (4,4)、D (6,2),以原点O 为位似中心,在第一象限内将线段CD 缩小为线段AB ,若点B 的坐标为(3,1),则点A 的坐标为( )A .(0,3)B .(1,2)C .(2,2)D .(2,1)【答案】C 【解析】直接利用位似图形的性质得出对应点坐标乘以12得出即可.【详解】解:∵在第一象限内将线段CD缩小为线段AB,点B的坐标为(3,1),D(6,2),∴以原点O为位似中心,在第一象限内将线段AB缩小为原来的12后得到线段CD,∵C(4,4),∴端A点的坐标为:(2,2).故选:C.【点睛】本题考查位似图形的性质,熟练掌握位似图形的性质是解题的关键.12.四张分别画有平行四边形、等腰直角三角形、正五边形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是()A.14B.12C.34D.1【答案】B【分析】先找出卡片上所画的图形是中心对称图形的个数,再除以总数即可.【详解】解:∵四张卡片中中心对称图形有平行四边形、圆,共2个,∴卡片上所画的图形恰好是中心对称图形的概率为21 =42,故选B.【点睛】此题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn,关键是找出卡片上所画的图形是中心对称图形的个数.二、填空题(本题包括8个小题)13.函数y=kx,y=ax,y=bx的图象如图所示,下列判断正确的有_____.(填序号)①k,a,b都是正数;②函数y=与y=的图象会出现四个交点;③A,D两点关于原点对称;④若B是OA的中点,则a=4b.【答案】①③④【分析】根据反比例函数、一次函数的性质以及反比例函数系数k的几何意义即可判断.【详解】解:由图像可知函数y=kx经过一、三象限,h函数y=ax,y=bx在一、三象限,则k>0,a>0,b>0,故①正确;由图像可知函数y=ax与y=bx的图像没有交点,故②错误;根据正比例函数和反比例函数的图像都是中心对称图像可知,A,D两点关于原点对称,故③正确;若B是OA的中点,轴OA=2OB,作AM⊥x轴于M,BN⊥x轴于N,∴BN∥AM,∴△BON∽△AOM,∴21()4BONAOMS OBS OA∆∆==,∴112142ba=,∴b=4a,故④正确:故答案为①③④.【点睛】本题考查了相似性质、反比例函数、一次函数的性质以及反比例函数系数k的几何意义,数形结合的思想是解题的关键14.如图,△ABC的两条中线AD,BE交于点G,EF∥BC交AD于点F.若FG=1,则AD=_____.【答案】1【分析】利用平行线分线段长比例定理得到AF AEFD EC==1,即AF=FD,所以EF为△ADC的中位线,则EF=12CD=12BD,再利用EF∥BD得到12FG EFDG BD==,所以DG=2FG=2,然后计算FD,从而得到AD的长.【详解】解:∵△ABC的两条中线AD,BE交于点G,∴BD=CD,AE=CE,∵EF∥CD,∴AF AEFD EC==1,即AF=FD,∴EF为△ADC的中位线,∴EF=12 CD,∴EF=12 BD,∵EF∥BD,∴12 FG EFDG BD==,∴DG=2FG=2,∴FD=2+1=3,∴AD=2FD=1.故答案为:1.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形中位线性质和平行线分线段成比例定理.15.如图,PA、PB是⊙O的两条切线,点A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB=___°.【答案】70°【分析】连接OA、OB,根据圆周角定理求得∠AOB,由切线的性质求出∠OAP=∠OBP=90°,再由四边形的内角和等于360°,即可得出答案【详解】解:连接OA、OB,∠ACB=55°,∴∠AOB=110°∵PA、PB是⊙O的两条切线,点A、B为切点,∴∠OAP=∠OBP=90°∵∠APB+∠OAP+∠AOB+∠OBP=360°∴∠APB=180°-(∠OAP+∠AOB+∠OBP)=70°故答案为:70【点睛】本题考查了切线的性质、四边形的内角和定理以及圆周角定理,利用切线性质和圆周角定理求出角的度数是解题的关键16.在一个不透明的袋子中装有除颜色外其余均相同的7个小球,其中红球2个,黑球5个,若再放入m 个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于45,则m 的值为 . 【答案】1.【解析】试题分析:根据题意得:57m m ++=45,解得:m=1.故答案为1. 考点:概率公式. 17.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.72【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,()22223323AB AC BC =+=+=根据PAB PBC ∠=∠,得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.【详解】∵90ACB ∠=︒,3AC =,3BC =,∴()22223323AB AC BC =+=+=∴∠CAB=30°,∠ABC=60°∵PAB PBC ∠=∠,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小∴CO ⊥AB ,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90° ∴()2222237OC OB BC =+=+= ∴72CP OC OP =-=-故答案为72-.【点睛】此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.18.如果A 地到B 地的路程为80千米,那么汽车从A 地到B 地的速度x 千米/时和时间y 时之间的函数解析式为______.【答案】80y x= 【分析】根据速度=路程÷时间,即可得出y 与x 的函数关系式.【详解】解:∵速度=路程÷时间,∴80y x= 故答案为:80y x =【点睛】本题考查了根据行程问题得到反比例函数关系式,熟练掌握常见问题的数量关系是解答本题的关键.三、解答题(本题包括8个小题)19.李老师将1个黑球和若干个白球放入一个不透明的口袋中并搅匀,让学生进行摸球试验,每次摸出一个球(放回),下表是活动进行中的一组统计数据. 摸球的次数n100 150 200 500 800 1000 摸到黑球的次数m 23 31 60 130 203 251摸到黑球的频率mn0.23 0.21 0.30 _____ _____ _____(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个黑球的概率是______.(结果都保留小数点后两位)(2)估算袋中白球的个数为________.(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树状图或列表的方法计算出两次都摸出白球的概率.【答案】表格内数据:0.26,0.25,0.25 (1)0.25;(2)1;(1)916.【分析】(1)直接利用频数÷总数=频率求出答案;(2)设袋子中白球有x个,利用表格中数据估算出得到黑球的频率列出关于x的分式方程,【详解】(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近0.25,∴估计从袋中摸出一个球是黑球的概率是0.25;(2)设袋中白球为x个,11+x=0.25,x=1.答:估计袋中有1个白球.(1)由题意画树状图得:由树状图可知,所有可能出现的结果共有16种,这些结果出现的可能性相等,其中两次都摸出白球的有9种情况.所以P(两次都摸出白球)=916.【点睛】本题主要考查了模拟实验以及频率求法和树状图法与列表法求概率, 解决本题的关键是要熟练掌握概率计算方法.20.某商场在“五一节”的假日里实行让利销售,全部商品一律按九销售,这样每天所获得的利润恰好是销售收入的25%.如果第一天的销售收入5万元,且每天的销售收入都有增长,第三天的利润是1.8万元,(1)求第三天的销售收入是多少万元?(2)求第二天和第三天销售收入平均每天的增长率是多少?【答案】(1)7.2万元;(2)20%.【分析】(1)利用第三天的销售收入=第三天的利润÷销售利润占销售收入的比例,即可求出结论;(2)设第二天和第三天销售收入平均每天的增长率是x ,根据第一天及第三天的销售收入,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】(1)1.8÷25%=7.2(万元).答:第三天的销售收入是7.2万元.(2)设第二天和第三天销售收入平均每天的增长率是x ,依题意,得:5(1+x)2=7.2,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意,舍去).答:第二天和第三天销售收入平均每天的增长率是20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.如图,O 外接ABD ∆,点C 在直径AB 的延长线上,CAD BDC ∠=∠(1)求证:CD 是O 的切线;(2)若3,2CD BC ==,求O 的半径 【答案】(1)见解析;(2)54,见解析 【分析】(1)根据AB 是直径证得∠CAD+∠ABD=90°,根据半径相等及CAD BDC ∠=∠证得∠ODB+∠BDC=90°,即可得到结论;(2)利用CAD BDC ∠=∠证明△ACD ∽△DCB ,求出AC ,即可得到答案.【详解】(1)∵AB 是直径,∴∠ADB=90°,∴∠CAD+∠ABD=90°,∵OB=OD ,∴∠ABD=∠ODB ,∵CAD BDC ∠=∠,∴∠ODB+∠BDC=90°,即OD ⊥CD ,∴CD 是O 的切线;(2)∵CAD BDC ∠=∠,∠C=∠C ,∴△ACD ∽△DCB ,∴2CD CB AC =⋅,∵3,2CD BC ==,∴AC=4.5,∴O 的半径=524AC BC -=. 【点睛】此题考查切线的判定定理,相似三角形的判定及性质定理,圆周角定理,正确理解题意是解题的关键. 22.如图,AB 是⊙O 的直径,点C 是AB 的中点,连接AC 并延长至点D ,使CD =AC ,点E 是OB 上一点,且23OE EB =,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .(1)求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.【答案】(1)证明见解析;(2)BH =125. 【分析】(1)先判断出∠AOC=90°,再判断出OC ∥BD ,即可得出结论;(2)先利用相似三角形求出BF ,进而利用勾股定理求出AF ,最后利用面积即可得出结论.【详解】(1)连接OC ,∵AB 是⊙O 的直径,点C 是AB 的中点,∴∠AOC =90°,∵OA =OB ,CD =AC ,∴OC 是△ABD 是中位线,∴OC ∥BD ,∴∠ABD =∠AOC =90°,∴AB ⊥BD ,∵点B 在⊙O 上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴OC OE BF EB=,∵OB=2,∴OC=OB=2,AB=4,23 OEEB=,∴223 BF=,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=12AB•BF=12AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=125.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.23.如图,AB是⊙O的直径,AC是⊙O的弦,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E,连接BD.(1)求证:DE是⊙O的切线;(2)若BD=3,AD=4,则DE=.【答案】(1)见解析;(2)12 5【分析】(1)连接OD,如图,先证明OD∥AE,再利用DE⊥AE得到OD⊥DE,然后根据切线的判定定理得到结论;(2)证明△ABD∽△ADE,通过线段比例关系求出DE的长.【详解】(1)证明:连接OD∵AD平分∠BAC∴∠BAD =∠DAC∵OA =OD∴∠BAD =∠ODA∴∠ODA =∠DAC∴OD ∥AE∴∠ODE +∠E =180°∵DE ⊥AE∴∠E =90°∴∠ODE =180°-∠E =180°-90°=90°,即OD ⊥DE∵点D 在⊙O 上∴DE 是⊙O 的切线.(2)∵AB 是⊙O 的直径,∴∠ADB=90°,∵AD 平分∠BAC ,∴∠BAD=∠DAE ,在△ABD 和△ADE 中,==BDA DEA BAD DAE ∠∠⎧⎨∠∠⎩, ∴△ABD ∽△ADE , ∴AB BD AD DE=, ∵BD =3,AD =4,22BD AD +∴DE=345⨯=125. 【点睛】本题考查了切线的判定定理,相似三角形的判定和性质,适当画出正确的辅助线是解题的关键. 24.在日常生活中我们经常会使用到订书机,如图MN 是装订机的底座,AB 是装订机的托板AB 始终与底座平行,连接杆DE 的D 点固定,点E 从A 向B 处滑动,压柄BC 绕着转轴B 旋转.已知连接杆BC 的长度为20cm ,BD =43cm ,压柄与托板的长度相等.(1)当托板与压柄的夹角∠ABC =30°时,如图①点E 从A 点滑动了2cm ,求连接杆DE 的长度.(2)当压柄BC 从(1)中的位置旋转到与底座垂直,如图②.求这个过程中,点E 滑动的距离.(结果保留根号)【答案】(1)DE=239cm ;(2)这个过程中,点E 滑动的距离(18-63)cm .【解析】(1)如图1中,作DH ⊥BE 于H .求出DH ,BH 即可解决问题.(2)解直角三角形求出BE 即可解决问题. 【详解】(1)如图1中,作DH ⊥BE 于H .在Rt △BDH 中,∵∠DHB=90°,3,∠ABC=30°,∴DH=123(cm ),3(cm ), ∵AB=CB=20cm ,AE=2cm ,∴EH=20-2-6=12(cm ),∴22DH BH +22(23)12+39cm ).(2)在Rt △BDE 中,∵393DBE=90°,∴22DE BD -3(cm ),∴这个过程中,点E 滑动的距离(3cm .【点睛】本题考查解直角三角形的应用,解题的关键是熟练掌握基本知识.25.解方程:(1)x 2﹣2x ﹣1=0 (2) 2(x ﹣3)=3x (x ﹣3)【答案】 (1)112x =,212x = (2)13x =或223x =【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得;【详解】(1)a =1,b =﹣2,c =﹣1,△=b 2﹣4ac =4+4=8>0,方程有两个不相等的实数根,1x ===∴1211x x ==(2)()()2333xx x =﹣﹣, 移项得:()()23330xx x =﹣﹣﹣, 因式分解得:()()323xx ﹣﹣=0, ∴30x =﹣或230x =﹣,解得:13x =或223x =. 【点睛】本题主要考查了解一元二次方程-配方法和因式分解法,根据方程的不同形式,选择合适的方法是解题的关键.26.若关于x 的一元二次方程2(1)410m x x --+=方有两个不相等的实数根.⑴求m 的取值范围.⑵若m 为小于10的整数,且该方程的根都是有理数,求m 的值.【答案】(1)3m >-且1m ≠.(2)2m =-或6【分析】(1)根据一元二次方程根的判别式,即可求出答案;(2)结合(1),得到m 的整数解,由该方程的根都是有理数,即可得到答案.【详解】解:(1)∵方程2(1)410m x x --+=有两个不相等的实数根, 2(4)4(1)11240m m ∴∆=--⨯-⨯=+>,解得:3m >-又10m -≠,1m ∴≠m ∴的取值范围为:3m >-且1m ≠;(2)m 为小于10的整数,又3m >-且1m ≠.m ∴可以取:2-,1-,0,2,3,4,5,6,7,8,9.当2m =-或6时,4∆=或36为平方数,此时该方程的根都是有理数.∴m 的值为:2-或6.【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式,利用根的判别式求参数的值. 27.如图,//AE BF ,AC 平分BAE ∠,且交BF 于点C ,BD 平分ABF ∠,且交AE 于点D ,连接CD .(1)求证:四边形ABCD 是菱形;(2)若30ADB ∠=︒,6BD =,求AD 的长.【答案】(1)证明见解析;(2)23AD =【分析】(1)由平行线的性质和角平分线定义得出∠ABD=∠ADB ,证出AB=AD ,同理可证AB=BC ,得出AD=BC ,证出四边形ABCD 是平行四边形,即可得出结论;(2)由菱形的性质得出AC ⊥BD ,OD =12BD=3,再由三角函数即可得出AD 的长. 【详解】(1)证明:∵AE ∥BF ,∴∠ADB=∠CBD ,又∵BD 平分∠ABF ,∴∠ABD=∠CBD ,∴∠ABD=∠ADB ,∴AB=AD ,同理可证AB=BC ,∴AD=BC ,∴四边形ABCD 是平行四边形,又∵AB=AD ,∴四边形ABCD 是菱形;(2)解:∵四边形ABCD 是菱形,BD=6,∴AC ⊥BD ,OD =12BD=3, ∵∠ADB=30°,∴cos ∠ADB=32OD AD =, ∴3223.【点睛】本题考查了菱形的判定与性质、平行线的性质、等腰三角形的判定、平行四边形的判定、解直角三角形.熟练掌握菱形的判定与性质是解决问题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.抛物线y =﹣(x+2)2+5的顶点坐标是( )A .(2,5)B .(﹣2,5)C .(﹣2,﹣5)D .(2,﹣5) 【答案】B【分析】根据题目中的函数解析式,可以直接写出该抛物线的顶点坐.【详解】∵抛物线y=﹣(x+2)2+5,∴该抛物线的顶点坐标为(﹣2,5).故选:B .【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,由函数的顶点式可以直接写出顶点坐标. 2.已知点()()()1233,2,,1,A y B y C y --,都在函数3y x =-的图象上,则y 1、y 2、y 3的大小关系是( ) A .y 2>y 1>y 3B .y 1>y 2>y 3C .y 1>y 3>y 2D .y 3>y 1>y 2 【答案】A【分析】根据反比例函数图象上点的坐标特征,将点()()()1233,2,,1,A y B y C y --,分别代入函数3y x=-,求得123,,y y y 的,然后比较它们的大小. 【详解】解:把()()()1233,2,,1,A y B y C y --,分别代入:3,y x=- 12331,,3,2y y y ∴===- ∵32>1>3-, ∴2y >1y >3y故选:A .【点睛】本题考查的是反比例函数的性质,考查根据自变量的值判断函数值的大小,掌握判断方法是解题的关键.3.当a 取何值时,反比例函数3a y x-=的图象的一个分支上满足y 随x 的增大而增大( )A .3a >B .3a <C .3a ≥D .3a ≤【答案】B【解析】根据反比例函数的性质可得:∵3ayx-=的一个分支上y随x的增大而增大,∴a-3<0,∴a<3.故选B.4.如图,一张扇形纸片OAB,∠AOB=120°,OA=6,将这张扇形纸片折叠,使点A与点O重合,折痕为CD,则图中未重叠部分(即阴影部分)的面积为()A.93B.12π﹣93C.932D.6π﹣932【答案】A【分析】根据阴影部分的面积=S扇形BDO﹣S弓形OD计算即可.【详解】由折叠可知,S弓形AD=S弓形OD,DA=DO.∵OA=OD,∴AD=OD=OA,∴△AOD为等边三角形,∴∠AOD=60°.∵∠AOB=120°,∴∠DOB=60°.∵AD=OD=OA=6,∴AC=CO=3,∴3∴S弓形AD=S扇形ADO﹣S△ADO260613602π⋅=-⨯6×3=6π﹣3∴S弓形OD=6π﹣3阴影部分的面积=S 扇形BDO ﹣S 弓形OD 2606360π⋅=-(6π﹣ 故选:A .【点睛】本题考查了扇形面积与等边三角形的性质,熟练运用扇形公式是解答本题的关键.5.已知点(1,3)A --关于x 轴的对称点'A 在反比例函数k y x =的图像上,则实数k 的值为( ) A .-3B .13-C .13D .3 【答案】A 【分析】先根据关于x 轴对称的点的坐标特征确定A'的坐标为(1,3)-,然后把A′的坐标代入k y x=中即可得到k 的值.【详解】解:点(1,3)A --关于x 轴的对称点A'的坐标为(1,3)-, 把A′(1,3)-代入k y x=, 得k=-1×1=-1.故选:A .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 6.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x ,下面所列的方程中正确的是( )A .560(1+x )2=315B .560(1-x )2=315C .560(1-2x )2=315D .560(1-x 2)=315 【答案】B【解析】试题分析:根据题意,设设每次降价的百分率为x ,可列方程为560(1-x )²=315.故选B7.下列关于x 的方程中,一定是一元二次方程的为( )A .ax 2+bx+c =0B .x 2﹣2=(x+3)2C .x 2+3x﹣5=0 D .x 2=0 【答案】D【解析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是1.逐一判断即可.【详解】解:A、当a=0时,ax1+bx+c=0,不是一元二次方程;B、x1﹣1=(x+3)1整理得,6x+11=0,不是一元二次方程;C、2350xx+-=,不是整式方程,不是一元二次方程;D、x1=0,是一元二次方程;故选:D.【点睛】本题主要考查一元二次方程的定义,正确把握一元二次方程的定义是解题关键.8.如图,在矩形ABCD中,3AB=,对角线,AC BD相交于点O,AE垂直平分OB于点E,则AD的长为()A.4 B.33C.5 D.52【答案】B【分析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD 即可.【详解】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴22226333BD AB-=-=;故选:B.【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.9.如图,在等腰ABC 中,,AB AC BD AC =⊥于点35D cosA =,,则sin CBD ∠的值( ) A .12 B .2 C 5 D 5 【答案】D 【分析】先由35cosA =,易得35AD AB =,由AB AC =可得25CD AB =,进而用勾股定理分别将BD 、BC 长用AB 表示出来,再根据sin CD CBD BC ∠=即可求解. 【详解】解:∵BD AC ⊥,35cosA =, ∴35AD AB =, ∴223455BD AB AB AB ⎛⎫- ⎪⎝⎭, 又∵AB AC =,∴25CD AB AD AB =-=, 在Rt DBC 中,2222422555BC BD CD AB AB AB ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭, ∴255525AB sin CBD AB ∠==, 故选:D【点睛】本题主要考查了解三角形,涉及了等腰三角形性质和勾股定理以及三角函数的定义.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.10.下列语句中正确的是( )A .长度相等的两条弧是等弧B .平分弦的直径垂直于弦C .相等的圆心角所对的弧相等D .经过圆心的每一条直线都是圆的对称轴【答案】D【解析】分析:根据垂径定理及逆定理以及圆的性质来进行判定分析即可得出答案.详解:A 、在同圆或等圆中,长度相等的两条弧是等弧;B 、平分弦(不是直径)的直径垂直于弦;C 、在同圆或等圆中,相等的圆心角所对的弧相等;D 、经过圆心的每一条直线都是圆的对称轴;故选D . 点睛:本题主要考查的是圆的一些基本性质,属于基础题型.理解圆的性质是解决这个问题的关键.11.若式子13x -在实数范围内有意义,则x 的取值范围是( ) A .3x ≥B .3x ≤C .3x >D .3x <【答案】C【解析】直接利用二次根式的定义即可得出答案. 【详解】∵式子13x -在实数范围内有意义, ∴x 的取值范围是:x >1.故选:C .【点睛】本题考查了二次根式有意义的条件,正确把握定义是解答本题的关键.12.如图,O 是正方形ABCD 与正六边形AEFCGH 的外接圆.则正方形ABCD 与正六边形AEFCGH 的周长之比为( )A .22:3B .2:1C .2:3D .1:3【答案】A 【解析】计算出在半径为R 的圆中,内接正方形和内接正六边形的边长即可求出周长之间的关系;【详解】设此圆的半径为R ,2R ,它的内接正六边形的边长为R ,内接正方形和外切正六边形的边长比为2R :R=2:1.正方形ABCD 与正六边形AEFCGH 的周长之比=42:6=22:3故答案选:A ;【点睛】考查了正多边形和圆,解决圆的相关问题一定要结合图形,掌握基本的图形变换.找出内接正方形与内接正六边形的边长关系,是解决问题的关键.二、填空题(本题包括8个小题)13.二次函数2(1)3y x =--的图象与y 轴的交点坐标是________.【答案】(0,2)-【分析】求出自变量x 为1时的函数值即可得到二次函数的图象与y 轴的交点坐标.【详解】把0x =代入2(1)3y x =--得:132y =-=-,∴该二次函数的图象与y 轴的交点坐标为(0,2)-,故答案为(0,2)-.【点睛】本题考查了二次函数图象上点的坐标特征,在y 轴上的点的横坐标为1.14.如图三角形ABC 的两条高线BD ,CE 相交于点F ,已知∠ABC 等于60度,AB a ,CF=EF ,则三角形ABC 的面积为________(用含a 的代数式表示).23 【分析】连接AF 延长AF 交BC 于G .设EF=CF=x ,连接AF 延长AF 交BC 于G .设EF=CF=x ,因为BD 、CE 是高,所以AG ⊥BC ,由∠ABC=60°,∠AGB=90°,推出∠BAG=30°,在Rt △AEF 中,由EF=x ,∠EAF=30°,可得3AE x =在Rt △BCE 中,由EC=2x ,∠CBE=60°可得23BE =.由AE+BE=AB 233x x a =,代入12ABC S AB CE ∆=⋅⋅即可解决问题. 【详解】解:连接AF 延长AF 交BC 于G ,设CF =EF =x ,BD CE 、是高,AG BC ∴⊥,60ABC ∠=︒,90AGB ∠=︒,30BAG ∴∠=︒,在Rt AEF 中,EF x =,30EAF ∠=︒, 3AE x ∴=, 在Rt BCE 中,2EC x =,60CBE ∠=︒,23BE x ∴=, 233x x a ∴+=, 3x a ∴=,23CE a =, 21123322ABC S AB CE a a a ∆∴=⋅⋅=⋅⋅=.【点睛】本题考查了勾股定理,含30度角的直角三角形,掌握勾股定理和30°直角三角形是解题的关键. 15.反比例函数y =﹣3x 的图象与一次函数y =﹣x+5的图象相交,其中一个交点坐标为(a ,b),则11a b +=_____.【答案】﹣53【分析】根据函数图象上点的坐标特征得到ab =﹣3,a+b =5,把原式变形,代入计算即可. 【详解】∵反比例函数3y x =-的图象与一次函数y =﹣x+5的图象相交,其中一个交点坐标为(a ,b ), ∴ab =﹣3,b+a =5,则115533b a a b ab ++===--, 故答案为:﹣53. 【点睛】本题考查了反比例函数与一次函数的交点问题,掌握函数图象上点的坐标特征是解题的关键. 16.抛物线y =x 2+2x 与y 轴的交点坐标是_____.【答案】(0,0)。
2019年上海市崇明区中考数学一模试卷一、选择题(本大题共6小题,共24.0分)1.若,则的值为A. B. C. D.2.在中,如果,那么表示的A. 正弦B. 正切C. 余弦D. 余切3.已知二次函数的图象如图所示,那么a、b的符号为A. ,B. ,C. ,D. ,4.如图,如果,那么添加下列一个条件后,仍不能确定∽ 的是A. B. C. D.5.已知向量和都是单位向量,那么下列等式成立的是A. B. C. D.6.如果两圆的圆心距为2,其中一个圆的半径为3,另一个圆的半径,那么这两个圆的位置关系不可能是A. 内含B. 内切C. 外离D. 相交二、填空题(本大题共12小题,共48.0分)7.化简:______.8.已知线段b是线段a、c的比例中项,且,,那么______.9.在以O为坐标原点的直角坐标平面内有一点,如果AO与y轴正半轴的夹角为,那么______.10.如果一个正六边形的半径为2,那么这个正六边形的周长为______.11.如果两个相似三角形的周长比为4:9,那么它们的面积比是______.12.已知线段AB的长为10cm,点C是线段AB的黄金分割点,且,则______结果保留根号13.已知抛物线,那么这条抛物线的顶点坐标为______.14.已知二次函数,那么它的图象在对称轴的______部分是下降的填“左侧”或“右侧”.15.已知中,,,,G为的重心,那么______.16.如图,正方形DEFG的边EF在的边BC上,顶点D、G分别在边AB、AC上已知,的高,则正方形DEFG的边长为______.17.已知中,,,如果以点C为圆心的圆与斜边AB有唯一的公共点,那么的半径R的取值范围为______.18.如果从一个四边形一边上的点到对边的视角是直角,那么称该点为直角点例如,如图的四边形ABCD中,点M在CD边上,连结AM、BM,,则点M为直角点若点E、F分别为矩形ABCD边AB、CD上的直角点,且,,则线段EF的长为______.三、解答题(本大题共7小题,共78.0分)19.计算:.20.如图,在中,点D、E分别在边AB、AC上,,且.如果,求AE的长;设,,求向量用向量、表示.21.已知:如图,AO是的半径,AC为的弦,点F为的中点,OF交AC于点E,,.求AO的长;过点C作,交AO延长线于点D,求的值.22.安装在屋顶的太阳能热水器的横截面示意图如图所示已知集热管AE与支架BF所在直线相交于水箱横截面的圆心O,的半径为米,AO与屋面AB的夹角为,与铅垂线OD的夹角为,,垂足为B,,垂足为D,米.求支架BF的长;求屋面AB的坡度参考数据:,,23.如图,中,D是BC上一点,E是AC上一点,点G在BE上,连接DG并延长交AE于点F,.求证:;如果,求证:.24.如图,在平面直角坐标系xOy中,二次函数、b都是常数,且的图象与x轴交于点、,顶点为点C.求这个二次函数的解析式及点C的坐标;过点B的直线交抛物线的对称轴于点D,联结BC,求的余切值;点P为抛物线上一个动点,当时,求点P的坐标.25.如图,在中,,,,垂足为D,点P是边AB上的一个动点,过点P作交线段BD于点F,作交AD于点E,交线段CD于点G,设.用含x的代数式表示线段DG的长;设的面积为y,求y与x之间的函数关系式,并写出定义域;能否为直角三角形?如果能,求出BP的长;如果不能,请说明理由.2019年上海市崇明区中考数学一模试卷解析一、选择题(本大题共6小题,共24.0分)26.若,则的值为A. B. C. D.【答案】B【解析】解:,,则.故选:B.根据比例的基本性质:两内项的积等于两外项的积即可求解.本题考查了比例的基本性质:两内项的积等于两内项的积.27.在中,如果,那么表示的A. 正弦B. 正切C. 余弦D. 余切【答案】D【解析】解:在中,,,故选:D.根据余切的定义求解可得.本题主要考查锐角三角函数的定义,解题的关键是掌握正弦、余弦、正切、余切的定义.28.已知二次函数的图象如图所示,那么a、b的符号为A. ,B. ,C. ,D. ,【答案】A【解析】解:如图所示,抛物线开口向上,则,又因为对称轴在y轴左侧,故,因为,所以,故选:A.根据函数图象的特点:开口方向、对称轴等即可判断出a、b的符号.本题考查了二次函数的图象与系数的关系,二次函数系数符号由抛物线开口方向、对称轴确定.29.如图,如果,那么添加下列一个条件后,仍不能确定∽ 的是A. B. C. D.【答案】C【解析】解:,,,B,D都可判定 ∽选项C中不是夹这两个角的边,所以不相似,故选:C.根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.此题考查了相似三角形的判定:如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;如果两个三角形的两个对应角相等,那么这两个三角形相似.30.已知向量和都是单位向量,那么下列等式成立的是A. B. C. D.【答案】D【解析】解:A、向量和都是单位向量,但方向不一定相同,则不一定成立,故本选项错误.B、向量和都是单位向量,但方向不一定相同,则不一定成立,故本选项错误.C、向量和都是单位向量,但方向不一定相同,则不一定成立,故本选项错误.D、向量和都是单位向量,则,故本选项正确.故选:D.根据向量和都是单位向量,可知,由此即可判断.本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.31.如果两圆的圆心距为2,其中一个圆的半径为3,另一个圆的半径,那么这两个圆的位置关系不可能是A. 内含B. 内切C. 外离D. 相交【答案】C【解析】解:,,这两个圆的位置关系不可能外离.故选:C.利用两圆之和一定大于两圆的圆心距可判断这两个圆不可能外离.本题考查了圆与圆的位置关系:两圆的圆心距为d、两圆的半径分别为r、R:两圆外离;两圆外切;两圆相交;两圆内切;两圆内含.二、填空题(本大题共12小题,共48.0分)32.化简:______.【答案】【解析】解:原式.故答案是:.平面向量的加减计算法则与实数的加减计算法则相同.考查了平面向量,解答此类题目时,直接去括号,然后计算加减法即可.33.已知线段b是线段a、c的比例中项,且,,那么______.【答案】2【解析】解:是a、c的比例中项,,即,负数舍去.故答案是:2.根据比例中项的定义可得,从而易求b.本题考查了比例线段,解题的关键是理解比例中项的含义.34.在以O为坐标原点的直角坐标平面内有一点,如果AO与y轴正半轴的夹角为,那么______.【答案】【解析】解:过点A作轴于点B,,,,由勾股定理可知:,,故答案为:根据勾股定理以及锐角三角函数的定义即可求出答案.本题考查锐角三角函数,解题的关键是根据勾股定理求出OA的长度,本题属于基础题型.35.如果一个正六边形的半径为2,那么这个正六边形的周长为______.【答案】12【解析】解:正六边形的半径等于边长,正六边形的边长,正六边形的周长,故答案为:12.根据正六边形的半径等于边长进行解答即可.本题考查的是正六边形的性质,解答此题的关键是熟知正六边形的边长等于半径.36.如果两个相似三角形的周长比为4:9,那么它们的面积比是______.【答案】16:81【解析】解:两个相似三角形的周长比为4:9,两个相似三角形的相似比为4:9,两个相似三角形的面积比为16:81,故答案为:16:81.根据相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方解答即可.本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.37.已知线段AB的长为10cm,点C是线段AB的黄金分割点,且,则______结果保留根号【答案】【解析】解:点C是线段AB的黄金分割点,,,故答案为:.根据黄金比值是列式计算即可.本题考查的是黄金分割的概念,把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值叫做黄金比.38.已知抛物线,那么这条抛物线的顶点坐标为______.【答案】【解析】解:抛物线的顶点坐标是故填空答案:.利用二次函数的顶点式是:,且a,h,k是常数,顶点坐标是进行解答.本题主要是对抛物线中顶点式的对称轴,顶点坐标的考查.39.已知二次函数,那么它的图象在对称轴的______部分是下降的填“左侧”或“右侧”.【答案】右侧【解析】解:二次函数中,,抛物线开口向下,抛物线图象在对称轴右侧,y随x的增大而减小下降.故答案为:右侧.根据解析式判断开口方向,结合对称轴回答问题.本题考查了二次函数的性质,根据抛物线的开口方向和对称轴,可判断抛物线的增减性.40.已知中,,,,G为的重心,那么______.【答案】【解析】解:中,,,,,为的重心,是的中线,,为的重心,,故答案为:.根据勾股定理求出AB,根据直角三角形的性质求出CD,根据三角形的重心的性质计算即可.本题考查的是三角形的重心的概念和性质,勾股定理,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.41.如图,正方形DEFG的边EF在的边BC上,顶点D、G分别在边AB、AC上已知,的高,则正方形DEFG的边长为______.【答案】2【解析】解:高AH交DG于M,如图,设正方形DEFG的边长为x,则,,,∽ ,,即,,正方形DEFG的边长为2.答:正方形DEFG的边长和面积分别为2.故答案为:2.高AH交DG于M,如图,设正方形DEFG的边长为x,则,所以,再证明∽ ,则利用相似比得到,然后根据比例的性质求出x即可.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;也考查了正方形的性质.42.已知中,,,如果以点C为圆心的圆与斜边AB有唯一的公共点,那么的半径R的取值范围为______.【答案】或【解析】解:根据勾股定理求得,当圆和斜边相切时,则半径即是斜边上的高,等于;当圆和斜边相交,且只有一个交点在斜边上时,可以让圆的半径大于短直角边而小于长直角边,则.故半径r的取值范围是或.故答案为:或.因为要使圆与斜边只有一个公共点,所以该圆和斜边相切或和斜边相交,但只有一个交点在斜边上若,则直线与圆相交;若,则直线于圆相切;若,则直线与圆相离.此题考查了直线与圆的位置关系,此题注意考虑两种情况,只需保证圆和斜边只有一个公共点即可.43.如果从一个四边形一边上的点到对边的视角是直角,那么称该点为直角点例如,如图的四边形ABCD中,点M在CD边上,连结AM、BM,,则点M为直角点若点E、F分别为矩形ABCD 边AB、CD上的直角点,且,,则线段EF的长为______.【答案】或【解析】解:作于点H,连接EF.,,,又,∽ ,,即,或3.点F,E分别为矩形ABCD边CD,AB上的直角点,,当时,,,,.当时,此时点E与点H重合,即,综上,或.故答案为:或.作于点H,利用已知得出 ∽ ,进而得出,求得构造的直角三角形的两条直角边即可得出答案.此题考查了相似三角形的判定定理及性质和勾股定理,得出 ∽ 是解题关键.三、解答题(本大题共7小题,共78.0分)44.计算:.【答案】解:原式.【解析】直接利用特殊角的三角函数值把相关数据代入进而得出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.45.如图,在中,点D、E分别在边AB、AC上,,且.如果,求AE的长;设,,求向量用向量、表示.【答案】解:如图,,且,.又,.,,.又,,【解析】由平行线截线段成比例求得AE的长度;利用平面向量的三角形法则解答.考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义.46.已知:如图,AO是的半径,AC为的弦,点F为的中点,OF交AC于点E,,.求AO的长;过点C作,交AO延长线于点D,求的值.【答案】解:是圆心,且点F为的中点,,,,设圆的半径为r,即,则,由得,解得:,即;,,,则.【解析】由垂径定理得出,设圆的半径为r,知,根据求解可得;由,知,从而根据可得答案.本题主要考查圆周角定理,解题的关键是掌握圆周角定理、垂径定理及其推论和勾股定理等知识点.47.安装在屋顶的太阳能热水器的横截面示意图如图所示已知集热管AE与支架BF所在直线相交于水箱横截面的圆心O,的半径为米,AO与屋面AB的夹角为,与铅垂线OD的夹角为,,垂足为B,,垂足为D,米.求支架BF的长;求屋面AB的坡度参考数据:,,【答案】解::,,,,,,的半径为,;,,,,的坡度为,【解析】然后在中,根据,求出OB的长度,继而可求得BF;根据,,可得,继而可求得的度数,以及AB的坡度.本题主要考查了解直角三角形的应用,解答本题的关键是求出角的度数,利用三角函数的知识即可求解,难度一般.48.如图,中,D是BC上一点,E是AC上一点,点G在BE上,连接DG并延长交AE于点F,.求证:;如果,求证:.【答案】证明:,,∽ ,,;,,∽ ,,,,B,D,G四点共圆,,.【解析】由 ∽ ,可得,即可推出结论;由 ∽ ,推出,由,推出A,B,D,G四点共圆,推出;本题考查相似三角形的判定和性质,四点共圆等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.49.如图,在平面直角坐标系xOy中,二次函数、b都是常数,且的图象与x轴交于点、,顶点为点C.求这个二次函数的解析式及点C的坐标;过点B的直线交抛物线的对称轴于点D,联结BC,求的余切值;点P为抛物线上一个动点,当时,求点P的坐标.【答案】解:将,代入,得:,解得:,二次函数的解析式为.,点C的坐标为.当时,,点D的坐标为.过点D作,垂足为点E,设抛物线对称轴与x轴的交点为点F,如图1所示.抛物线的顶点坐标为,点F的坐标为.点B的坐标为,,,,,,.,即,,,.设直线PB与y轴交于点M,如图2所示.,,即,,点M的坐标为或设直线BP的解析式为,将,代入,得:,解得:,直线BP的解析式为.同理,当点M的坐标为时,直线BP的解析式为.联立直线BP与抛物线的解析式成方程组,得:或,解得:,或,,点P的坐标为或【解析】由点A,B的坐标,利用待定系数法即可求出二次函数的解析式,再利用配发法即可求出顶点C 的坐标;利用一次函数图象上点的坐标特征可求出点D的坐标,过点D作,垂足为点E,设抛物线对称轴与x轴的交点为点F,由点B,C,D,F的坐标可得出CD,DF,BF的长,利用勾股定理可得出BC的长,利用角的正切值不变可求出DE的长,进而可求出BE的长,再利用余切的定义即可求出的余切值;设直线PB与y轴交于点M,由及的余切值可求出OM的长,进而可得出点M的坐标,由点B,M的坐标,利用待定系数法即可求出直线BP的解析式,联立直线BP及二次函数解析式成方程组,通过解方程组可求出点P的坐标.本题考查了待定系数法求二次函数解析式、二次函数的性质、一次函数图象上点的坐标特征、解直角三角形、余切的定义、待定系数法求一次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:由点的坐标,利用待定系数法求出二次函数解析式;构造直角三角形,利用余切的定义求出的余切值;联立直线BP和抛物线的解析式成方程组,通过解方程组求出点P的坐标.50.如图,在中,,,,垂足为D,点P是边AB上的一个动点,过点P作交线段BD于点F,作交AD于点E,交线段CD于点G,设.用含x的代数式表示线段DG的长;设的面积为y,求y与x之间的函数关系式,并写出定义域;能否为直角三角形?如果能,求出BP的长;如果不能,请说明理由.【答案】解:,,,,在中,,,,∽,∽即,,,,∽若时,,,,,,且,∽不合题意舍去,若,,且,,且,∽综上所述:当BP为或时,为直角三角形.【解析】根据等腰三角形的性质可得,通过证明 ∽ ,可得,即可得DG的长度;根据相似三角形的性质可得,,根据三角形面积公式可求y与x之间的函数关系式;分,两种情况讨论,根据相似三角形的性质可求BP的长.本题是三角形综合题,考查了等腰三角形的性质,相似三角形判定和性质,以及分类讨论思想,熟练运用相似三角形的判定和性质是本题的关键.。
2018-2019学年九年级数学上学期期末测试题(完成时间:100分钟 满分:150分)一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的 相应位置上.】 1.如果一次函数 y 二kx b 的图像经过一、二、三象限,那么k 、b 应满足的条件是(▲)(A ) k 0 ,且 b 0 ; (B ) k :: 0 ,且 b :: 0 ; (C ) k 0,且 b :: 0 ; (D ) k :: 0 ,且 b 0.3 22. 计算(-X )的结果是(▲)(A ) X 5 ;( B ) -X 5 ;( C ) X 6 ;( D ) -X 6 .3. 下列各式中,• x _2的有理化因式是(▲)(A ) X 2 ;(B ) ^2 ;(C ) .. X 2 ;(D ) . x _2 .4. 如图1,在厶ABC 中,/ ACB= 90°, CD 是 AB 边上的高.如果 是(▲)(A ) 3: 2 ;( B ) 2:3 ;(C ) 3: 13 ;( D ) 2: ,13 .如图2,在口ABC 呼,点E 在边AD 上,射线CE BA 交于点F ,下列等式成立的是(▲)(A ) £ABC /DCB ; (B ) /DBC £ACB ; (C ) /DAC £DBC ; (D )匚ACD ZDAC .二、填空题:(本大题共12题,每题4分,满分48分)7. 因式分解:3a 2 a = ▲ .8. 函数y =丄的定义域是 ▲.x+19.如果关于X 的一元二次方程 x 2+2x-a=0没有实数根,那么 a 的取值范围是▲.10. 抛物线y =x 24的对称轴是 ▲.11. 将抛物线y=-x 2平移,使它的顶点移到点 P (-2 , 3),平移后新抛物线的表达式为 —▲ 12. 如果两个相似三角形周长的比是 2:3,那么它们面积的比是▲.13.如图3,传送带和地面所成斜坡 AB 的坡度为1: .3,把物体从地面 A 处送到坡顶B 处时,物体BD =45.A CEACD(A )(B )ED EFE D AFAE FAA EFE (C ) ; (• E D ABE D FC 在梯形ABCDK AG / BC 下列条件中,不能判断梯形6. ABCD1等腰梯形的是(▲)图2所经过的路程是12米,此时物体离地面的高度是▲米.14. 如图4,在厶ABC中,点D是边AB的中点.如果CA =a , CD =b,那么CB = 匚(结果用含a、b的式子表示)15.已知点D E分别在△ ABC的边BA CA的延长线上,且DE BC如果BC=3DE AC=6,那么AE=▲_.16.在厶ABC中, / C- 90°, AC=,点ABC的重心.如果GC=,那么sin^GCB的值是▲17•将一个三角形经过放大后得到另一个三角形,如果所得三角形在原三角形的外部,这两个三角形各对应边平行且距离都相等,那么我们把这样的两个三角形叫做“等距三角形”,它们对应边之间的距离叫做“等距” •如果两个等边三角形是“等距三角形”么它们周长的差是▲三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:后-(-2]° + 1-J3+2COS30120. (本题满分10分)1 4 x 2解方程:—21.x+2 x -4 x—221. (本题满分10分,第(1)小题5分,第(2)小题5分)和点B( -3 , n),直线AB与y轴交于点C.(1)求直线AB的表达式;,它们的“等距”是1,那18. 如图5,在厶AB(中, AB=7, AC®.A =45,点D E分别在边AB B(上,将△ BDE&着DE所在线翻折,点B落在点P处,PD PE分别交边ACF点M N,如果AD=2, PDL AB垂足为点D,那么MN 的长是▲如图6,在平面直角坐标系xOy中,直线y 二kx • b(k = 0)与双曲线y = —相交于点A( m , 6)图4(2)求AC : CB的值.22. (本题满分10 分)如图7,小明的家在某住宅楼 AB 的最顶层(ABL BC ,他家的后面有一建筑物 CD (CD // AB ), 他很想知道这座建筑物的高度,于是在自家阳台的A 处测得建筑物 CD 的底部C 的俯角是43,顶部D 的仰角是25,他又测得两建筑物之间的距离 BC 是28米,请你帮助小明求出建筑物 CD 的高度(精 确到1米).(参考数据:sin25 °~ 0.42 , cos25 °~ 0.91 , tan25sin43 °~ 0.68 , cos43 °~ 0.73 , tan43 °~ 0.93 .)23. (本题满分12分,第(1)小题4分,第(2)小题8 分)如图8,已知点D E 分别在△ ABC 勺边AC BC 上,线段BD 与 AE 交于点F ,且CD CA CE CB(1)求点C 的坐标(用含a 的代数式表示);(2)联结AC BC 若厶ABC 的面积为6,求此抛物线的表达式;(3) 在第(2)小题的条件下,点 Q 为x 轴正半轴上一点,点 G 与点C,点F 与点A 关于点Q 成中心对称,当△ CGF 为直角三角形时,求点 Q 的坐标.25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分)(1)求证:/ CAE=Z CBD⑵若,求证:AB AD=AF AE .24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(2图8xOy 中,抛物线y = ax bx c a 0与、x 轴相交于点A (-1 , 0)和点B,与y 轴交于点C,对称轴为直线 X =1 .如图9,在平面直角坐标系0.47 ;C图7 BDADC如图10,在边长为2的正方形ABCD^,点P是边AD上的动点(点P不与点A、点D重合),点Q是边CD上一点,联结PB PQ且/ PBC=Z BPQ(1)当QD= QC时,求/ ABP的正切值;(2)设AF=x, CQy,求y关于x的函数解析式;(3) 联结BQ在厶PBC中是否存在度数不变的角,若存在,指出这个角,并求出它的度数;若不存在,请说明理由.、选择题:(本大题共6题,每题4分,满分24分) 1. A 2 . C ; 3 . C ; 4 . B ; 5 . C ; 6 . D .填空题:(本大题共12题,满分48分) .a ::: 一1;.x = _1 ; 9 7 . a 3a 1 ; 8 10 .直线x = 0或y 车由; 11 12 . 19 . 20 . 2 3 ; 17 . 6.3 ; 18 . 18 7 第19~22题每题10分,第23、24题每题12分,第25题14分, 解:原式=372_1+応_1+2>(丫 . = 5”.2 -2. ”””,””,””,”, 4:9 ; 13. 6; (本大题7题, 14 . 2b -a ; 15 . 2; 16 满分 78分) 8 分)2分) 2解:方程两边同乘 x 2 xd 得 X _2,4x_2 x ・2i=x-4 . 整理,得 x 2 -3x • 2 =0 . 解这个方程得x 1 =1, x 2 =2. 经检验,*2=2是增根,舍去. (2分)( 2分) (1分)4分) (1分)所以,原方程的根是 x=1. 21.解: (1)T 点A ( m , 6)和点B (-3 , n )在双曲线 •••m=1,n =_2.•••点将点 A (1 , 6),点 B (-3 , -2 ).,,,,,,,,,,,,,,,,,,,,,,, k b=6; A B 代入直线y =kx • b ,得 卜3k+b = -2. 解得 •直线 AB 的表达式为:y =2x • 4.,,,,,,,,,,,,,,,,,,, (k=2; b= 4.(2分)2分) 1分) (2)分别过点 A B 作AM L y 轴,BN ^y 轴,垂足分别为点 M N. 则/ AM ©Z BN©= 90°, AM 1, BN =3, • AM / BN 1分) 1分)1分) AC AM 1CB BN 3.,,,,,,,,,,,,,,,,,,,,,,,,,,,,(22 •解:过点 A 作 AE1 CD 垂足为点 E .,,,,,,,,,,,,,,,,,,,, (由题意得,AE = BC =28,Z EAD= 25°,/ EAC= 43° .,,,,,,,,,,,, (2分)在 Rt △ ADE 中,•• / DE• tan. EAD, •AE •- DE =tan25 28=0.47 28 :13.2 .,,,(3 分)在 Rt △ ACE 中,•• •• tan. EAC -CEAE ' • CE =tan4328 =0.93 28 : 26 .,,,(3 分)• DC =DE CE =13.2 26 : 39 (米). ,,,,,,,,,,,,,,,,,,(2分)1分) 1分)答:建筑物CD 的高度约为39米.23 . (1)证明:CDCA^CECB ,CE 二 CACD CB ,1分)•// ECA =/ DCB"厶—L —~% -厶—LaXZ55555555555555555555555555( 1分) • △ CAE^A CBD ,,,,,,,,,,,,,,,,,,,,,,,,,,( 1分) .^/ // ,,,,,,,,,,,,,,,,,,,,,,,,,,(1分)(2)证明:过点 C 作CG / AB 交AE 的延长线于点G.BE AB…EC CG ,(1分)BE ABAB AB• •'EC AC ,…CG AC ,( 1分)1分) * o/ / ^^^^G,,,,,,,,,,,,,,,,,,,,,,,,,,,(1分) T / G=/ BAG ••/ CAG=/ BAG ,”,”,”,””,”,(1分)•••/ CA =/ CBD / AFD=/ BFE • / AD =/ BEF ”,”,””(1分) • △ ADF^A AEB(1分)AD AFAB AD=AF AE .AE AB',,,,,,,,,,,,,,,,,,,(1分)224.解:(1 )•••抛物线 y = ax bx c a -0的对称轴为直线 X =1 ,( x — = 1,得 b - -2a . 2ac— 3a .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,(* * ^C (0, —3 a ).,,,,,,,,,,,,,,,,,,,,,,,,,, ,, ((2)T 点A B 关于直线x-1对称,•••点B 的坐标为(3, 0) A^^=4, a .,,,,,,,,,,,,,,,,,,,,,,,,,, ,, (1分) 1分) 1分) 1分)S.ABC -1 . AB OC , (2)1 4 3a =62 ,a =1,•b =-2 ,c =-3 ,5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 52y 二x - 2x -3 .,,,,, 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5( 1 分) ( 1 分)把点A (-1 , 0)代入y =ax2bx c,得a-b ■ c=0 ,(3)设点Q的坐标为(m 0).过点G作GHL x轴,垂足为点H.•••点G与点C,点F与点A关于点Q成中心对称,.• Q(=QG Q/=QI= m+1, QOQl= m, O(=Gb=3,•• QF= m+1, QOQ片m, OCG143,.'. OF= 2 m+1, HF= 1. I .当/ CG& 90° 时,可得/ FGH=Z GQI4Z OQC •m=9•Q的坐标为(9, 0).1分)• tan ._FGH =tan 一OQC ,HF OC GH OQ11n .当/ CFG= 90° 时,可得,tan/FGH =tan/OFC , HF OCGH ~OF1 _ 33 2m 1••• m=4 , Q 的坐标为(4, 0).( 川.当/ GCF= 90° 时, •••/ GCF /FCO<0°,「.此种情况不存在.,,,,,,,,,,,,,,,,, (综上所述,点Q 的坐标为(4, 0)或(9, 0). 25.解:(1)延长PC 交 BC 延长线于点E.设PD =x . •••/ PB &/ BPQ EB=EP ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (•••四边形ABC [是正方形, • AD / BC • PD : CE= QD QC= PQ QE TQD= Q C •- PD=C E PQ= QE ,,,,,,,,,,,,,,,,,,,,(1 • BE= EP= x +2,「. QP= — (x +2)(2 1分)1分)在 Rt △ PDQ 中 , 2 2 1 孑的/曰PD 2 QD 2 二 PQ 2, • •• x 2 12 x 1,解得x =12丿( 2 1 1—A —=— • AP 二 AD - PD = 2 , ••• tan. ABP =竺 3AB32 3°(2)过点B 作BHL PQ 垂足为点H,联结BQ ,,,,,,,, ••• AD / BC ,CBP=Z APBPB(=Z BPQAPB=Z HPB ,,,,,(•••/ A =Z PHB= 90°, • BH = AB =2 , •/ PB = PB , • Rt △ PA 比 Rt △ PHB■ ■ AP = PH =x.,,,,,,,,,,,,,,,,,,,,,,,,,,,,, (•/ BC = BH=2 , BQ = BQ Z C =Z BHQ= 90° ,• Rt △ BHQ Rt △ BCQ • QH = QC= y ,,,,,,,,,,,,,,,,, (1分)1分)1分)(1分)1分) 1分)1分)1分) 1分)2 2 2在 Rt △ PDQ 中 , •/ PD 2 QD 2 二 PQ 2,・.2-X 2-y x y ,4 -2x(3)存在,Z PB = 451分)1分)由(2)可得, 1 1■ PBHABH ■ HBQ HBC2 , 2 ,( 2 分)1 PBQ 二2 AB^.HBC /90 =45 1分)12。
每日一学:上海市上海市崇明区2018-2019学年九年级上学期数学期末考试试卷_压轴题解答
答案上海市上海市崇明区2018-2019学年九年级上学期数学期末考试试卷_压轴题
~~ 第1题 ~~
(2019蒙城.中考模拟) 如图,在△ABC 中,AB =AC =5,BC =6,AD ⊥BC , 垂足为D , 点P 是边AB 上的一个动点,过点
P 作PF ∥AC 交线段BD 于点F , 作PG ⊥AB 交AD 于点E , 交线段CD 于点G , 设BP =x .
(1) 用含x 的代数式表示线段DG 的长;
(2) 设△DEF 的面积为 y ,求y 与x 之间的函数关系式,并写出定义域;
(3) △PEF 能否为直角三角形?如果能,求出BP
的长;如果不能,请说明理由.
考点: 相似三角形的判定与性质
;相似三角形的应用;~~
第2题
~~(2019上海.九上期末) 如果从一个四边形一边上的点到对边的视角是直角,那么称该点为直角点
.例如,如图的四边形A BCD 中,点
在边CD 上,连结
、
,
,则点 为直角点.若点 、 分别为矩形
ABCD 边 、CD 上的直角点,且 , ,则线段 的长为________.
~~ 第3题 ~~
(2020安徽.中考模拟) 如果两圆的圆心距为2,其中一个圆的半径为3,另一个圆的半径
,那么这两个圆的位置关系
不可能是( )
A . 内含
B . 内切
C . 外离
D . 相交上海市上海市崇明区2018-2019学年九年级上学期数学期末考试试卷_压轴题解答
~~ 第1题 ~~
答案:
解析:
答案:
解析:
~~ 第3题 ~~
答案:C
解析:。