姜黄素SLN Formulation and characterization of curcuminoids loaded solid lipid nanoparticles
- 格式:pdf
- 大小:616.02 KB
- 文档页数:8
姜黄素功效与作用姜黄素(Curcumin)是一种来自姜黄植物(Curcuma longa)根茎的天然植物化合物。
它被广泛应用于传统草药和中医实践中,具有许多医学和保健功效。
近年来,姜黄素也引起了科学家们的兴趣,通过大量研究已经发现了许多姜黄素的功效与作用。
本文将详细介绍姜黄素的健康功效与应用领域。
姜黄素具有抗氧化和抗炎作用,这使得它在预防和治疗炎症相关疾病方面具有巨大潜力。
抗氧化作用可以中和自由基,并保护细胞免受氧化应激的损害。
姜黄素还可以抑制多种炎症介质和炎症信号途径的活化,从而减轻炎症反应。
这些作用使得姜黄素在炎症性疾病的治疗中具有潜在效果,例如风湿性关节炎、炎症性肠病、肺部疾病等。
姜黄素还被证实具有抗癌活性。
研究发现,姜黄素可以干扰肿瘤细胞的生长和分化,促进肿瘤细胞凋亡,并抑制肿瘤细胞的侵袭和转移。
姜黄素还可以通过调节多种生物分子的活化和表达来影响肿瘤细胞的生物学特性。
这些活性使得姜黄素在预防和治疗多种类型的癌症中具有潜在效果,包括乳腺癌、前列腺癌、肺癌、结直肠癌等。
此外,姜黄素还具有降低心血管疾病风险的作用。
姜黄素可以通过降低血液中的胆固醇水平,阻止动脉粥样硬化的发展。
它还可以减少血小板的聚集和凝集,防止血栓形成。
这些作用有助于降低心脑血管疾病的风险,如高血压、动脉粥样硬化、心肌梗死等。
姜黄素还被研究发现对脑功能和神经系统具有保护作用。
姜黄素可以通过抗氧化和抗炎作用减少脑细胞损伤,并促进脑细胞的再生和修复。
它还可以抑制多种神经炎症反应,缓解神经退行性疾病的进展,如阿尔茨海默病、帕金森病等。
姜黄素还被发现可以改善记忆和认知功能,对防止脑部老化和提高脑功能有积极影响。
此外,姜黄素还被研究发现具有抗菌和抗病毒作用。
姜黄素可以抑制多种病原微生物的生长和复制,包括细菌、真菌和病毒。
这使得姜黄素在预防和治疗感染性疾病方面具有潜在应用价值,如流感、呼吸道感染、皮肤感染等。
姜黄素还被研究发现具有调节免疫系统的功能。
本科生毕业论文论文题目:姜黄素的药理研究进展学校:徐州医学院院部:药学院专业:药学学号:09XXXXXXXX姓名:XXX指导教师:刘毅实习单位:徐州医学院论文工作时间:2012年09月至2012年10月目录摘要 (3)ABSTRACT (3)正文 (5)致谢 (97)姜黄素的药理研究进展实习生:荣礼(0916111009)药学院药学专业指导教师:刘毅徐州医学院药学院摘要目的:探究姜黄素的药理研究进展。
方法:本文对姜黄素的国内外的研究现状进行了深入的探究,查阅近年来国内外对于姜黄素的抗氧化、降血脂、杭凝血及抗肿瘤作用的研究概况。
结果:本文对姜黄素的国内外的研究现状进行了深入的探究,查阅近年来国内外对于姜黄素的抗氧化、降血脂、杭凝血及抗肿瘤作用的研究概况。
结论:本文对姜黄素的国内外的研究现状进行了深入的探究,查阅近年来国内外对于姜黄素的抗氧化、降血脂、杭凝血及抗肿瘤作用的研究概况。
关键词:姜黄素;抗氧化;降血脂;抗凝;抗肿瘤Jiang Huangsu's progress in pharmacological researchStudent: Rong Li(0916111009) Pharmacy Speciality, Xuzhou Medical CollegeTutor: Liu Yi School of Pharmacy,Xuzhou Medical CollegeABSTRACTObjective: Research progress in pharmacological research of Curcumin. Methods: This article on Jiang Huangsu's research status at home and abroad have done deep research at home and abroad in recent years, access to Jiang Huangsu's antioxidant, hypolipidemic, hang coagulation and anti tumor effects of. Results: This article on Jiang Huangsu's research status at home and abroad have done deep research at home and abroad in recent years, access to Jiang Huangsu's antioxidant, hypolipidemic, hang coagulation and anti tumor effects of. Conclusion: This article on Jiang Huangsu's research status at home and abroad have done deep research at home and abroad in recent years, access to Jiang Huangsu's antioxidant, hypolipidemic, hang coagulation and anti tumor effects of.KEY WORDS: Antioxidant; blood lipid; anticoagulation; anti tumor姜黄为传统常用中药,姜黄素是姜黄发挥药理作用最重要的活性成分,对机体各系统作用广泛。
姜黄素
姜黄素是从姜科、天南星科中的一些植物的根茎中提取的一种化学成分
军事医学科学院葛忠良教授多年来一直致力于姜黄素对癌细胞作用的药理研究,通过长期的药物研究以及动物实验,肯定了姜黄素是一种很强的抗氧化剂,其分子式结构比较特殊,可选择性抑制蛋白酪氨酸激酶和血小板来源的生长因子受体,从而抑制细胞无序增殖,并使凋亡恢复,达到抗肿瘤目的。
同时配合化学药物对于肿瘤细胞能达到1+1>2的效果。
葛忠良教授在对于姜黄素长期的研究基础上,同时通过对大量天然植物药物进行研究和筛选,开发出了一种以姜黄素为主要成分的用于肿瘤病人的配方(柚格利)。
部分肿瘤病人在服用柚格利后,出现肿瘤细胞停止扩散、病人生存期延长等好转情况。
一部分肺癌病人配合靶向药物一起服用后,病人的康复情况明显好于单纯服用靶向药物。
目前,以姜黄素为主要成分的治疗肿瘤的药物(柚格利)已经进入SFDA新药的申报相关流程,预计在未来将成为国内首款将姜黄素用于治疗肿瘤方面疾病的药物。
姜黄素的功能主治是什么简介姜黄素(Curcumin),又称为二酮二磺基甲烷(diferuloylmethane),是姜黄中的一种黄色素,具有抗氧化、抗炎、抗肿瘤等多种药理活性。
近年来,关于姜黄素的研究逐渐增多,证实了它在多个疾病治疗中的潜在作用。
本文将介绍姜黄素的主要功能和主治。
功能姜黄素具有以下主要功能:1.抗氧化作用:姜黄素是一种较强的自由基清除剂,能够减少细胞中的氧化应激,保护细胞免受损伤。
研究表明,姜黄素能够提高人体的抗氧化能力,减少氧自由基的产生,从而减缓衰老进程,并降低多种慢性疾病的发病风险。
2.抗炎作用:姜黄素具有抗炎作用,能够抑制多种炎症反应。
它通过干扰炎症信号通路的传递,抑制炎症因子的产生,从而减轻炎症反应和组织损伤。
临床研究发现,姜黄素在治疗风湿性关节炎、炎症性肠病等疾病中具有显著的疗效。
3.抗肿瘤作用:姜黄素对于多种实体瘤和血液肿瘤具有抗肿瘤作用。
它能够通过多种机制干扰肿瘤细胞的增殖、分化和侵袭能力,促使肿瘤细胞凋亡和周期性停滞,并抑制肿瘤血管的生成,从而起到抑制肿瘤生长和转移的作用。
诸多临床研究证实,姜黄素在肿瘤治疗中具有潜在的应用价值。
4.促进消化:姜黄素可以通过刺激胃液分泌,增加胆汁分泌,改善胃肠道蠕动,从而促进消化和吸收。
它对于缓解胃肠道疾病和增加食欲有一定的效果。
5.保护心血管:姜黄素具有降低血脂、抗凝血和抗血小板聚集等作用,可以预防心血管疾病的发生。
研究发现,姜黄素可以减少血管内皮细胞的炎症反应、抑制血管平滑肌细胞的增殖,并改善血管内皮功能,降低动脉粥样硬化的风险。
主治基于姜黄素的主要功能,它在以下疾病的治疗中具有潜在的作用:1.慢性炎症性疾病:姜黄素能够抑制多种炎症反应,对于治疗风湿性关节炎、炎症性肠病、慢性鼻窦炎等慢性炎症性疾病有一定的疗效。
2.肿瘤:姜黄素对于多种实体瘤和血液肿瘤具有抗肿瘤作用,它可以干扰肿瘤细胞的增殖、分化和侵袭能力,从而抑制肿瘤的生长和转移。
姜黄素:神奇的香料信贷小秘书没有一种香料像姜黄一样与癌症预防密切相关。
近20年来,关于姜黄素的研究如火如荼地进行,世界各国的科学家们在细胞、动物和临床实验层面都展开了很多研究。
全球已有约4,500篇有关姜黄素的论文在世界各类科学杂志上发表。
这些论文涵盖了姜黄素在很多方面的药理作用:如抗氧化,抗炎,防癌抗癌,神经保护如抗老年痴呆症和抗儿童自闭症,修复和保护肝功能,抗病毒如抗艾滋病,抗心血管疾病,抗自身免疫疾病等等。
2007年,美国最权威的国家卫生机构(NIH)批准姜黄素用于4种疾病的临床实验:直肠癌,胰腺癌,老年痴呆和多发性骨髓瘤。
随后,乳腺癌和骨关节炎等多种疾病的临床实验也被陆续批准实施。
01.什么是姜黄素?姜黄素(Curcumin)是从姜黄根茎中提取出来的一种黄色色素,略带苦味而且不溶于水。
姜黄是古代医药书籍中提到的250种药用植物之一,其药用价值出现在亚述巴尼拔王(公元前669年~公元前627年)编撰的楔形石碑上(其被发现者英国人R.C.汤普森称为《亚述草药》)。
在东方两大古典医学体系:中医和阿育吠陀医学(印度传统医学)来观察对姜黄疗效,中医古籍提及姜黄的疗效较少。
而姜黄却是阿育吠陀医学的主要组成部分之一,对其应用已经超过6000年的历史,是阿育吠陀的最广谱的万用药。
它认为,姜黄具有纯化身体的功效,治疗多种疾病,比如消化系统疾病、发热、感染、关节炎以及痢疾、黄疸和其他肝病。
姜黄也是印度人日常饮食中的一部分,他们人均每天摄入姜黄1.5~2克。
而现代医学和药学研究,姜黄素具有多种药理作用,包括抗血检、降低胆固醇以及抗炎性反应(是维生素E的数倍),另外还有很高的抗癌活性。
02.姜黄素与印度癌症发病率目前一些科学界的共识认为,印度语像美国之类的西方国家有些癌症的发生率存在很大的差异,可能与姜黄有关,这同样也能够解释印度人移民到西方后癌症的发生率为什么显著升高。
这个假设是基于姜黄几乎只在印度广泛食用,并且食用量很大。
姜黄素的14种功效与副作⽤姜黄素功效姜黄被⼈类使⽤已有4000多年历史,印度咖哩中黄⾊的来源就是它,在古印度及中国医学都曾使⽤姜黄来治疗发炎性疾病、保护肝脏、⽪肤疾病及创伤,现代医学研究后也证实它主要具有抗氧化及抗发炎的两⼤功能,根据美国知名期刊(J. Am. Chem. Soc.)研究指出,天然姜黄素(Curcumin)的抗氧化能⼒是⽣物类黄酮的2.33倍,维⽣素E的1.6倍及维⽣素C的2.75倍,能帮助⼈体对抗许多疾病,是具有多种功效的草本植物。
姜黄被推荐的14种实证功效1.姜黄的独特活性成分有丰富的医疗价值姜黄萃取物(curcuminoids)中的姜黄素(curcumin )是这⾥的讨论重点,是最具医疗价值的部分,⼤约占重量的3%-5%,虽然不多,却具有⾮常强的抗发炎及抗氧化能⼒,⽬前的医学研究就是使⽤此成分为主,⽽姜黄素单独使⽤时⼈体较不易吸收,因此拜现代科技之赐有许多增强吸收的配⽅,例如结合⼤⾖卵磷脂的Meriva-SR缓释配⽅,添加卵磷脂除了具有健脑益智作⽤,还能提升多达29倍的吸收率。
另外⼀种是添加胡椒素(BioPerine),两种都能增加数倍的吸收能⼒2.姜黄素有护肝效果肝脏是⼈体最多功能的器官,除了能排除各种内外源毒素,也是重要的新陈代谢中⼼,具有产⽣能量、合成营养素等功能,可说是除了⽣⼩孩外,什么都会肝脏因具有优异的再⽣功能,即使受到损害都能⾃⾏修复再⽣,不过当受损达到⼀定程度,便容易引发各种肝脏疾病(如肝炎、脂肪肝、肝癌、肝硬化等)氧化压⼒在肝脏疾病扮演重要⾓⾊,⽽姜黄素因具有特殊抗氧化及抑制NF-kB 转录因⼦的机制,因此护肝效果⽬前已在多则研究中被揭露,具有防⽌多种毒素损坏肝脏的功效(如黄曲毒素(aflatoxin)、铁过量、抗⽣素、酒精、致癌物"硫⼄酰胺"四氯化碳等),但⼤多属于动物及细胞实验。
另外,其它研究也相继发现姜黄素具有抗脂肪肝、逆转因四氯化碳所引发的肝纤维化的效果,但因属动物研究,因此仍待更多⼈体实验进⼀步证实3.姜黄素具有天然的抗发炎成分发炎机制对⼈体来说是⾮常重要的,代表免疫细胞⽩⾎球正在执⾏任务,它能帮助⼈体对抗外来的病菌及帮助修复伤⼝,少了发炎这个动作,⼈体便⽆法⽣存,⽽短期的发炎是有帮助的,但如果外来病菌⽆法移除或痊愈能⼒受到⼲扰,就会演变为慢性发炎现代医学已证实慢性发炎是许多慢性疾病的主要成因,包括⼼脏病、癌症、代谢症候群、阿滋海默症及多种的退化疾病,因此对抗发炎是现代医学⽤来治疗疾病的常⽤⽅法,⽽姜黄素的强烈抗发炎能⼒已能⽐拟许多药物,可同时抑制⾝体形成第⼆系列前列腺素及⽩三烯素,还能抑制细胞转录因⼦NF-κB 的活性,对⼤部分的发炎及过敏都有效,但重点是⼏乎没有西药带来的副作⽤4.改善功能性消化不良(Dyspepsia)消化器官是维持⽣命最重要的机能,在吃下⾷物后,所有的养分吸收均仰赖它,就像是⼀棵⼤树的树根,负责吸取营养,让⽣命茁壮但处在这个任何事都讲求效率的社会中,连吃饭这件⼈⽣的享受,也开始快转,让⼈开始狼吞虎咽,暴饮暴⾷,后果就是不仅没享受到⾷物的美味,还常造成肠胃功能失调,引发腹胀、腹痛、嗳⽓、胃灼热等症状。
姜黄素类化合物介绍姜黄素是一类具有显著生物活性的化合物,主要存在于姜黄根茎中。
它是一种多酮类化合物,其中最为重要的成分是姜黄素(Curcumin)。
姜黄素具有广泛的药理活性,包括抗炎、抗氧化、抗肿瘤、抗菌等作用。
近年来,姜黄素类化合物成为了研究的热点之一。
姜黄素的结构姜黄素是一种多酮类化合物,由1,6-二芳基-1,3,5-己三酮骨架组成。
其主要成分姜黄素的分子式为C21H20O6,相对分子质量为368.38。
姜黄素的结构可分为苯环和γ-二酮环两个部分。
苯环上分别连接有两个甲氧基基团,γ-二酮环上则存在两个邻间的羟基。
姜黄素的生物活性抗炎作用姜黄素具有抗炎作用是其最为广为人知的特性之一。
它能够通过调节炎症因子的表达,抑制炎症细胞的活化,减轻炎症反应。
研究表明姜黄素能够抑制核因子κB的激活,从而抑制炎症因子的产生。
此外,姜黄素还能够抑制炎症细胞信号通路的激活,降低炎症反应的严重程度。
抗氧化作用姜黄素具有显著的抗氧化作用,可以清除体内自由基,防止氧化损伤。
姜黄素的抗氧化作用通过多种途径实现,包括清除活性氧、抑制脂质过氧化、提高体内抗氧化酶活性等。
研究表明姜黄素可以降低氧化应激水平,维护细胞的正常功能。
抗肿瘤作用姜黄素类化合物具有抗肿瘤作用,已被广泛研究并应用于肿瘤治疗。
姜黄素能够通过多种机制抑制肿瘤细胞的生长和扩散,促进肿瘤细胞凋亡。
研究发现姜黄素可以干扰多种信号通路,包括细胞凋亡、细胞周期调控等,从而抑制肿瘤细胞的增殖。
抗菌作用姜黄素具有一定的抗菌活性,可用于治疗多种细菌感染。
研究表明姜黄素能够抑制多种致病菌的生长和繁殖,具有广谱的抗菌作用。
此外,姜黄素还能够增强抗生素的抗菌活性,对抗耐药菌株的作用更加明显。
姜黄素类化合物的应用药物开发姜黄素类化合物具有广泛的药理活性,已被广泛应用于药物开发。
其抗炎、抗氧化、抗肿瘤和抗菌等作用使得姜黄素成为了多种疾病的治疗候选药物。
目前,已有多个姜黄素类化合物进入了临床试验阶段,其中一些化合物已经获得了批准上市。
姜黄素 - 药理作用1.利胆: 本品或其钠盐有利胆作用【8,9】。
静脉注射时, 可减少犬固体成分的含量而增加胆汁分泌量。
但在其整个胆汁分泌周期中, 胆盐、胆红素、胆甾醇排泄的绝对总量增加, 脂肪酸成分保持恒定【10】。
2.抗菌: 对金黄色葡萄球菌有较强的抗菌效果【8,10,11,12】。
3.其它: 口服5-20mg/kg时, 能抑制肌肉注射20mg/kg5-羟色胺引起的豚鼠胃损害【13】。
对扑热息痛引起的肝损害有保护作用【14】。
【用途】抗菌,解毒【成分来源】姜科植物郁金 Curcuma aromatica Salisb.块根, ^b姜黄 C.longa L.^c根茎【3,4,5】,^b莪术 C.zedoaria (Berg.)Rosc ^c根茎【6】, ^b天南星科植物^b菖蒲 Acorus calamus L.^c根茎【7】。
姜黄色素是从姜黄根茎中提取的一种黄色色素,主要成分为姜黄素,约为姜黄的3%~6%,是植物界很稀少的具有二酮的色素,为二酮类化合物。
姜黄素为橙黄色结晶粉末,味稍苦。
不溶于水,溶于乙醇、丙二醇,易溶于冰醋酸和碱溶液,在碱性时呈红褐色,在中性、酸性时呈黄色。
对还原剂的稳定性较强,着色性强(不是对蛋白质),一经着色后就不易退色,但对光、热、铁离子敏感,耐光性、耐热性、耐铁离子性较差。
姜黄素主要用于肠类制品、罐头、酱卤制品等产品的着色,其使用量按正常生产需要而定。
另外,在熟肉制品、罐头等食品生产中还常用萝卜红、高粱红、红花黄等食用天然色素作着色剂。
我国国家标准《食品添加剂使用卫生标准》(GB2760-1996)规定,萝卜红按正常生产需要使用;高梁红最大使用量为0.04%;红花黄为0.02%。
姜黄素前列腺癌细胞杀手咖哩中含量丰富搭配化学治疗效果佳咖哩含量丰富的「姜黄素」,初步研究发现它有辅助化学治疗、打击前列腺癌细胞的功效。
台大医院泌尿部主治医师蒲永孝发现,姜黄素可以打破癌细胞的「防火墙」,帮助化学药物长驱直入癌细胞,迎头痛击。
姜黄素有什么作用与功效姜黄素是一种从姜黄植物中提取的天然化合物,具有强大的抗氧化和抗炎作用。
它被世界各地的人们广泛应用于食品、保健品和药物等领域。
近年来,越来越多的研究表明姜黄素还具有许多其他的作用与功效。
本文将详细介绍姜黄素的作用与功效。
首先,姜黄素具有抗氧化作用。
抗氧化是指抵抗自由基对细胞和组织的损害,减轻氧化应激引起的炎症和慢性疾病。
姜黄素能够清除自由基,减少氧化应激,保护细胞免受损害。
研究表明姜黄素可以提高细胞的抗氧化能力,延缓细胞的老化过程。
其次,姜黄素还具有抗炎作用。
炎症是身体对感染、损伤或刺激的一种自我保护反应,但过度或持续的炎症反应会导致组织损伤和疾病的发生。
姜黄素能够抑制多种炎症反应的发生,包括关节炎、炎症性肠病、牙龈炎等。
研究还发现,姜黄素能够调节免疫系统,促进炎症的解析和修复。
此外,姜黄素还具有抗肿瘤作用。
肿瘤是指异常增殖和分化的细胞,其生长和扩散能迅速占据正常组织空间,破坏正常组织和器官的功能。
姜黄素能够抑制肿瘤细胞的生长和扩散,诱导肿瘤细胞凋亡,阻断肿瘤血管的生成。
研究表明姜黄素能够对多种类型的肿瘤起到抑制和防治的作用,包括乳腺癌、前列腺癌、结直肠癌等。
此外,姜黄素还具有调节血糖和血脂的作用。
高血糖和高血脂是导致糖尿病、心血管疾病等代谢性疾病的重要因素。
姜黄素能够提高胰岛素的敏感性,促进葡萄糖的入胰岛细胞,降低血糖的水平。
研究还发现,姜黄素能够抑制脂肪合成和脂肪的积累,降低血脂的水平。
此外,姜黄素还具有保护心脑血管的作用。
心脑血管疾病是目前社会上最常见的疾病之一,而姜黄素具有降低血压、抑制血小板凝集、改善血液循环等作用,能够保护心脑血管的健康,减少心脑血管疾病的发生。
最后,姜黄素还具有抗感染和抗菌作用。
姜黄素能够抑制多种病原微生物的生长和繁殖,对抗感染有一定的作用。
研究还发现,姜黄素能够发挥抗生素的协同作用,提高抗菌药物的效果。
综上所述,姜黄素具有抗氧化、抗炎、抗肿瘤、调节血糖和血脂、保护心脑血管以及抗感染和抗菌等多种作用与功效。
姜黄素的互变异构
【实用版】
目录
1.姜黄素的概述
2.姜黄素的互变异构现象
3.姜黄素互变异构体的应用
4.姜黄素互变异构体的研究进展
5.姜黄素互变异构体的未来发展方向
正文
一、姜黄素的概述
姜黄素是一种从姜黄根茎中提取出的黄色色素,具有多种生物活性。
在生物体内,姜黄素可以发挥抗氧化、抗炎、抗肿瘤等作用。
由于其强大的生物活性,姜黄素逐渐成为一种备受关注的天然化合物。
二、姜黄素的互变异构现象
姜黄素在生物体内存在着两种互变异构体,分别为姜黄素-I 和姜黄素-II。
这两种异构体在化学结构上仅有一个双键的位置不同,但由于这一差异,使得它们在生物活性、稳定性等方面存在显著差异。
三、姜黄素互变异构体的应用
由于姜黄素-I 和姜黄素-II 具有不同的生物活性,因此可以应用于多个领域。
例如,姜黄素-I 在抗氧化、抗炎等方面表现出较强的活性,而姜黄素-II 则在抗肿瘤等方面具有较好的应用前景。
四、姜黄素互变异构体的研究进展
近年来,关于姜黄素互变异构体的研究逐渐深入。
研究人员已经揭示了姜黄素在生物体内的代谢途径、生物活性及其作用机制等方面的详细信
息。
此外,通过合成不同结构的姜黄素衍生物,研究人员还发现了许多具有潜力的生物活性分子。
五、姜黄素互变异构体的未来发展方向
未来,姜黄素互变异构体的研究将继续深入,有望在药物开发、生物活性改进等方面取得重大突破。
International Journal of Pharmaceutics337(2007)299–306Pharmaceutical NanotechnologyFormulation and characterization of curcuminoidsloaded solid lipid nanoparticlesWaree Tiyaboonchai a,b,∗,Watcharaphorn Tungpradit a,Pinyupa Plianbangchang b,ca Department of Pharmaceutical Technology,Faculty of Pharmaceutical Sciences,Naresuan University,Pitsanulok65000,Thailandb Cosmetics and Natural Products Research Center,Faculty of Pharmaceutical Sciences,Naresuan University,Pitsanulok65000,Thailandc Department of Pharmaceutical Practice,Faculty of Pharmaceutical Sciences,Naresuan University,Pitsanulok65000,ThailandReceived7June2006;received in revised form13November2006;accepted25December2006Available online9January2007AbstractCurcuminoids loaded solid lipid nanoparticles(SLNs)have been successfully developed using a microemulsion technique at∼75◦C.It was found that variation in the amount of ingredients had profound effects on the curcuminoid loading capacity,the mean particle size,and size distribution. At optimized process conditions,lyophilized curcuminoids loaded SLNs showed spherical particles with a mean particle size of∼450nm and a polydispersity index of0.4.Up to70%(w/w)curcuminoids incorporation efficacy was achieved.In vitro release studies showed a prolonged release of the curcuminoids from the solid lipid nanoparticles up to12h following the Higuchi’s square root model.After6-month storage at room temperature in the absence of sunlight,the physical and chemical stabilities of the lyophilized curcuminoids loaded SLNs could be maintained, i.e.the mean particle size and the amount of curcuminoids showed no significant changes(P>0.05)compared to the freshly prepared SLNs.In addition,the chemical stability of curcuminoids incorporated into SLNs was further investigated by dispersing them into a model cream base.The results revealed that after storage in the absence of sunlight for6months,the percentages of the remaining curcumin,bisdemethoxycurcumin and demethoxycurcumin were91,96and88,respectively.©2007Elsevier B.V.All rights reserved.Keywords:Curcuminoids;Solid lipid nanoparticles;Microemulsion;Lyophilization1.IntroductionCurcuminoids are one of the best recognized antioxidants isolated from the rhizome of Curcuma longa Linn.(Ahsan et al.,1999;Khopde et al.,1999;Sreejayan and Rao,1994).Cur-cuminoids are obtained as a yellowish pigment and consist primarily of three phenolic compounds:curcumin,demethoxy-curcumin,and bisdemethoxycurcumin.Fascinatingly,they can prevent lipid peroxidation at a significantly higher degree than e.g.pine bark extract,grape seed extract and synthetic antiox-idants like butylated hydroxytoluene(BHT)(Kim et al.,1997) and show therefore also excellent properties in retarding skin ageing.Unfortunately,they are degraded by acidic and alkaline hydrolysis,oxidation and photodegradation(Bernabe-Pineda et al.,2004;Pfeiffer et al.,2003;Price and Buescher,1996; Tonnesen et al.,1986;Wang et al.,1997).Many studies showed ∗Corresponding author.Tel.:+6655261000x3619;fax:+6655261057.E-mail address:wareet@nu.ac.th(W.Tiyaboonchai).that curcuminoids decompose in a pH-dependent manner,with faster reactions at neutral to basic conditions.They are known to be stable at a pH below6.5.Recently curcuminoids have gained special interest in cos-meceutic products.However,stability issues of curcuminoids have not been successfully overcome in such preparations.Ton-nesen found that micellar solubilization could stabilize curcumin against hydrolytic reaction,but the half-life of curcumin in such a system was only2months.Moreover,curcumin stabilized by a micellar system showed a higher photodecomposition rate compared to curcumin in aqueous solution(Tonnesen,2002).A preliminary study of the authors revealed that the percentage of curcuminoids remaining intact in a model cream formulation was less than50%after3months’storage.Therefore,further investigation with suitable cosmetic formulations has to be car-ried out in order to prolong the curcuminoids stability.Among modern drug delivery carriers solid lipid nanoparti-cles(SLNs)seemed to be a promising colloidal carrier system. Solid lipid nanoparticles made from biodegradable solid lipids exist in the submicron size range and can be prepared by several0378-5173/$–see front matter©2007Elsevier B.V.All rights reserved. doi:10.1016/j.ijpharm.2006.12.043300W.Tiyaboonchai et al./International Journal of Pharmaceutics337(2007)299–306methods.The advantages of SLN are as follows:possibility of controlled drug release and drug targeting,protection of incor-porated compound against chemical degradation,no biotoxicity of the carrier,avoidance of organic solvent and no problems with respect to large scale production(Marengo et al.,2000;Mehnert and M¨a der,2001;M¨u ller et al.,2000).Thus,in this study,the curcuminoids stability in a model cream preparation was improved by developing curcuminoids loaded SLNs using a microemulsion technique at moderate tem-perature as developed by Gasco(1997).The primary goal here was to characterize the processing factors affecting the char-acteristics of the curcuminoids SLNs,including the optimal conditions for their preparation as well as their stability dur-ing storage.Additionally,the size and morphology of the SLNs were studied,as well as the efficiency of drug incorporation. The pattern of drug release was also investigated in relation to the stability of curcuminoids in cream formulations containing curcuminoids SLNs.2.Materials and methods2.1.MaterialsCurcuminoids extract was purchased from Thai-China Flavours and Fragrances Industry Co.,Ltd.(Ayutthaya,Thai-land).Stearic acid was obtained from Srichand United Dispensary Co.,Ltd.(Bangkok,Thailand).Dioctyl sodium sulfosuccinate(AOT)was purchased from Fluka Chemie (Buchs,Switzerland).Poloxamer188was a gift from BASF (Ludwigshafen,Germany).Glyceryl monostearate(GMS)and Arlacel165were obtained from Numsiang Trading Co.,Ltd. (Bangkok,Thailand).Standard curcuminoids were purchased from Sigma(Lot No.69-s3457,MO,USA).All other chemicals and solvents were of analytical grade.Polycarbonate membrane, diameter25mm,with a0.22m pore size(Isopore TM)and polyethersulfone membrane,diameter76mm,with a molecu-lar weight cut off(MWCO)of100,000(Millipore®YM100) were purchased from Millipore Corporation(MA,USA).2.2.Methods2.2.1.Preparation and lyophilization of curcuminoids loaded SLNsCurcuminoids loaded SLNs were prepared by a microemul-sion technique at moderate temperature according to Gasco (1997).The water phase consisted of0.1%(w/w)curcumi-noids extract,5–15%(w/w)poloxamer188,5–15%(w/w)AOT, 5–20%(w/w)ethanol,and deionized water added to100% (w/w).The water phase was heated to∼75◦C before added to the oil phase.The oil phase,consisting of5–12.5%(w/w)stearic acid and4%(w/w)GMS,was heated to∼75◦C.The obtained warm microemulsion was dispersed in cold water,∼2◦C,under high-speed homogenization(Model SL2,Silverson,Chesham Bucks,England)at8000rpm for15min.The volume ratio of the warm microemulsion to the cold water was1:20.Then,the SLNs dispersion was washed two times with deionized water using an ultrafiltration cell systemfitted with a membrane molec-ular weight cut off of100,000Da.Finally,4%(w/v)mannitol was added to the SLNs dispersion before it was shock-frozen in liquid nitrogen and lyophilized at0.40mbar and−30◦C for 24h.The SLNs were prepared under different processing param-eters to study the effect of a number of variables on their physicochemical properties.Processing parameters were varied as follows:the concentration of stearic acid was varied from5% to12.5%(w/w);the GMS emulsifier concentration was varied from5%to15%(w/w);ethanol concentration was varied from 5%to20%(w/w);and the mannitol concentration was varied from1%to4%(w/w).The selection of these variables was based on preliminary experiments.Empty nanoparticles were prepared using the same procedure variables.All samples were prepared in duplicate.2.2.2.Physicochemical characterization of the curcuminoids loaded SLNsThe morphology of the lyophilized empty and curcumi-noids loaded SLNs was determined using a scanning electron microscopy(Model LEO1455VP,LEO,Cambridge,England). The lyophilized SLNs were evenly distributed onto a conduc-tive tab on a stud and then sputter coated with gold in a cathodic evaporator.The mean particle size and particle size distribution were analyzed by photon correlation spectroscopy(PCS)employing a Zetasizer(Model Nano ZS90,Malvern Instrument,Worcester-shire,England).This instrument wasfitted with a4mW He–Ne diode laser operating at633nm.An aliquot of lyophilized curcuminoids SLNs was resuspended in deionized water.Mea-surements were performed at afixed angle of90◦to the incident light and data were collected over a period of3min.The par-ticle size analysis data were evaluated using the hydrodynamic diameter and the measurements were repeated three times for each sample.2.2.3.Determination of curcuminoids incorporationefficiencyTen milligrams of lyophilized curcuminoids containing SLNs were accurately weighed and dissolved in10ml of methanol. The dispersion was centrifuged at18,000×g for30min.Then the amount of curcuminoids in the supernatant was determined from its absorption at420nm using UV–vis spectrophotometer (Model Cary-1E,Varian,MA,USA).The percentage of curcuminoids incorporation was then cal-culated using a calibration curve from the range of0.8–4.0g/ml of standard curcuminoids which werefirstly dissolved in methanol.Dilutions were made with50%ethanol(v/v).2.2.4.Preparation of a model cream containing curcuminoids SLNsThe aqueous phase of the model cream was composed of 5%(w/w)glycerol,3%(w/w)propylene glycol,0.1%(w/w) methyl paraben and deionized water to100%(w/w).The oil phase contained3%(w/w)mineral oil,1%(w/w)stearic acid, 2%(w/w)cetyl alcohol,3%(w/w)Arlacel165and0.05%(w/w) propyl paraben.The oil phase and water phase were separatelyW.Tiyaboonchai et al./International Journal of Pharmaceutics337(2007)299–306301heated to70–75◦C.Then,the water phase was gradually added to the oil phase.The resulting mixture was cooled down to room temperature while stirring.The cream containing curcuminoids SLNs was prepared by dispersing the lyophilized curcuminoids SLNs in the cream base. Curcuminoids SLNs composed of stearic acid5%(w/w),polox-amer5%(w/w),AOT5%(w/w),and ethanol15%(w/w)were chosen as they showed being the optimal formulation giving small particles with high entrapment efficacy.Thefinal cream contained0.01%(w/w)curcuminoids.2.2.5.In vitro dissolution studiesIn vitro release of curcuminoids SLNs was studied using ver-tical Franz diffusion cells(Model No.57-951-061,Meditron, V¨o lklingen,Germany)at37±0.5◦C.The area for diffusion was 1.77cm2and the receptor chamber volume was7.8ml.Polycar-bonate hydrophilic membrane(Isopore TM Membrane0.22m, 25mm)wasfitted between donor and receptor compartment. The receptor medium consisting of50%(v/v)ethanol was con-tinuously stirred.The vertical Franz diffusion cell was allowed to equilibrate for15min before applying the sample.An amount of cream containing40g curcuminoids was evenly spread on the membrane surface.Half a milliliter of the receptor medium was taken at predetermined time intervals of10,30min,1,3,5,8 and12h.The amount of curcuminoids released was determined using its absorbance at420nm.In addition,in vitro release of cream containing free curcuminoids was investigated.2.2.6.Stability studies of lyophilized curcuminoids solidlipid nanoparticlesLyophilized curcuminoids SLNs were stored at room tem-perature in a desiccator and protected from light for6months. An aliquot of sample was taken at predetermined time intervals of3and6months to investigate the particle size and curcumi-noids content.The mean particle size and polydispersity index (PI)were determined by PCS as described in Section2.2.2. The percentage of curcuminoids incorporation was determined by UV–vis spectrophotometer as described in Section2.2.3. Finally,the contents of curcumin,demethoxycurcumin and bis-demethoxycurcumin were determined by a HPLC method which was modified from Jayaprakasha et al.(2002).An HPLC appa-ratus(Model LD10A,Shimazu,Kyoto,Japan)equipped with a 250mm×4.6mm(i.d.)reversed-phase C18column with5m particle size(Luna,Phenomenex,CA,USA)and a UV–vis detector was used.The mobile phase consisted of acetonitrile and acetate buffer in a ratio of1:1(v/v),the pH of mobile phase was adjusted to3.1with glacial acid.Aflow rate of1.2ml/min and detection wavelength of425were employed.Ten milligrams of lyophilized curcuminoids SLNs were accurately weighed and dissolved in1ml of methanol.The system was centrifuged at 18,000×g for60min.The supernatant was decanted and then further centrifuged at18,000×g for5min before injecting into the column.The amounts of curcumin,demethoxycurcumin and bisdemethoxycurcumin were calculated by the peak areas using a calibration curve constructed from1to100g/ml of standard curcuminoids.Unloaded SLNs were used as a reference.All experiments were done in triplicate.2.2.7.Stability studies of a model cream containing curcuminoids solid lipid nanoparticlesThe stability of the curcuminoids in the model cream con-taining curcuminoids SLNs was studied in the absence and presence of light.The cream containing curcuminoids SLNs was stored in a well-closed white glass and amber glass con-tainer and was kept at room temperature for6months.The content of curcumin,demethoxycurcumin and bisdemethoxy-curcumin was determined by HPLC as described above.Two hundred milligrams of cream were accurately weighed and dis-solved in1ml of methanol.The dispersion was centrifuged at 18,000×g for60min.The supernatant was decanted and then further centrifuged at18,000×g for5min before injecting into the column.3.Results and discussion3.1.Physicochemical properties3.1.1.MorphologyCurcuminoids loaded SLNs were successfully prepared by a microemulsion technique at a temperature range of70–75◦C. An oil-in-water microemulsion was spontaneously obtained as recognized by a clear solution after adding the heated water phase into the oil phase of the same temperature.The SLNs were obtained immediately when dispersing the warm microemulsion into cold water with the aid of a homogenizer.The cold water facilitated rapid lipid crystallization and prevented lipid aggre-gation(Mehnert and M¨a der,2001).Yellow soft curcuminoids containing SLNs were obtained after freeze-drying.They could be easily redispersed in water and in the model cream base.Scan-ning electron micrographs revealed that lyophilized unloaded and curcuminoids loaded SLNs were spherical in shape with smooth surfaces and uniformly distributed throughout the man-nitolflake(Fig.1A and B).The morphology of particles was found to be independent of the processing conditions(data not shown).3.1.2.Mean particle size and size distributionThe mean particle size and size distribution of the lyophilized curcuminoids loaded SLNs were determined by PCS.The results showed that the amount of lipid,emulsifier(poloxamer188)and co-emulsifier(AOT)were critical parameters for the size of the nanoparticles.The effect of stearic acid concentration on the mean parti-cle size was evaluated by varying the concentration from5%, 7.5%,10%to12.5%(w/w)while maintaining the amount of poloxamer at5%(w/w),AOT at5%(w/w)and ethanol at 15%(w/w).The results showed that when increasing lipid concentration from5%to12.5%(w/w),the monomodal size distribution with the mean particle size increased from447 to1198nm and the polydispersity index increased from0.4 to0.70,respectively(Table1).Thisfinding was in agree-ment with Mehnert et al.who reported that increasing the lipid content over5–10%(w/w)in most cases resulted in larger mean particle sizes and broader size distributions(Mehnert and M¨a der,2001).Therefore,5%(w/w)stearic acid was found302W.Tiyaboonchai et al./International Journal of Pharmaceutics337(2007)299–306Fig.1.Scanning electron micrographs of(A)unloaded solid lipid nanoparti-cles and(B)curcuminoids loaded solid lipid nanoparticles consisting of stearic acid5%(w/w),poloxamer5%(w/w),AOT5%(w/w),ethanol15%(w/w)and lyophilized with4%(w/v)mannitol.Table1Effect of stearic acid concentration on the mean particle size and polydispersity index of curcuminoids loaded solid lipid nanoparticlesStearic acid (%,w/w)Area intensity(%±S.D.)Mean particlesize(nm±S.D.)PI±S.D.5.0100447±550.46±0.02 7.5100703±550.68±0.18 10.01001305±1090.51±0.02 12.51001118±3680.67±0.05 Composition of the SLNs:poloxamer188,5%(w/w);AOT,5%(w/w);ethanol, 15%(w/w).Table2Effect of poloxamer concentration on the mean particle size and polydispersity index of curcuminoids loaded solid lipid nanoparticlesPoloxamer(%,w/w)Area intensity(%±S.D.)Mean particle size(nm±S.D.)PI±S.D.5.0100447±550.46±0.02 7.595±12;5±1672±52;254±360.58±0.02 1084±5;16±3964±88;236±430.75±0.04 12.581±7;17±4917±101;205±1510.77±0.13 1578±2;12±2863±147;101±570.67±0.07 Composition of the SLNs:stearic acid,5%(w/w);AOT,5%(w/w);ethanol, 15%(w/w).to be an optimum concentration for the formulation of the SLNs.The effect of the amount of emulsifier and co-emulsifier, poloxamer188and AOT,on the mean particle size was studied by varying the amount of each emulsifier from5%,7.5%,10%, 12.5%to15%(w/w)while maintaining the amount of stearic acid at5%(w/w)and ethanol at15%(w/w),respectively.An optimal particle size with narrow size distribution was obtained with5%(w/w)of each emulsifier.When the amounts of polox-amer188and AOT were increased,the mean particle size and polydispersity index were also increased(Tables2and3).The results revealed that only formulation with5%(w/w)poloxamer and5%(w/w)AOT showed a monomodal size distribution with a mean particle size of447nm whereas SLNs formulated with poloxamer188higher than5%displayed a bimodal size dis-tributions.Approximately80%of particles were in the range of700–900nm and approximately20%were in the range of 100–250nm.The same trend was observed when the amount of AOT was higher than5%(w/w).An explanation for the observed aggregation may involve an intrinsic thermodynamic instabil-ity of the nanoparticle system with dispersed molecules of the surfactant and co-surfactant in the lipid matrix butfinally result-ing in an adsorption of the emulsifier to the particle surface. At very low concentration,the emulsifier is adsorbed directly onto the surface of the particles.However,at high concentration of the emulsifier,compression of the emulsifier molecules at the particles surface with formation of loops and tails became promi-nent andfinally leading to the bridging between the primary nanoparticles(Freitas and M¨u ller,1999;Goppert and M¨u ller, 2005).Table3Effect of AOT concentration on the mean particle size and polydispersity index of curcuminoids loaded solid lipid nanoparticlesAOT(%w/w)Area intensity(%±S.D.)Mean particle size(nm±S.D.)PI±S.D.5.0100447±550.46±0.02 7.593±11;7±2805±30;249±1120.76±0.05 10.091±8;9±31295±141;209±770.80±0.16 12.585±7;15±61184±62;236±550.71±0.09 1576±6;24±111420±209;212±430.48±0.04 Composition of the SLNs:stearic acid,5%(w/w);poloxamer188,5%(w/w); ethanol,15%(w/w).W.Tiyaboonchai et al./International Journal of Pharmaceutics337(2007)299–306303 Table4Effect of ethanol concentration on the mean particle size and polydispersityindex of curcuminoids loaded solid lipid nanoparticlesEthanol (%,w/w)Area intensity(%±S.D.)Mean particle size(nm±S.D.)PI±S.D.5.0100972±610.70±0.20 10.0100583±1990.50±0.11 15.0100447±550.46±0.02 20.079±12;21±13814±105;130±520.74±0.07 Composition of the SLNs:stearic acid,5%(w/w);poloxamer188,5%(w/w); AOT,5%(w/w).The effect of ethanol on the mean particle size was stud-ied by varying the amount of ethanol from5%,10%,15% to20%(w/w)while maintaining the amount of stearic acid, poloxamer and AOT at5%(w/w)each.Ethanol acts as a co-emulsifier and curcuminoids co-solvent.As expected,the results revealed that when increasing the concentration of ethanol from 5%to15%,the mean particle size decreased from972to 447nm,respectively(Table4).However,the increase of the ethanol concentration to more than15%(w/w)resulted in a larger mean particle size,814nm,and a broad size distribu-tion.In addition,only formulations with5–15%ethanol showed monomodal size distributions.On the contrary,formulation with 20%(w/w)ethanol showed a bimodal particle size distribution with∼79%of the nanoparticles having a mean size of814nm while∼21%showed a mean particle size of135nm.Therefore, ethanol induced bridging of primary formed nanoparticles by an accumulation of the surfactant and co-surfactant at the particle surface may be again a reasonable explanation for the formation of the larger particles as described before.It is well known that a lyoprotectant is necessary to decrease nanoparticle aggregation during the lyophilization process.In this study,mannitol was chosen as a lyoprotectant.The lyopro-tective effect of mannitol was tested at different concentrations ranging from1%to4%(w/v).The results showed that the mean particle size and size distribution decreased with increasing amounts of mannitol(Table5).Formulation with4%(w/v)man-nitol resulted in the smallest mean particle size,∼447nm,with a monomodal size distribution.In addition,they could be easily redispersed in aqueous media.On this basis,4%(w/v)mannitol was selected as the optimal concentration for the lyophilization process.SEM micrographs showed more aggregated particles at lower amounts of mannitol(data not shown)resulting in a bigger parti-Table5Effect of mannitol concentration on the mean particle size and polydispersity index of curcuminoids loaded solid lipid nanoparticlesMannitol (%,w/w)Area intensity(%±S.D.)Mean particle size(nm±S.D.)PI±S.D.1.0100696±190.52±0.022.0100656±690.60±0.033.0100527±90.40±0.084.0100447±550.46±0.02 Composition of the SLNs:stearic acid,5%(w/w);poloxamer188,5%(w/w); AOT,5%(w/w);ethanol15%(w/w).Fig.2.Incorporation efficacy of curcuminoids on the surface of SLNs formu-lated with different stearic acid concentrations.cle size and a higher polydispersity index.Thus,the action of this mannitol as lyoprotectant is probably best explained by the par-ticle immobilization hypothesis(Carpenter et al.,1999)which suggests that mannitol protects the particles against aggregation by providing spatial separation and immobilization of the parti-cles in a glassy matrix during dehydration.Mannitol may interact with the polar head group of the surfactant molecules and thus prevents contact between discrete nanoparticles through stearic hindrance(Mehnert and M¨a der,2001;M¨u ller et al.,2000). 3.2.Determination of curcuminoids incorporation efficacyThe formulations studied demonstrated moderate to high cur-cuminoids incorporation efficacy in the range of35–70%(w/w). The experimental results indicate that the concentration of lipid, emulsifier and co-emulsifier had critical effects on the curcum-inoids incorporation efficacy(Figs.2and3).Curcuminoids are poorly soluble in water and in lipids.They are soluble in alka-line medium and ethanol.Their solubility in the aqueous phase, however,could be enhanced by the addition of surfactant and co-surfactant.The effect of the amount of lipid on the entrapment efficacy was studied by maintaining the amount of surfactant while varying the amount of lipid.The result showed that the entrapment efficacy decreased as the amount of lipid increased due to the insolubility of the curcuminoids in stearic acid.Thus, the curcuminoids are incorporated in the surfactant layer at the surface of the SLNs leading to a high entrapment efficacy.On the contrary,at high lipid concentration,more SLNs were pro-duced with insufficient amounts of(co)surfactants to solubilize the total amount of curcuminoids at the particle surface resulting in low entrapment efficacy.It was found experimentally that the incorporation efficacy was optimal at5%lipid,5%(w/w)poloxamer188,5%(w/w) AOT and15%(w/w)ethanol,respectively.The curcuminoids incorporation efficacy was significantly decreased with increas-ing the amounts of poloxamer188,AOT and ethanol in the formulations,respectively(Fig.3A–C).As the amount of emul-sifier and co-emulsifier increased at a constant amount of lipid, the surface of the formed SLNs is too small to adsorb all sur-factant and co-surfactant molecules,which will result in the304W.Tiyaboonchai et al./International Journal of Pharmaceutics 337(2007)299–306Fig.3.Incorporation efficacy of curcuminoids in SLNs formulated with differ-ent amount of (A)poloxamer;(B)AOT;(C)ethanol.formation of micellar solutions of the curcuminoids.Hence the solubility of the curcuminoids in the water phase will be increased.Therefore,curcuminoids could partition from the SLNs into the formed micelles in the water phase during the washing procedure by ultrafiltration technique thus reducing the final incorporation efficacy on the surface of the SLNs (Gohel et al.,2000;Yonezawa et al.,2001)3.3.In vitro dissolution studiesCurcuminoids possess very poor aqueous solubility.Thus,to provide sink conditions 50%(v/v)ethanol was chosen as a receptor medium.The in vitro release studies from both model cream containing curcuminoids SLNs and cream containing free curcuminoids demonstrated a prolonged release character-istic following Higuchi’s square root model (Fig.4).However,a more rapid release of curcuminoids from cream containing free curcuminoids was observed,∼90%of curcuminoids were release within 8h.In the contrary,70%of curcuminoids were released from SLNs within 12h.Therefore,the results indi-cated that most of the curcuminoids were incorporated at the surface of the SLNs and diffused into the cream matrix until a steady state was reached and finally from the cream into theFig.4.Release profile of curcuminoids from ( )a model cream containing free curcuminoids and ( )a model cream containing curcuminoids SLNs.Curcum-inoids SLNs consisting of stearic acid 5%(w/w),poloxamer 5%(w/w),AOT 5%(w/w),and ethanol 15%(w/w).dissolution medium.Many studies reported that drug loaded SLNs provide a controlled release pattern following Higuchi’s square root model (Gohel et al.,2000;Yonezawa et al.,2001).However,when incorporated in our cream system a 25%burst release of the curcuminoids within 10min was observed,sug-gesting the partition of the curcuminoids from the SLNs into the cream base.From a therapeutic standpoint a burst release profile can be considered as an advantage as a sufficient amount of curcuminoids is rapidly released from the cream to the skin to exert an initial therapeutic effect followed by a controlled release (square root type)of the remaining curcuminoids from the SLNs.3.4.Stability studiesCurcuminoids are notorious as light and oxygen sensitive substances.Thus,it is important to maintain their stabilities during storage.The lyophilized curcuminoids SLNs demon-strated physical and chemical stabilities for at least 6-month storage in the absence of sunlight under room temperature.The mean particle size of SLNs after preparation and after 6-month storage were 447and 471nm,respectively.The percentage of remaining curcumin,bisdemethoxycurcumin and demethoxy-curcumin after 6-month storage were 99,97and 95,respectively.These results show that lyophilized SLNs have the same parti-cle size and curcuminoids content as the initial preparation with a 95%confidence level.These findings are in agreement with the results of other researchers suggesting that the transforma-tion of SLNs into a dry powder can prevent the aggregation of nanoparticles and improve the stability of light and oxygen sensitive substances (Mehnert and M¨a der,2001;M¨u ller et al.,2000).In addition,the chemical stability of curcuminoids incorpo-rated into SLNs was further investigated by dispersing them into a model cream base.The lyophilized curcuminoids SLNs were uniformly dispersed within the cream base giving a yellowish cream color.The test products were kept in the absence and presence of sunlight in order to investigate the curcuminoids stability.The results revealed that after storage in the absence。