七年级数学下册全册导学案(人教版)
- 格式:doc
- 大小:28.00 KB
- 文档页数:18
实际问题与二元一次方程组第1课时实际问题与二元一次方程组(1)——探究1一、导学1.导入课题:前面我们结合实际问题,讨论了用方程组表示问题中的等量关系以及如何解方程组.本节课我们继续探究如何用二元一次方程组解决实际问题.2.学习目标:(1)会运用二元一次方程组解决一些实际生活中的应用问题,体会数学建模思想.(2)能根据题目中的已知量与未知量的联系正确设出未知数,列出方程组并求解.3.学习重、难点:重点:探究用二元一次方程组解决实际问题的过程.难点:寻找等量关系,并列出方程组,由方程组的解解释实际问题.4.自学指导:(1)自学内容:课本P99探究1.(2)自学时间:8分钟.(3)自学要求:同学们可以先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流.(4)探究提纲:①题目中哪些是已知量,哪些是未知量?有几个等量关系?②要检验饲养员李大叔的估计正确与否,就要求出每头大牛每天所需饲料和每头小牛每天所需饲料.③如果设每头大牛和每头小牛1天各约用饲料xkg和ykg,根据你发现的等量关系,可列方程组3015675 4220940.x yx y+=⎧⎨+=⎩④能列一元一次方程解这个问题吗?⑤请你解③中方程组,并交流一下你是如何解的.⑥饲养员李大叔的估计正确吗? 二、自学同学们可结合探究提纲相互研讨学习. 三、助学 1.师助生:(1)明了学情:教师深入课堂,了解学生的学习进度和自学中存在的问题.①能否找出等量关系,列出方程和方程组.②能否正确解出方程组. (2)差异指导:对少数学有困难和学法不当的学生进行点拨引导. 2.生助生:小组内学生相互提出学习疑点,相互帮助. 四、强化1.列方程组解应用题的基本思路和要注意的问题;列方程组解应用题的一般步骤.2.练习:某校七年级学生在会议室开会,每排坐12人,则有11人无座位;每排坐14人,则最后一排只有1人独坐.这间会议室共有座位多少排?该校七年级有多少学生?解:设这间会议室共有座位x 排,该校七年级有y 名学生,根据题意,得12111413.x y x y +=⎧⎨-=⎩,解得12155.x y =⎧⎨=⎩,答:这间会议室共有座位12排,该校七年级有155名学生. 五、评价1.学生学习的自我评价:各小组代表介绍本组学习收获和存在的问题.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收效进行点评. (2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思):本节课的重点是让学生经历和体验用方程组解决实际问题的过程,抓住实际问题的等量关系建立方程组模型.教学难点是利用相等关系将实际问题转化为数学问题.教学中,采取了让学生通过独立思考、自主探索、合作交流等方式,在思考、交流等数学活动中,养成严谨的思维方式和良好的学习习惯.(时间:12分钟 满分:100分)一、基础巩固(60分)1.(20分)现用190张铁皮做盒子,每张铁皮8个盒身或22个盒底,而一个盒身与两个盒底配成一个盒子.设用x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为(A )2.(20分)解下列方程组:解:(1)①+②,得4y=11. (2)整理,得解得114y =.89173 2.x y x y +=⎧⎨-=-⎩,①② 把114y =代入①, ①+②×3,得11x=11. 得11354x -=. 解得x=1.解得3112x =.把x=1代入②,得1-3y=-2. ∴这个方程组的解为解得y=1.311211.4x y ⎧⎪=⎨⎪=⎪⎪⎩, ∴这个方程组的解为11.x y =⎧⎨=⎩,3.(20分)一支部队第一天行军4h ,第二天行军5h ,两天共行军98km ,且第一天比第二天少走2km ,第一天和第二天行军的平均速度各是多少?解:设第一天行军的平均速度为xkm/h,第二天行军的平均速度为ykm/h.由题意,得4598 425x yx y+=⎧⎨+=⎩,,①②①+②,得8x=96,解得x=12,把x=12代入①,得48+5y=98. 解得y=10.∴这个方程组的解为1210. xy=⎧⎨=⎩,答:第一天行军的平均速度为12km/h,第二天行军的平均速度为10km/h.二、综合运用(20分)4.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?解:设大车一次可以运货x吨,小车一次可以运货y吨.由题意,得2315.5 5635.x yx y+=⎧⎨+=⎩,①②②-①×2,得x=4.把x=4代入①,得4×2+3y=15.5.解得y=2.5.∴3x+5y=3×4+5×2.5=24.5.答:3辆大车与5辆小车一次可以运货24.5吨.三、拓展延伸(20分)5.某家商店的帐目记录显示,某天卖出39支牙刷和21盒牙膏,收入396元;另一天,以同样的价格卖出同样的52支牙刷和28盒牙膏,收入518元.这个记录是否有误?如果有误,请说明理由.解:有误,理由:设一支牙刷的价格为x元,一盒牙膏的价格为y元.由题意,得39213965228518x yx y+=⎧⎨+=⎩,,即137132137129.5.x yx y+=⎧⎨+=⎩,方程组无解.∴这个记录有误.实际问题与二元一次方程组第2课时实际问题与二元一次方程组(2)——探究2一、导学1.导入课题:上节课我们学习了运用方程组解决一些实际问题,这节课我们继续学习建立二元一次方程组的数学模型解应用题.2.学习目标:(1)在对各类应用题的解答过程中,学会构建二元一次方程组的数学模型.(2)养成自觉反思求解过程和自觉检验方程的解是否正确的良好习惯.3.学习重点、难点:运用二元一次方程组解决有关设计的应用题.4.自学指导:(1)自学内容:课本P99探究2.(2)自学时间:10分钟.(3)自学要求:画出示意图,借助图形直观地分析理解题意.(4)探究提纲:①这里研究的实际上是长方形的面积的分割问题,你能画出示意图来帮助自己理解吗?②把一个长方形分成两个小长方形,有哪些分割方式?若保持宽不变,把长分成两段(即竖向分割,如上图所示),左边种植甲种作物,右边种植乙种作物,设AE=xm,BE=ym.(a)根据原长方形的长为200m,可列出方程:x+y=200.(b)因为长方形宽为100m,所以两小长方形面积分别为100xm2,100ym2,又因为甲、乙两种作物的单位面积产量比为1∶2,所以甲、乙两种作物的总产量比可表示为100x∶200y,于是再由甲、乙两种作物的总产量比为3∶4,列出方程:100x∶200y=3∶4.③你能求出由②中(a)、(b)的方程联立组成的方程组的解吗?④根据求出的结果应如何表述你的种植方案?⑤你还能设计其他种植方案吗(如右图)?二、自学同学们结合探究提纲相互研讨学习.三、助学1.师助生:(1)明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题.①能否顺利表示出甲、乙两种作物的总产量的比.②能否求出方程组的解并规范作答.(2)差异指导:对少数学有困难和学法不当的学生进行点拨引导.2.生助生:小组内学生之间相互交流、研讨、互帮互学.四、强化1.列二元一次方程组解应用题的一般步骤.2.展示设计出的其他种植方案,并相互交流.五、评价1.学生的自我评价:各小组代表介绍本组的学习得与失.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课用二元一次方程组解决问题的教学过程充分体现了以学生为主体,让学生积极参与的教学模式,充分发挥了学生的主动意识.在解决问题过程中学生的各种解题方法,扩大了学生的思维能力,通过让学生体验解题的技巧,从而树立了学生学习的信心,激发了学生学习的积极性,让学生真正成为课堂的主人.(时间:12分钟满分:100分)一、基础巩固(60分)1.(20分)如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC的度数分别为x°、y°。
7.2 坐标方法的简单应用7.2.1 用坐标表示地理位置一、新课导入1.导入课题:不管是出差办事,还是出去旅游,人们都愿意带上一幅地图,它给人们出行带来了很大的方便.你知道怎样用坐标表示地理位置吗?这就是我们本节课要学习的内容.2.学习目标:(1)会运用平面直角坐标系来确定一个点或某地的地理位置.(2)会运用方位角和距离表示平面内物体的位置.(3)能根据实际问题和背景建立恰当的坐标系来描述某地的地理位置.3.学习重、难点:用坐标表示地理位置.二、分层学习1.自学指导:(1)自学范围:课本P73至P74“归纳”为止的内容.(2)自学时间:8分钟.(3)自学要求:边看课本,边动手画图.(4)自学参考提纲:①a.课本P73探究题中,以学校所在的位置为原点,分别以正东方向为x轴正方向,以正北方向为y轴的正方向建立直角坐标系,规定一个单位长度代表1m长,若出校门向东走1500m,再向北走2000m是小刚家,则小刚家的位置记作(1500,2000).b.出校门向西走2000m,再向北走3500m,最后向东走500m是小强家,则小强家的位置应记作(-1500,3500).c.出校门向南走1000m,再向东走3000m,最后向南走750m是小敏家,则小敏家的位置应记作(3000,-1750).d.在课本P74图7.2-2中标出小强、小敏家的位置.②若平面直角坐标系的建立方式不变,但规定一个单位长度代表100m长,则小刚、小强、小敏家的位置的坐标分别为(15,20),(-15,35),(30,-17.5).③以学校为原点建立坐标系,有何优点?④试归纳:利用平面直角坐标系绘制区域内一些地点分布情况平面图的具体步骤.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂,了解学生的自学进度和在认知方法、过程、结果方面存在的问题.②差异指导:对个别学习有困难的学生进行点拨引导.(2)生助生:小组内学生之间相互展示和交流.4.强化:(1)利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程:①建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;②根据具体问题确定单位长度并在坐标轴上标出来;③在坐标平面内画出这些点,写出各点的坐标和相应地点的名称.(2)练习:课本P75“练习”第1题.1.自学指导:(1)自学内容:课本P74“归纳”以下至P75“练习”之前的内容.(2)自学时间:5分钟.(3)自学要求:按题目条件,结合方位图进行分析.(4)自学参考提纲:①在课本P74“思考”中,已知救生船B在遇险船A的北偏东60°的方向上,那么反过来,遇险船A在救生船B的南偏西60°的方向上,又已知两船相距35n mile,所以若以遇险船A为参照点,则救生船B的位置就可用北偏东60°,35n mile来表示;若以救生船B为参照点,则遇险船A的位置就可用南偏西60°,35n mile来表示.②在航海中要表示物体的位置,除了用经纬度表示以外,还可以用方位角和距离来表示.③练习:课本P75“练习”第2题.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况,关注学生会不会画方位图,并根据图形回答物体或点的方位.②差异指导:对个别学习有困难的学生进行点拨引导.(2)生助生:小组内学生之间相互展示和交流.4.强化:用方位角和距离表示平面内物体的位置的方法.三、评价1.学生的自我评价:各小组长汇报本组的学习收获和不足之处.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课的设计是从学生感兴趣的生活实例入手,遵循学生的认知规律,在学生自主探究,讨论交流的基础上进行归纳总结,使学生对知识的认识从感性上升到理性.以实际问题为载体,在探究解决问题策略的过程中,让学生体会平面直角坐标系在生活中的作用,感悟到数形结合的方法,增强应用数学的意识,提高数学建模的能力;同时还丰富了学生数学活动的经验,让学生学会探索,学会学习.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)边长为300米的正方形广场四个顶点有四家商场,如果商场A 的坐标是(150,150),商场C的坐标是C(-150,-150),那么商场B、D的坐标分别是(150,-150)或(-150,150).2.(15分)如图,请建立适当的平面直角坐标系,写出各地点的坐标.解:如图,以学校A为原点,AB所在直线为x轴,垂直于x轴于点A的直线为y轴,表格中1小格代表1个单位长度.A(0,0),B(5,0),C(8,0),D(2,3), E(-2,4),F(-7,0),G(-1,-2),H(3,-3).3.(15分)如图,在一次活动中,位于A处的1班准备前往相距5km的B处与2班会合,如何用方向和距离描述2班相对于1班的位置?反过来,如何用方向和距离描述1班相对于2班的位置?解:若以1班为参照点,则2班的位置为南偏西40°,5km;若以2班为参照点,则1班的位置为北偏东40°,5km.4.(20分)体操表演时,甲、乙、丙的位置如图所示,甲说:“我的位置用(-1,1)表示.”那么乙、丙的位置该怎样表示呢?解:由题意可得,可建立如图所示的平面直角坐标系.乙(-3,-1),丙(1,2).二、综合运用(20分)5.从A点出发,向南走100米,再向西走300米到M;从B出发,向南走200米,再向西走200米也到M,那么A在B的什么方向?B在M的什么方向?解:由题意可得:A在B的南偏东45°,1002米处,B在M北偏东45°,2002米处.三、拓展延伸(20分)6.如图,在三角形AOB中,A,B两点的坐标分别为(2,4),(6,2),求三角形AOB的面积.解:过点A作x轴的平行线交y轴于点C,过点B作y轴的平行线交x轴于点D,交CA的延长线于点E,∴E(6,4).∴S△AOB =S长方形ODEC -S△OBD-S△OAC-S△ABE=4×6-12×6×2-12×2×4-12×2×4=10.。
七年级数学下册全册导学案(新版人教版)本资料为woRD文档,请点击下载地址下载全文下载地址:统计调查(二)【学习目标】了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析.【学习重点】对概念的理解及对数据收集整理【学习难点】总体概念的理解和随机抽样的合理性一、【自主学习】、学前准备:自学课本153—155页,写出你的困惑:二、【合作探究】如果要对某校XX名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?.抽样调查的意义在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查抽样调查:抽取一部分对象进行调查的方法,叫抽样调查.2.总体、个体、样本、样本容量的意义总体:所要考察对象的全体.个体:总体的每一个考察对象叫个体.样本:抽取的部分个体叫做一个样本.样本容量:样本中个体的数目.3.抽样的注意事项:①抽样调查要具有广泛性和代表性,即样本容量要恰当.样本容量过少,那么不能很好地反映总体的情况,比如要调查XX名学生对电视节目的喜爱情况,若抽取的样本容量为几名学生就不能反映XX名学生的喜爱情况;如果抽取的学生人数过多,必然花费大量的时间、精力,达不到省时省力的目的.再如要调查60岁以上的老人的生病情况,在医院去抽取一些60岁以上的住院病人,它又不具有代表性,则应从60岁以上的老人册中任意抽取部分老人的生病情况来反映总体的60岁老人的生病情况,才能达到目的.②抽取的样本要有随机性.为了使样本能较好地反映总体的情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体都有相等的机会被抽到,所谓随机就是机会相等.例如在XX名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.当然还可以在上学或放学时,在学校门口随机进行调查;或则每隔10个人调查一个,直到调查满确定的样本容量.总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此随机抽样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高.4.抽样调查100名学生最喜爱节目情况如下:节目类型划记人数百分比A新闻8B体育20c动画30D娱乐36E戏曲6合计00请你填充上表,并指出最好选择什么统计图来描述较好.三【达标测试】(A)、1、调查夏季市场销售的凉鞋质量情况适合采用_______________调查.2、了解一个班级学生的数学成绩是否有提高适合采用___________调查.3、数据处理的一般过程是_______________________________________.4、抽查我校一月份5天的用电量,结果如下:(单位:度)120,160,150,140,150,根据以上数据估计我校1月份用电总量为__________度.5、庆元宵校园歌手大奖赛,8位评委给6号选手的评分如下:9.8,9.9,9.5,9.7,9.4,9.7,9.6,9.6在去掉一个最高分和一个最低分后,6号选手最后平均分是__________________________.(B)、1、下列调查方式中,合适的是()A.要了解约90万顶救灾帐蓬的质量,采用普查的方式B.要了解外地游客对旅游景点“x疆民街”的满意程度,采用抽样调查的方式c.要保证“神舟七号”飞船成功发射,对主要零部件的检查采用抽样调查的方式D.要了解全疆初中学生的业余爱好,采用普查的方式2、为了了解某校七年级500名学生的身高情况,从中抽取了100名学生进行测量,这100名学生的身高是()A总体的一个样本B个体c总体D样本容量(即样本中个体的数量)4、下列适合抽样调查而不适合全面调查的是()A了解一批灯泡的使用寿命B了解截止XX年底中国的总人口C了解全市中学生电脑打字速度D了解全市七年级数学期末考试成绩5、甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元.若将甲种糖果8千克,乙种糖果10千克,丙种糖果3千克混合,则售价应定为每千克()元,才能与三种糖果分开卖时卖一样多的钱(保留一位小数)A6.7B6.8c7.5D8.66、下列调查中,样本最具有代表性的是()A在重点中学调查全市高一学生的数学水平。
集体备课导学案学段初中年级七年级学科数学单元第8单元课题8.1二元一次方程组课型新授主备学校初审人终审人主备人合作H日队课标依据掌握二元一次方程的概念。
教学目标1、使学生了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。
教学重点1、二元一次方程(组)的含义;2、检验一对数是否是某个二元一次方程(组)的解。
教学难点检验一对数是否是某个二元一次方程(组)的解。
导学环节课堂流程时间任务驱动问题导学学法指导知识链接呈现目标2分小黑板呈现目标自主学习温故知新5分认真阅读课本88-89页,理解掌握以下概念1、一元一次方程:只含有___未知数,且未知数的次数都是___的方程。
ax=b(a#O)2、方程的解:能使方程等号两边相等的的值。
3、二元一次方程:方程中含有______未知数,并且_____________的次数都是—O一般式:ax+by二c(a乂0,b尹0)4、二元一次方程组:把具有__________的______二元一次方程用______合在一起,就组成了一个二元一次方程组。
5、二元一次方程的解:一般地,使二元一次方程两边的值相等的——未知数的值,叫做二元一次方程的解。
二元一次方程有个解。
6、二元一次方程组的解:一般地,二元一次让学生认真阅读方程的概念,一元次方程的概念及一元次方程解的概念。
方程组的两个方程的________,叫做二元一次方程组的解。
(能使方程组中两个方程等号两边都相等两个未知数的值。
)二元一次方程组有________个解。
互助释疑3分我的疑难问题。
小组内互相帮助解决.探究出招8分1、课本89业“探究”2、二元一次方程的一般式:ax+by=c(a尹0,b#0)用含x的式子表示y,y=_____________用含y的式子表示x,x=3、方程3x+2y=6,有_一个未知数,且未知数都是—次,因此这个方程是____元_____次方程。
新人教版七年级数学下册第八章《二元一次方程组复习》导学案
复习案 x+y=5 1.方程组 x-y= -1 的解是
2.若()0322
=+-+-y x x ,则x= ,y= 3.若773+n m b a
和m n b a 2425-是同类项,则m= ,n= 4.若832423=--++b a b a y x 是关于x,y 的二元一次方程,则a= ,b=.
5.若0,0≠≠b a ,且421b a y x +--与y x b a 326+的和等于0,则x= ,y=
6.当a ,b 时,方程2332=++ay x b 是关于x,y 的二元一次方程。
7.二元一次方程4x-3y+5=0时,用含x 的代数式表示y ,则y= ,用含y 的代数式表示x ,则x=
8.已知 x=5+t 用x 的代数式表示y ,则y=
y+1=3-t
9.已知8++y x 与2+-y x 互为相反数,则x= ,y=
知新案
一.解方程组举例
例1. 解方程组 90
725432=-+=-y x y x
7x+9y=m
例2. 已知关于x,y 的方程组 的解也是2x+y= -6的解,求m 的值。
3x-y+29=0
4x+3y=1
例3.若方程组的解x和y的值相等,那么k的值等于()kx+(k-1)y=3
(A)4 (B)10 (C)11 (D)12
x:2=y:3
练习:解方程组
3x-5y=9
学习反思:。
七年级数学下册《相交线与平行线》导学案及课后练习《相交线与平行线》课后作业一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角.3.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则(1)与∠BOD 互补的角有________________________;(2)与∠BOD 互余的角有________________________;(3)与∠EOA 互余的角有________________________;(4)若∠BOD =42°17′,则∠AOD =__________;∠EOD =______;∠AOE =______.二、选择题4.如图,直线AB 与CD 相交于点O ,若A O D A O C ∠=∠31,则∠BOD 的度数为( ).(A)30°(B)45°(C)60°(D)135°三、 解答题5.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB 的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?6.已知:如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COB ,∠AOD ∶∠DOE =4∶1.求∠AOF 的度数.《相交线与平行线》课后作业参考答案1.公共,反向延长线.2.一个公共,反向延长线.3..(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.4.B.5.只要延长BO(或AO)至C,测出∠AOB的邻补角∠AOC(或∠BOC)的大小后,就可知道∠AOB的度数.6.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF=4x=120°.。
新人教版七年级数学(下册)第九章导学案第九章不等式与不等式组课题 9.1.1不等式及其解集【学习目标】了解不等式的解、解集的概念,会在数轴上表示出不等式的解集.【学习重点】不等式的解集的概念及在数轴上表示不等式的解集的方法。
【学习难点】不等式的解集的概念。
【导学指导】一、知识链接1、什么叫等式?2、什么叫方程?什么叫方程的解?3.问题1:一辆匀速行驶的汽车在11:20时距离A地50千米。
(1)要在12:00时刚好驶过A地,车速应为多少?(2)要在12:00以前驶过A地,车速应该具备什么条件?若设车速为每小时x千米,能用一个式子表示吗?二、自主探究阅读课本114-115页,回答下面的问题1.不等式:_____________________________________2.不等式的解:___________________________________________3.思考:判断下列数中哪些是不等式5032x的解:76,73,79,80,74.9,75.1,90,60你能找出这个不等式其他的解吗?它到底有多少个解?你从中发现了什么规律?4.不等式的解集:_____________________________________5.解不等式:_____________________________________6、不等式的解集在数轴上的表示:(1)x>1 (2) x<3;【课堂练习】:1.课本115页练习1、2、32.下列式子中哪些是不等式?(1)a +b=b +a (2)-3>-5 (3)x ≠1 (4)x+3>6 (5)2m <n (6)2x -33.下列式子中:①-5<0 ②2x=3 ③3x-1>2 ④ 4x-2y ≤0 ⑤ x 2-3x+2>0 ⑥x-2y 其中属于不等式的是____________,属于一元一次不等式的是__________(填序号) 【要点归纳】:【拓展训练】:1、绝对值小于3的非负整数有( )A .1、2B .0、1C .0、1、2D .0、1、32、下列选项中,正确的是( ) A . 不是负数,则 B . 是大于0的数,则C .不小于-1,则D .是负数,则3、用数轴表示不等式x<34的解集正确的是( )ABCD4.在数轴上表示下列不等式的解集:(1)x>2; (2) x<4; (3)-2<x<3【课堂小结】:课题 9.1.2 不等式的性质 (1)【学习目标】掌握不等式的性质;会根据“不等式性质”解简单的一元一次不等式,并能在数轴上表示其解集;【学习重点】 理解并掌握不等式的性质并运用它正确地解一元一次不等式。
第五章相交线与平行线5.1相交线5.1.1相交线一、导学1.导入课题:(1)观察课本图5.1-1,并阅读有关内容,体会说明:图中“剪刀”可以看作:两条相交线,画出示意图为: .(2)那么,这样的两条直线的位置关系和形成的角就是我们本节课所要研究的内容.2.学习目标:(1)能说出相交线、邻补角、对顶角的意义以及对顶角的性质.(2)能够灵活运用这几个意义和性质解决相关问题.3.学习重、难点:重点:邻补角、对顶角的概念,对顶角的性质.难点:推出“对顶角相等”的性质.二、分层学习4.自学指导:(1)自学内容:P2至P3练习前的内容.(2)自学时间:5分钟.(3)自学要求:①仔细阅读课文内容,图文比照.②动手比划,联系实际作图.(4)自学参考提纲:①如图1,直线AB、CD相交于O点,形成四个角,∠1和∠2有怎样的位置关系?a.∠1和∠2有一条公共边OA,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.b.图1中,互为邻补角的还有∠2和∠3,∠3和∠4,∠4和∠1.c.图2的各图中,∠1和∠2是邻补角吗?为什么?答案:A.不是,没有公共边.B.不是,另一边不是互为反向延长线.C.是,有公共边,且另一边互为反向延长线.②图1中,∠1和∠3有怎样的位置关系?a.∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线.具有这种位置关系的两个角,互为对顶角,图中互为对顶角的还有∠2和∠4.b.图3的各图中,∠1和∠2是对顶角吗?为什么?答案:B、E所对应图中的∠1和∠2是对顶角.c.请分别画出图4中∠1的对顶角和∠2的邻补角.d.如图5,三条直线AB、CD、EF相交于点O,∠AOE的对顶角是∠BOF,∠EOD的邻补角是∠FOD和∠COE.③a.在图1中,∠1与∠3有怎样的数量关系?答案:∠1=∠3b.在图1中,∠2与∠3有怎样的数量关系?你是怎样得到的?能用几何语言推理吗?答案:∠2+∠3=180°④在例1中,a.若把条件“∠1=40°”改成“∠1+∠3=80°”,你能求出各个角的度数吗?b.若把条件“∠1=40°”改成“∠1∶∠2=2∶7”,你能求出各个角的度数吗?二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:深入学生自学过程之中,了解他们的学习情况:①是否知道邻补角、对顶角的位置关系,从而能从图形中准确予以识别.②能否用推理的形式说明“对顶角相等”.(2)差异指导:对在自学中有认识偏差和有疑难问题的同学进行点拨引导.2.生助生:在小组中相互交流指导,运用“兵教兵”.四、强化1.邻补角、对顶角的定义以及对顶角的性质.2.练习:(1)下列说法对不对?①邻补角可以看成是平角被过它顶点的一条射线分成的两个角.(√)②邻补角是互补的两个角,互补的两个角是邻补角.(×)③因为对顶角相等,所以相等的两个角是对顶角.(×)(2)课本P3“练习”.五、评价1.学生学习的自我评价:各小组代表总结学习收获和存在的问题与疑点.2.教师对学生的评价:(1)表现性评价:对学生在学习过程中的态度、方法、成效和存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课通过画图量角,让学生有对对顶角相等、邻补角互补知识的感性认识.学生对概念的理解及简单的一些推理说明基本能掌握.对于课堂上个别学生在解题过程中出现乱、繁的现象,课后应及时补差补缺.争取让每个孩子掌握这些概念及推理说明方法.(时间:12分钟满分:100分)一、基础巩固(70分)1.(20分)如图,直线c分别与直线a、b相交形成8个角,写出图中满足下列条件的角.(1)∠1的邻补角有∠2,∠4;(2)∠3的邻补角有∠2,∠4;(3)∠5的邻补角有∠6,∠8;(4)∠7的邻补角有∠6,∠8;(5)对顶角有∠1和∠3,∠2和∠4,∠5和∠7,∠6和∠8.第1题图第2题图2.(15分)如图所示:(1)邻补角有∠5和∠6,∠1和∠2,∠2和∠3,∠3和∠4,∠4和∠1;(2)对顶角有∠1和∠3,∠2和∠4.3.(15分)如图,直线AB、CD相交于点O,∠BOC的对顶角是∠AOD,邻补角是∠AOC和∠BOD.若∠AOC=80°,∠1=30°,则∠2的度数是50°.第3题图第4题图4.(20分)如图,直线AB、CD相交于点O,∠AOE=90°,如果∠1=20°,那么∠2=20°,∠3=70°,∠4=160°.二、综合运用(20分)5.如图,直线AB,CD,EF相交于点O.(1)写出∠AOC,∠BOE的邻补角;(2)写出∠DOA,∠EOC的对顶角;(3)如果∠AOC=50°,求∠BOD,∠COB的度数.解:(1)∠AOC的邻补角:∠BOC,∠AOD;∠BOE的邻补角:∠AOE,∠BOF;(2)∠DOA的对顶角是∠BOC;∠EOC的对顶角是∠DOF;(3)因为∠BOD是∠AOC的对顶角,所以∠BOD=∠AOC=50°; 因为∠COB是∠AOC的邻补角,所以∠COB=180°-∠AOC=130°.三、拓展延伸(10分)6.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC∶∠EOD=2∶3,求∠BOD的度数.解:(1)因为OA平分∠EOC,所以∠AOC=12∠EOC=35°,又因为∠BOD是∠AOC的对顶角,所以∠BOD=∠AOC=35°; (2)因为∠EOC是∠EOD的邻补角,且∠EOC∶∠EOD=2∶3,所以∠EOC=72°,所以∠AOC=12∠EOC=36°,所以∠BOD=∠AOC=36°.5.1相交线5.1.2垂线第1课时垂线一、新课导入1.导入课题:观察周围的景物:墙与地面、桌腿与地面、公路两边的电线杆与地面的位置关系都给我们垂直的印象,导出课题——垂线.2.学习目标:(1)能说出垂线、垂线段的意义、会用三角尺或量角器过一点画已知直线的垂线.(2)记住垂线的性质并会利用所学知识进行简单的推理.3.学习重、难点:重点:正确理解垂线、垂线段的概念.难点:能利用垂线的性质进行简单的推理.二、分层学习1.自学指导:(1)自学内容:课本P3至P4“探究”之前的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读教材,对重、难点内容做好标记.不清楚,不懂的地方可以小组讨论.(4)自学参考提纲:①垂线的定义:结合相交线模型和图5.1-4体会当∠α=90°时,a和b互相垂直,这说明:当两条直线相交成的四个角中,有一个角是90°时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.②垂线的定义推理过程(如图1):因为AB⊥CD(已知),所以∠AOC=∠AOD=∠BOC=∠BOD=90°(垂直定义).反之因为∠AOC=90°(已知),所以AB⊥CD(垂直定义).③如图2,直线a ⊥b,∠1 = 35°,则∠2 =55°.④当两条直线相交所成的四个角相等时,这两条直线有什么位置关系?为什么?互相垂直.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师在学生自学时巡视课堂,关注学生的学习进度和学习中存在的问题.②差异指导:对在自学中遇到疑难或认识有偏差的学生进行点拨引导.(2)生助生:学生通过小组交流探讨各自遇到的问题.4.强化:(1)垂线、垂线段的概念.(2)举例说明生活中的垂直现象.1.自学指导:(1)自学内容:课本P5练习之前的内容.(2)自学时间:3分钟.(3)自学要求:根据探究提纲动手操作画图;在动手过程中互助交流作图方法.(4)探究提纲:①如图,用三角尺或量角器画已知直线l的垂线,这样的垂线能画几条?小组内交流,明确直线l的垂线有无数条,即垂线存在,但位置有不确定性.②如图1,在直线l上取一点A,过点A画直线l的垂线,能画几条?如图2,经过直线l外一点B画直线l的垂线,这样的垂线能画几条?③从②中你能得出什么结论?在同一平面内,过一点有且只有一条直线与已知直线垂直.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否会列表,是否理解表中的数据的意义以及画图中存在的问题.②差异指导:根据学情分类指导.(2)生助生:同桌之间、小组内交流、研讨.4.强化:(1)用三角尺过已知点画已知直线的垂线的方法:①一边靠线;②移动找点;③画垂线.(2)垂线的存在性和唯一性:在同一平面上,过一点有且只有一条直线与已知直线垂直.(3)练习:画一条线段或射线的垂线,就是画它们所在直线的垂线,如图,请你过点P画出射线AB或线段AB的垂线.三、评价1.学生学习的自我评价:各小组长谈学习收获和存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中表现出的态度、情感、方法和成效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在这堂课中,学生的主体地位突出了,真正亲历了知识形成的全过程.在自主学习、同桌合作交流的活动中升华了对知识的理解.教学实践也证明,在自由探索与合作交流的学习方式中,学生认识活动的强度和力度要比单纯接受知识大得多.在本节课实施中的每一个学习活动,都以学生个性思维、自我感悟为前提多次设计了让学生自主探索、合作交流的时间与空间.通过学生和谐有效地互动,强化了学生的自主学习意识.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)如图所示,若AB⊥CD于点O,则∠AOD=90°;若∠BOD=90°,则AB⊥CD.2.(10分)如图所示,已知AO⊥BC于点O,那么∠1与∠2的关系是∠1+∠2=90°.第1题图第2题图第3题图第4题图3.(10分)如图,OA⊥OB,OC是一条射线,若∠AOC=120°,则∠BOC=30°.4.(10分)如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是(B)A.26°B.64°C.54°D.以上答案都不对5.(15分)如图,直线AB、CD相交于点O,EO⊥AB,垂足为O,∠EOC =35°,求∠AOD和∠BOD的度数.解:因为EO⊥AB,所以∠EOB=∠EOA=90°,所以∠COB=∠COE+∠EOB=125°.又因为∠AOD=∠BOC(对顶角相等),所以∠AOD=125°.因为∠AOC=∠AOE-∠COE=55°,所以∠BOD=∠AOC=55°(对顶角相等).二、综合应用(20分)6.如图,AB⊥l,BC⊥l,B为垂足,那么A、B、C三点在同一直线上吗?为什么?解:A、B、C三点在同一直线上.∵AB⊥l,BC⊥l.且交点都为B.∴A、B、C三点在同一直线上(在同一平面内,过一点有且只有一条直线与已知直线垂直).三、拓展延伸(20分)7.如图,直线AB,CD相交于O点,OM⊥AB于O.(1)若∠1=∠2,求∠NOD;(2)若∠BOC=4∠1,求∠AOC与∠MOD.解:(1)因为OM⊥AB,所以∠1+∠AOC=90°.又∠1=∠2,所以∠2+∠AOC=90°,所以∠NOD=180°-(∠2+∠AOC)=180°-90°=90°.(2)由已知条件∠BOC=4∠1,即90°+∠1=4∠1,可得∠1=30°,所以∠AOC=90°-30°=60°,所以由对顶角相等可得∠BOD=60°,所以∠MOD=90°+∠BOD=150°.5.1.2垂线第2课时垂线段一、新课导入1.导入课题:如图所示,在铁路旁边有一个村庄A,现要建一个火车站,为了使此村庄的人乘火车最方便(即距离最近),应怎样选择火车站的位置呢?学完这节课,相信你就会明白!2.学习目标:(1)能说出垂线段的意义和点到直线的距离的含义.(2)记住垂线段的性质,并能利用它进行简单的推理.3.学习重、难点:重点:正确理解垂线段的概念和点到直线的距离.难点:利用垂线段的性质进行简单的推理.4.自学指导(1)自学内容:课本P5的练习以下的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读教材,联系生活实际体会并测量.(4)自学参考提纲:①什么叫垂线段?②在课本P5“探究”中,先通过目测估计最短的线段是PO,再通过度量或叠合法比较验证你的结论.③由②可得到:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.④点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如右图,PO的长度叫做点P到直线l的距离.PO、PA、PB、PC中最短的线段是PO.⑤在课本P5“思考”图中画出水渠开挖的路线,若图中比例尺为1∶100000,水渠大约要挖多长?二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:教师参与到学生自学过程中,了解学生的认知情况.(2)差异指导:对个别学习有困难和认识有偏差的学生进行点拨和指导.2.生助生:小组内相互交流、探讨.四、强化1.垂线段最短.2.点到直线的距离.3.练习:如右图,三角形ABC中,∠C=90°.(1)分别指出点A到直线BC,点B到直线AC的距离是哪些线段?ACBC (2)三条边AB、AC、BC中哪条边最长?为什么?AB五、评价1.学生学习的自我评价:各学习小组长谈本组学习方式和收效及存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、成效以及存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在这堂课中,我们从学生熟悉的生活实例入手,探讨了有关垂线段的意义和点到直线的距离问题,让学生真正经历了知识形成的全过程.同时课堂强调了学生的动手操作,让学生经历大胆猜测,合作交流等学习过程,为后面的学习打下坚实的基础.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)体育课上,老师测量跳远成绩的依据是(C)A.垂直的定义B.两点之间,线段最短C.垂线段最短D.两点确定一条直线2.(10分)点到直线的距离是指(D)A.直线外一点到这条直线上一点之间的距离B.直线外或直线上一点到直线的垂线段的长度C.直线外一点到这条直线的垂线的长度D.直线外一点到这条直线的垂线段的长度3.(10分)P是直线AB外一点,过点P作PO⊥AB,垂足为O,若C为直线AB上任意一点,则线段PC与线段PO的大小关系是(C)A.PC>POB.PC<POC.PC≥POD.PC≤PO4.(10分)如图,三角形ABC中,∠C=90°,AC=3,点P是BC边上一动点,则AP的长不可能是(B)A.3B.2.8C.3.5D.45.(20分)如图所示,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画直线CD的垂线,与AB相交于F点;(3)线段PE,PO,PF三者中最短的是PE,依据是垂线段最短.二、综合应用(20分)6.一辆汽车在直线形的公路AB上由A向B行驶,C、D是分别位于公路AB两侧的加油站.(1)设汽车行驶到公路AB上点M的位置时,距离加油站C最近;行驶到点N的位置时,距离加油站D最近,请在图中分别画出点M、N的位置;(2)当汽车从A出发向B行驶时,在公路AB的哪一段路上距离C、D两加油站都越来越近?在哪一段路上距离加油站D越来越近,而离加油站C却越来越远?解:(1)如图.(2)在公路AB的AM段距离C、D两加油站都越来越近,在MN段距离加油站D越来越近,而加油站C却越来越远.三、拓展延伸(20分)7.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.解:(1)∵两点之间线段最短,∴连接AD,BC交于H,则H为蓄水池位置,它到四个村庄距离之和最小.(2)过H作HG⊥EF,垂足为G.“过直线外一点与直线各点的连线中,垂线段最短”是把河水引入蓄水池H 中开渠最短的根据.5.1相交线5.1.3同位角、内错角、同旁内角一、导学1.导入课题:(1)如图1,直线AB与CD相交于点O,在∠1,∠2,∠3,∠4中,找出所有的对顶角和邻补角.(2)如图2,若直线AB、CD都和EF相交(即直线AB、CD被直线EF 所截),共有8个小于平角的角(即三线八角),这节课,我们来研究没有公共顶点的两个角的关系(板书课题).2.学习目标(1)能说出同位角、内错角、同旁内角的概念.(2)能结合图形正确找出同位角、内错角、同旁内角.3.学习重、难点:重点:同位角、内错角、同旁内角的认识.难点:在复杂图形中识别同位角、内错角、同旁内角,正确分辨是由哪两条直线被哪条直线所截而形成的.4.自学指导:(1)自学内容:课本P6~P7例题.(2)自学时间:10分钟.(3)自学要求:认真阅读教材,找出各种位置关系的两个角的特征,不懂的地方可通过组内讨论解决.(4)自学参考提纲:①图2中∠1与∠5,这两个角分别在直线AB、CD的上方,并且都在直线EF的右侧,具有这种位置关系的一对角叫做同位角,像这样的角还有∠2和∠6,∠3和∠7,∠4和∠8.②图2中∠3与∠5,这两个角都在直线AB、CD之间,并且分别在直线EF 两侧,具有这种位置关系的一对角叫做内错角,像这样的角还有∠4和∠6.③图2中∠3与∠6,这两个角都在直线AB、CD之间,且它们在直线EF 的同侧,具有这种位置关系的一对角叫做同旁内角,像这样的角还有∠4和∠5.④分别指出下图中的同位角、内错角和同旁内角.答案:同位角:∠2与∠6,∠4与∠8,∠3与∠7,∠1与∠5内错角:∠3与∠6,∠4与∠5同旁内角:∠3与∠5,∠4与∠6答案:同位角:∠1与∠3,,∠2与∠4,同旁内角:∠2与∠3⑤如图,∠B与哪个角是内错角,与哪个角是同旁内角?它们分别是哪两条直线被哪一条直线所截形成的?对∠C进行同样的讨论.解:∠B与∠DAB是内错角,与∠BAE是同旁内角,它们都是由DE与BC被AB所截形成的,还与∠BAC是同旁内角,它们是由AC、BC被BA所截形成的.∠C与∠EAC是内错角,与∠DAC是同旁内角,它们都是由DE与BC被AC所截形成的.还与∠BAC是同旁内角,它们是由AB、BC被AC所截形成的.二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:深入到学生自学过程中,了解学习进度,关注学生对具有这三类关系的两个角的位置特征的判断情况.(2)差异指导:对个别两个角的位置特征把握不清的学生进行点拨引导.2.生助生:小组相互交流、纠正.四、强化1.同位角、内错角、同旁内角的概念.2.归纳例题的解题要领.3.练习:(1)如图①,∠2与∠3是邻补角,∠2和∠4是内错角,∠2与∠5是同位角,∠2与∠8是同位角,∠2与∠6是同旁内角.图①图②(2)如图②:①∠DAE的同位角是∠B,它们是直线AD和直线BC被直线AB所截形成的.②∠CAD的内错角是∠C,它们是直线AD和直线BC被直线AC所截形成的.③∠B的同旁内角有∠DAB,∠CAB,∠C.五、评价1.学生学习的自我评价:各学习小组长谈本组学习方式和收效及存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、成效以及存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课学生对简单图形的同位角、内错角和同旁内角的判定较正确,但一些略复杂图形的同位角、内错角、同旁内角的判定就不够全面.针对课堂反馈的信息应及时对学生补差补缺,对角的理解的问题应及时纠正,让所有学生都有收获,激发他们的学习兴趣.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)如图,直线a、b被直线c所截,∠1和∠2是同位角,∠3和∠4是同旁内角,∠2和∠3是内错角.第1题图第2题图第3题图2.(20分)如图,∠1和∠2是直线EF和直线CD被直线AB所截形成的同位角.3.(10分)如图,已知∠1和∠2是内错角,则下列表述正确的是(B)A.∠1和∠2是由直线AD、AC被CE所截形成的B.∠1和∠2是由直线AD、AC被BD所截形成的C.∠1和∠2是由直线DA、DB被CE所截形成的D.∠1和∠2是由直线DA、DB被AC所截形成的4.(10分)如图,∠1和∠2是同位角的是(B)A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)5.(20分)如图,已知∠4的同旁内角等于117°28′,求∠1、∠2、∠3的度数.解:由图可得:∠3和∠4是同旁内角.所以∠3=117°28′.又因为∠2=∠3,∠1+∠3=180°,所以∠2=∠3=117°28′,∠1=180°-∠3=62°32′.二、综合应用(20分)6.如图,∠1和∠2,∠3和∠4是由哪两条直线被一条直线所截形成的?它们各是什么位置关系的角?(1)(2)解:(1)∠1和∠2是由直线DC、AB被BD所截形成的内错角,∠3和∠4是由直线AD、BC被BD所截形成的内错角.(2)∠1和∠2是由直线AB、CD被BC所截形成的同旁内角.∠3和∠4是由直线AD、BC被AE所截形成的同位角.三、拓展延伸(10分)7.直线AB,CD相交于点O.(1)OE、OF分别是∠AOC、∠BOD的平分线,画出这个图形;(2)射线OE、OF在同一条直线上吗?(3)画出∠AOD的平分线OG,OE与OG有怎样的位置关系?为什么?解:(1)如图:(2)射线OE、OF在同一条直线上.(3)OE⊥OG.因为OE平分∠AOC,所以∠AOE=12∠AOC.同理:∠AOG=12∠AOD.所以∠AOE+∠AOG=12(∠AOC+∠AOD)=12×180°=90°.所以OE⊥OG.5.2平行线及其判定5.2.1平行线一、导学1.导入课题:如图,直线a、b是铁路上的两条铁轨,它们会相交吗?今天我们就来研究这样的两条直线——平行线.2.学习目标:(1)了解平行线的概念,知道同一平面内不重合的两条直线的两种位置关系, 能叙述平行公理以及平行公理的推论.(2)会用符号语言表示平行公理及其推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线.3.学习重、难点:重点:平行公理及其推论.难点:文字语言、图形语言、符号语言的相互转换.4.自学指导:(1)自学内容:课本P11至P12“练习”之前的内容.(2)自学时间:10分钟.(3)自学要求:认真阅读教材,重点部分做好圈点;动手操作画图,并观察图形总结规律.(4)自学参考提纲:①定义:同一平面内,直线a与b不相交,这时直线a与b互相平行.换言之,同一平面内不相交的两条直线叫做平行线.②直线a与b是平行线,记作a∥b.③同一平面内,两条直线的位置关系有两种,分别是相交和平行.④联系实际生活,列举平行线的实例.a.如右图,已知直线a及直线a外两点B、C.b.用直尺和三角尺分别过点B、C作直线a的平行线,分别记作直线b和直线c.c.结合画图过程,观察所画图形,思考:过点B(或C)画直线a的平行线,能画几条?直线b和直线c有何位置关系?答案:1条;b∥c.d.归纳总结:平行线的画法(用三角尺为例):一“落”:把三角尺一边落在已知直线上;二“靠”,用直尺紧靠三角尺的另一边;三“推”,沿直尺推动三角尺,使三角尺与已知直线重合的边过已知点;四“点”,沿三角尺过已知点的边画直线,所画直线即为所要画的线.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(与垂线的性质1相比较,注意它们的相同点和不同点)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.用符号语言表述为:如果b∥a,c∥a,那么b∥c.二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:教师巡视课堂,了解学生的自学情况:①“过直线外一点画该直线的平行线”的作图是否会操作.②平行公理与垂线性质1的相同点与不同点是否清楚.(2)差异指导:对个别学生进行指导,帮助理解画图的依据.2.生助生:各小组相互交流、纠正认知误区.四、强化1.平行线的概念及画法.2.平行公理及推论.3.练习:读下列语句,并画出图形.(1)点P是直线AB外一点,直线CD经过点P,且与直线AB平行.(2)直线AB与CD相交,点P是直线AB、CD外一点,直线EF经过点P 且与直线AB平行,与直线CD相交于点E.五、评价1.学生学习的自我评价:各小组组长汇报本组的学习情况,总结经验、收获和不足.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课的重点是平行线的概念和平行公理及其推论.在本课中学生动手、动脑,独立思考,完全参与到知识的探索之中,是知识的探索者,教师也不再是满堂灌式的教学,而是学习的引导者,符合新的课堂理念.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)在同一平面内,两条直线的位置关系有:平行和相交.2.(10分)在同一平面内,两条相交直线不可能都与第三条直线平行,这是因为如果两条直线与第三条直线平行,那么这两条直线也互相平行.3.(10分)两条直线相交,交点的个数是1,两条直线平行,交点的个数是0.4.(20分)判断:(1)不相交的两条直线叫做平行线.(×)(2)如果一条直线与两条平行线中的一条平行, 那么它与另一条直线也互相平行.(√)(3)过一点有且只有一条直线平行于已知直线.(×)5.(20分)画图并解答.(1)画∠AOB,并用量角器画∠AOB的平分线OC,在OC上任取一点P,比较点P到OA、OB的距离的大小.(2)画∠AOB,在∠AOB的内部任取一点P,过点P作直线PC∥OA交OB 于点C,再过点P作直线PD∥OB交OA于点D,比较∠AOB与∠CPD的大小.解:(1)如图:PM、PN即为点P到OA、OB的距离,PM=PN.(2)如图:∠AOB=∠CPD二、综合运用(20分)6.在同一平面内,有三条直线,它们的交点个数可能是(D)A.0B.1C.2D.0,1,2,37.如图,若AB∥CD,经过点E可画EF∥AB,则EF与CD的位置关系是EF∥CD,理由是如果两条直线都与第三条直线平行,那么这两条直线也互相平行.第7题图第8题图三、拓展延伸(10分)8.如图,MN⊥AB,垂足为M,MN交CD于点N,过M点作MG⊥CD,垂足为G,EF过点N,且EF∥AB,交MG于点H,其中线段GM的长度是点M到CD的距离, 线段MN的长度是点N到AB的距离,又是两平行线AB与EF之间的距离,点N 到直线MG的距离是NG.5.2 平行线及其判定5.2.2 平行线的判定一、新课导入1.导入课题:上节课我们学习了平行线的概念和画法,这节课我们来研究如何判定两条直线是不是平行线(板书课题).2.学习目标:(1)学会并记住平行线的判定方法1、2、3.(2)能运用平行线的判定方法进行简单的推理论证.3.学习重、难点:重点:平行线的判定方法1、2、3.难点:运用平行线的判定方法进行简单的推理论证.二、分层学习1.自学指导:(1)自学内容:课本P12至P13的内容.(2)自学时间:10分钟.(3)自学要求:阅读教材,重点处做好圈点,遇到疑难相互研讨.(4)自学参考提纲:①a.观察P12“思考”中用直尺和三角尺画平行线示意图,可以发现,在画平行线时,三角尺在移动时紧靠直尺,并且三角尺的角的大小不变,又在移动前、后,三角尺的角恰好是直线AB、CD被EF所截形成的一对同位角,这说明:如果∠DEF=∠BGF,那么AB∥CD.b.这一事实揭示的就是平行线的判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,简称为同位角相等,两直线平行.用符号语言表述是:如图1,若∠1=∠2,则a∥b.c.在课本图5.2-7中,你能说出木工用图中的角尺画平行线的道理吗?。
新人教版七年级数学下册第七章《多边形》导学案教学目标1.了解多边形及有关概念,理解正多边形及其有关概念.2.区别凸多边形与凹多边形.重点:(1)了解多边形及其有关概念,理解正多边形及其有关概念.(2)区别凸多边形和凹多边形.难点:多边形定义的准确理解.预习案投影:图形见课本P79图7.3一l.你能从投影里找出几个由一些线段围成的图形吗?上面三图中让同学边看、边议.在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?(1)它们在同一平面内.(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?提问:三角形的定义.你能仿照三角形的定义给多边形定义吗?导学案1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形.如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)2.多边形的边、顶点、内角和外角.多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.3.多边形的对角线连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.让学生画出五边形的所有对角线.4.凸多边形与凹多边形看投影:图形见课本P85.7.3—6.在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.5.正多边形由正方形的特征出发,得出正多边形的概念.各个角都相等,各条边都相等的多边形叫做正多边形.练习案一、判断题.1.由四条线段首尾顺次相接组成的图形叫四边形.()2.由不在一直线上四条线段首尾次顺次相接组成的图形叫四边形.()3.由不在一直线上四条线段首尾顺次接组成的图形,且其中任何一条线段所在的直线、使整个图形都在这直线的同一侧,叫做四边形.()4.在同一平面内,四条线段首尾顺次连接组成的图形叫四边形.()二、填空题.1.连接多边形的线段,叫做多边形的对角线.2.多边形的任何所在的直线,整个多边形都在这条直线的,这样的多边形叫凸多边形.3.各个角,各条边的多边形,叫正多边形.课后反思:教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。
20XX年七年级数学下册全册导学案(人教版)七年级下册数学第五章相交线与平行线导学15.1.1相交线一、学习目标:1认识相交线所成的邻补角和对顶角2对顶角的性质二、自主学习学生自学P2和P3并做下列练习1、已知:如图所示的四个图形中,1和2是对顶角的图形共有()A0个B1个c2个D3个2、如图,直线a、b相交于点o,若1=,则2等于()ABcD3、平面上三条不同的直线相交最多能构成对顶角的对数是()A4对B5对c6对D7对4、如图直线AB、cD交于点o,若AoD+Boc=260,则BoD的度数是()A70B60c50D130三、合作学习1、有两个角,若第一个角割去它的后与第二个角互余,若第一个角补上它的后与第二个角互补,求这两个角的度数2、如图,直线AB、cD相交于点0,1—2=50,求出Aoc和Boc的度数。
四、拓展提高如图,AoB和BoD为对顶角,oE平分AoD,oF平分Boc,试问:oE、oF在一条直线吗?说说你的理由。
七年级下册数学第五章相交线与平行线导学25.1.2垂线(1)一、学习目标1、理解垂线的概念。
2、掌握在同一平面内过一点有且只有一条直线垂直于已知直线。
3、会用三角尺或量角器过一点画一条直线的垂线。
二、自主学习阅读课本第3页完成下列问题1、当两条直线相交所成的四个角中有一个角是90°时,这两条直线互相____,其中一条直线叫做另一条直线的____,两条直线的交点叫____,垂直用符号____来表示,读作____,如直线AB垂直cD,就记作____。
2、举出日常生活中垂直的例子。
三、合作学习1、用三角尺或量角器画出已知直线l的垂线,这样的垂线能画出几条?2、经过直线l上一点A画出l的垂线,能画出几条?3、经过直线l外一点B画出l的垂线,能画出几条?由此我们得出如下结论:1、一条直线的垂线有____条。
2、过一点有且只有____条直线与已知直线垂直(垂线性质1)。
四、拓展提高1、完成课本第五页的练习题2、如图:直线AB与直线cD相交于点o,oE⊥AB,已知∠BoD=45,求∠coE的度数五、检测反馈1、下列说法:①一条直线只有一条垂线;②画出点P到直线l的距离;③两条直线相交就是垂直;④线段和射线也有垂线。
其中正确的有____。
2、A为直线l外一点,B为直线l上一点,点A到l距离为3cm,则AB____3cm,根据是____。
3、如图所示,下列说法不正确的是()A.点B到Ac的垂线段是线段AB;B.点c到AB的垂线段是线段Acc.线段AD是点D到Bc的垂线段;D.线段BD是点B到AD的垂线段4、如图,点o在直线AB上,且oc⊥oD,若∠coA=36°则∠DoB的大小为()A.36°B.54°c.64°D.72°5、如图所示,直线AB,cD,EF交于点o,oG平分∠BoF,且cD ⊥EF,∠AoE=70°,•求∠DoG的度数.七年级下册数学第五章相交线与平行线导学35.1.2垂线(2)一、学习目标1、理解垂线段的概念2、掌握垂线段最短的性质3、学会用本节知识理解生活中的一些现象及解决生活中的一些实际问题二、自主学习1、阅读课本第5—6页2、从直线外一点到已知直线的的垂线段的长度叫____如图,点A到直线l的距离就是垂线段____的长度。
三、合作学习1、如图,直线l外一点P与直线l上各点o,A1,A2,A3,…,其中Po⊥l(我们称Po为点P到直线l的垂线段)。
比较线段Po,PA1,PA2,PA3…的长短,这些线段中哪一条最短?2、如图,直线m表示公路,你在A处要尽快赶到公路,你会怎么走?为什么这么走?通过以上问题你得到了什么启发?连接直线外一点与直线中各点的所有线段中____最短(垂线性质2)。
四、拓展提高1、完成课本第六页练习题2、如图∠AcB=90°(1)表示点到直线(或线段)的距离的线段共有____条,它们分别是____。
(2)Ac__AB(填“﹥”“﹤”或“=”),依据是_______________。
(3)Ac+Bc__AB(填“﹥”“﹤”或“=”),依据是_____________。
五、检测反馈1、判断(1)一条直线的垂线只有一条()(2)两直线相交所构成的四个角相等,则两条直线互相垂直()。
(3)点到直线的垂线段就是点到直线的距离()。
(4)过一点有且只有一条直线与已知直线垂直()。
2、下列图形中线段PQ的长度表示点P到直线a的距离的是()。
七年级下册数学第五章相交线与平行线导学45.1.3同位角,内错角,同旁内角一、学习目标:1理解同位角,内错角,同旁内角的概念2、会识别同位角,内错角,同旁内角二、自主学习学生阅读课本第六页到第七页的内容,然后做以下练习1如图,1和2是内错角的是()2如图,与3成同旁内角的是()A1B2c3D43如图,若1=2,那么与3相等的角有个。
三、合作学习1.如图直线DE和直线Bc被第三条直线AB所截,和是同位角,和是同旁内角。
写出图中直线DE和直线Bc被其它第三条直线所截的同位角、内错角和同旁内角。
2、如图,图中的同旁内角共有()A7对B8对c9对D10对3如图两条直线a、c被第三条直线所截,若1的同旁内角是140度,则1的同位角是多少度?四、拓展提高1、如图,试用两种不同的添线方法画出B和c的同位角2、如图,B和D是同旁内角吗?为什么?你能用直尺画出B 的同旁内角吗?七年级下册数学第五章相交线与平行线导学55.2.1平行线一、学习目标(2)理解平行线的概念,平行公理,平行公理的推论。
(2)学会过直线外一点画这条直线的平行线二、自主学习阅读教材,理解下列问题(1)两条直线平行有什么条件?(2)动手画过直线外一点画这条直线的平行线(3)平行公理的内容是什么?(4)平行公理推论是什么?三、合作交流独立完成下列练习,然后与同伴讨论正确结果1.读下列语句,并画图形(1)点p是直线AB外一点,直线cD经过点P且与直线AB 平行(2)直线AB、cD是相交直线,点P是直线AB、cD外一点,直线EF经过点P与AB平行,与直线cD相交于点E(3)如图过点D画DE,使DE//Ac,交Bc延长线于点E(4)点P是的边AB上的一点,直线EF经过点P且与直线Bc平行2.填空(1)平行线用符号“”表示,直线AB与cD平行可记作“”读作。
(2)已知直线AB及一点P,若过一点P作一直线与AB 平行,那么这样的直线有条。
(3)若直线a//b,b//c,则b//c的依据是()A平行公理B等量代换c平行于同一直线的两条直线平行D平行线的定义四拓展提高如图,用直尺和图规将线段Bc二等分,过该点E用直尺和三角板画出AB的平行线交Ac于D点,用刻度尺量出AD、cD 的长度,并比较大小,量出DE、AB的长度后并做比较,你能得出什么结论?七年级下册数学第五章相交线与平行线导学65.2.2平行线的判定(一)一、学习目标(1)掌握平行线判定的方法1,2,3(2)学会利用平行线判定方法进行推理二、自主学习阅读教材,理解平行线判定方法1,2,3一、填空给下面的说理过程,填上理论依据和各种量如果,直线AB、cD被EF所截,点H为cD与EF的交点,1=,2=,GHcD于H,说明AB//cD理由因为GHcD(已知)所以2+3=(垂直定义)因为2=(已知)所以3==又因为3=4=()1=(已知)所以1=4所以AB//()三合作交流1、如图DAB+cDA=,ABc=1,直线AB与cD平行吗?直线AD 和Bc呢?为什么?2、如图已知1=2,BD平分ABc,那么AD与Bc是否平行?请说明理由四、拓展延伸一个人从A点出发向北偏东方向走到B点,再从B点出发向南偏西方向走到c点,那么你能求出ABc的度数吗?试试看七年级下册数学第五章相交线与平行线导学75.2.2平行线的判定(二)一、学习目标:(1)理解平行线的判定方法(2)会利用平行线的判定方法进行推理和证明二、自主学习1、如图下列条件中能判断AB//cD的是()(A)BAD=BcDB1=2c3=4DBAc=AcD2如图能判定AB//cD的条件是()AB=AcDBA=DcEcB=AcBDA=AcD3、设a、b、c是平面内的三条直线,若ab,ac,则b与c位置关系是三、合作学习1、如图AEc与D互余,cEDE,那么AB与cD的关系如何?请说明理由。
2如图已知D=A,B=FcB,试问ED与cF平行吗?为什么?四拓展提高1、已知如图B=c,B、A、D在同一条直线上,DAc=B+c,AE 是DAc平分线,判断AE与Bc的位置关系,并说明理由。
七年级下册数学第五章相交线与平行线导学85.3.1平行线的性质(一)一学习目标1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.二、自主学习1、如右图所示,只要______________就能说明a//b,理由是_______________________________2、(1)测量上图这些角的度数,把结果填入表内.角∠1∠2∠3∠4∠5∠6∠7∠8度数(2)图中哪些角是同位角?它们具有怎样的数量关系?图中哪些角是内错角?它们具有怎样的数量关系?图中哪些角是同旁内角?它们具有怎样的数量关系?分析后,写出你的猜想(3)验证猜想在任意画一条截线同样度量并计算各个角的度数,你的猜想还成立吗?3、平行线性质1平行线性质2:平行线性质3:4根据上图将下列几何语言补充完整性质1:性质2:性质3:∵a∥b∵a∥b∵a∥b∴∠___=∠___∴∠___=∠___∴∠+∠=5尝试练习(1)根据右图将下列几何语言补充完整∵AB∥(已知)∴∠1=∠A()∠2=∠B()∠A+∠AcD=180°()(2)如右图,若AD∥Bc,则∠1=∠_______,∠______+∠________=180°若Dc∥AB,则∠1=∠_______,∠ABc+∠_________=180°.三、合作学习1根据性质1,推出性质2成立的道理根据性质1,推出性质3成立的道理2讨论平行线的性质与平行线判定有何区别?四、拓展提高1、平行线性质应用.(课本20页例题)2、如图直线与直线、相交,若∥,∠1=70°,求∠2的度数3、如图AB∥DF,DE∥Bc,且∠1=65°,求∠2∠3∠4的度数五、反馈检测1、如图∠1=70°,若m∥n,则∠2=2、如图AD∥Bc,点E在BD的延长线上,若∠ADE=155°,则∠DBc=3、如图a∥b,∠1=20°,∠2=65°则∠3=七年级下册数学第五章相交线与平行线导学95.3.1平行线的性质(二)一学习目标1.掌握平行线的性质,并熟练应用2.能够综合运用平行线的性质与判定进行推理与计算二、自主学习1、回顾1、平行线的判定平行线的性质2、热身练习1)如图直线a∥b,点B在直线b上,且AB垂直于Bc,∠1=55°,则∠2=2)如图直线AB∥cD,EF垂直cD于F,且∠GEF=20°,则∠1=3)课本21页练习三、合作学习、例1、如图∠1与∠2互余,∠2与∠3互补,已知∠3=130°,求∠4例2、如图∠5与∠4互补,∠3=∠D,那么∠1与∠2相等吗?为什么?四、拓展提高例3如图∠1+∠2=180°,∠3=∠B,试判段∠AED与∠AcB 的关系。