2008年湖北省襄樊市中考数学试题及答案
- 格式:doc
- 大小:1.22 MB
- 文档页数:10
2008年湖北省襄樊市初中毕业、升学统一考试数学试题一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答. 1.2的相反数是( ) A .2B .2-C .12D .12-2.下列运算正确的是( ) A .3412x x x = B .623(6)(2)3x x x -÷-= C .23a a a -=-D .22(2)4x x -=-3.如图1,已知AD 与BC 相交于点O ,AB CD ∥,如果40B ∠=,30D ∠=,则AOC ∠的大小为( )A .60B .70C .80D .1204.下列说法正确的是( ) A .4的平方根是2 B .将点(23)--,向右平移5个单位长度到点(22)-,C .38是无理数D .点(23)--,关于x 轴的对称点是(23)-,5.在正方形网格中,ABC △的位置如图2所示,则cos B ∠的值为( ) A .12B .22C .32D .336.某种商品零售价经过两次降价后的价格为降价前的81%, 则平均每次降价( ) A .10% B .19% C .9.5% D .20% 7.顺次连接等腰梯形四边中点所得四边形是( ) A .菱形 B .正方形 C .矩形 D .等腰梯形8.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图3所示,当310mV =时,气体的密度是( ) A .5kg/m 3 B .2kg/m 3 C .100kg/m 3 D ,1kg/m 39.如图4,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是( )A .7个B .8个C .9个D .10个10.如图5,扇形纸扇完全打开后,外侧两竹条AB AC ,夹角为120,AB 的长为30cm ,贴纸部分BD 的长为20cm ,则贴纸部分的面积为( ) A .2100cm π B .2400cm 3π C .2800cm πD .2800cm 3π 二、填空题:本大题共6小题,每小题3分,共18分.把答案填在答题卡的相应位置上.11.一方有难,八方支援.截至6月3日12时,中国因汶川大地震共接受国内外捐赠款物423.64亿元,用科学记数法表示为 元. 12.如图6,O 中OA BC ⊥,25CDA ∠=,则AOB ∠的度数为 .13.当m = 时,关于x 的分式方程213x mx +=--无解. 14.如图7,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++.则他将铅球推出的距离是 m .15.如图8,张华同学在学校某建筑物的C 点处测得旗杆顶部A 点的仰角为30,旗杆底部B 点的俯角为45.若旗杆底部B 点到建筑物的水平距离9BE =米,旗杆台阶高1米,则旗杆顶点A 离地面的高度为 米(结果保留根号).16.如图9,在锐角AOB ∠内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;……照此规律,画10条不同射线,可得锐角 个.三、解答题:本大题共9小题,共72分.解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.17.(本小题满分7分)化简求值:222161816416x xx x x x⎛⎫-+÷⎪++--⎝⎭,其中21x=+.18.(本小题满分6分)为了了解学生课业负担情况,某初中在本校随机抽取50名学生进行问卷调查,发现被抽查的学生中,每天完成课外作业时间,最长不足120分钟,没有低于40分钟的.并将抽查结果绘制成了一个不完整的频数分布直方图,如图10所示.(1)请补全频数分布直方图;(2)被调查50名学生每天完成课外作业时间的中位数在组(填时间范围);(3)若该校共有1200名学生,请估计该校大约有名学生每天完成课外作业时间在80分钟以上(包括80分钟).19.(本小题满分6分)如图11-1,方格纸中有一透明等腰三角形纸片,按图中裁剪线将这个纸片裁剪成三部分.请你将这三部分小纸片重新分别拼接成;(1)一个非矩形的平行四边形;(2)一个等腰梯形;(3)一个正方形.请在图11-2中画出拼接后的三个图形,要求每张三角形纸片的顶点与小方格顶点重合.20.(本小题满分7分),,是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形.连接如图12,B C E,.BG DE(1)观察猜想BG与DE之间的大小关系,并证明你的结论;(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说出旋转过程;若不存在,请说明理由.21.(本小题满分7分)在一个不透明的布袋中有4个完全相同的乒乓球,把它们分别标号为1,2,3,4,随机地摸出一个乒乓球然后放回,再随机地摸出一个乒乓球.求下列事件的概率:(1)两次摸出的乒乓球的标号相同;(2)两次摸出的乒乓球的标号的和等于5.22.(本小题满分7分)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意购买了一些送给这个小学的小朋友作为节日礼物.如果每班分10套,那么余5套;如果前面的班级每个班分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套?23.(本小题满分10分)我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a 元;一月用水超过10吨的用户,10吨水仍按每吨a 元收费,超过10吨的部分,按每吨b 元(b a >)收费.设一户居民月用水x 吨,应收水费y 元,y 与x 之间的函数关系如图13所示. (1)求a 的值;某户居民上月用水8吨,应收水费多少元? (2)求b 的值,并写出当10x >时,y 与x 之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?24.(本小题满分10分)如图14,直线AB 经过O 上的点C ,并且OA OB =,CA CB =,O 交直线OB 于E D ,,连接EC CD ,.(1)求证:直线AB 是O 的切线;(2)试猜想BC BD BE ,,三者之间的等量关系,并加以证明;(3)若1tan 2CED ∠=,O 的半径为3,求OA 的长.25.(本小题满分12分)如图15,四边形OABC 是矩形,4OA =,8OC =,将矩形OABC 沿直线AC 折叠,使点B 落在D 处,AD 交OC 于E . (1)求OE 的长;(2)求过O D C ,,三点抛物线的解析式;(3)若F 为过O D C ,,三点抛物线的顶点,一动点P 从点A 出发,沿射线AB 以每秒1个单位长度的速度匀速运动,当运动时间t (秒)为何值时,直线PF 把FAC △分成面积之比为1:3的两部分?2008年湖北省襄樊市初中毕业、升学统一考试数学试题参考答案及评分标准一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BCBDBAADCD二、填空题(每小题3分,共18分) 11.104.236410⨯12.50 13.6-14.1015.1033+16.66三、解答题(共72分) 17.解:原式4(4)(4)44x x x x x x -⎛⎫=++-⎪+-⎝⎭··························································· (2分) 2(4)(4)x x x =-++ ······································································································ (3分) 22416x x =-+. ·········································································································· (4分)当21x =+时,原式22(21)4(21)16=+-++ ················································· (5分)18=. ···························································································································· (7分)18.(1)如图1.·········································································································· (2分)(2)80-100. ·············································································································· (4分) (3)840 ·························································································································· (6分) 19.解:如图2所示.说明:正确画出拼接图形每个2分,共6分.20.解:(1)BG DE =. ·························································································· (1分) 四边形ABCD 和四边形CEFG 都是正方形,GC CE ∴=,BC CD =,90BCG DCE ∠=∠=. ··············································· (2分) BCG DCE ∴△≌△. ·································································································· (3分) BG DE ∴=. ················································································································ (4分) (2)存在.BCG △和DCE △. ··············································································· (5分) BCG △绕点C 顺时针方向旋转90后与DCE △重合. ············································ (7分)21.解:将两次摸乒乓球可能出现的结果列表如下:···································································· (2分) 以上共有16种等可能结果. ························································································· (3分) (1)两次摸出的乒乓球标号相同的结果有4种,(2)两次摸出的乒乓球的标号的和等于5的结果有4种, 故(5)41164P ==标号的和等于. ··························································································· (7分) 22.解:设该小学有x 个班,则奥运福娃共有(105)x +套.由题意,得10513(1)410513(1).x x x x +<-+⎧⎨+>-⎩,············································································· (3分)解之,得1463x <<. ··································································································· (5分) x 只能取整数,5x ∴=,此时10555x +=. ························································· (6分) 答:该小学有5个班级,共有奥运福娃55套. ··························································· (7分) 23.解:(1)当10x ≤时,有y ax =.将10x =,15y =代入,得 1.5a =. ···· (1分) 用8吨水应收水费8 1.512⨯=(元). ······································································· (2分) (2)当10x >时,有(10)15y b x =-+. ·································································· (3分) 将20x =,35y =代入,得351015b =+.2b =. ················································ (4分) 故当10x >时,25y x =-. ······················································································· (5分) (3)因1.510 1.5102446⨯+⨯+⨯<,所以甲、乙两家上月用水均超过10吨. ······································································ (6分) 设甲、乙两家上月用水分别为x 吨,y 吨,则4252546.y x y x =-⎧⎨-+-=⎩, ······························································································· (8分)解之,得1612.x y =⎧⎨=⎩,·········································································································· (9分)故居民甲上月用水16吨,居民乙上月用水12吨. ··················································· (10分) 24.解:(1)证明:如图3,连接OC . ··································································· (1分) OA OB =,CA CB =,OC AB ∴⊥. ·································································· (2分) AB ∴是O 的切线. ··································································································· (3分) (2)2BC BD BE =. ············································ (4分)ED 是直径,90ECD ∴∠=.90E EDC ∴∠+∠=.又90BCD OCD ∠+∠=,OCD ODC ∠=∠,BCD E ∴∠=∠. ·········································································································· (5分) 又CBD EBC ∠=∠,BCD BEC ∴△∽△. ·························································· (6分)(3)1tan 2CED ∠=,12CD EC ∴=. BCD BEC △∽△,12BD CD BC EC ∴==. ································································· (8分)设BD x =,则2BC x =.又2BC BD BE =,2(2)(6)x x x ∴=+. ································································· (9分) 解之,得10x =,22x =.0BD x =>,2BD ∴=.325OA OB BD OD ∴==+=+=. ······································································· (10分) 25.解:(1)四边形OABC 是矩形,90CDE AOE ∴∠=∠=,OA BC CD ==. ··························································· (1分) 又CED OEA ∠=∠,CDE AOE ∴△≌△. ························································· (2分) OE DE ∴=.222()OE OA AD DE ∴+=-,即2224(8)OE OE +=-,解之,得3OE =. ··················································· (3分) (2)835EC =-=.如图4,过D 作DG EC ⊥于G , DGE CDE ∴△≌△. ············································· (4分)DE DG EC CD ∴=,DE EG EC DE =.125DG ∴=,95EG =. 241255D ⎛⎫∴ ⎪⎝⎭,. ······················································· (5分) 因O 点为坐标原点,故可设过O C D ,,三点抛物线的解析式为2y ax bx =+.26480242412.555a b a b +=⎧⎪∴⎨⎛⎫+= ⎪⎪⎝⎭⎩,解之,得5325.4a b ⎧=-⎪⎪⎨⎪=⎪⎩, 255324y x x =-+. ······································································································· (7分) (3)抛物线的对称轴为4x =,∴其顶点坐标为542⎛⎫ ⎪⎝⎭,.设直线AC 的解析式为y kx b =+,则804.k b b +=⎧⎨=-⎩,解之,得124.k b ⎧=⎪⎨⎪=-⎩,142y x ∴=-. ·············································································································· (9分) 设直线FP 交直线AC 于142H m m ⎛⎫- ⎪⎝⎭,,过H 作HM OA ⊥于M .AMH AOC ∴△∽△.::HM OC AH AC ∴=.:1:3FAH FHC S S =△△或3:1,:1:3AH HC ∴=或3:1,::1:4HM OC AH AC ∴==或3:4. 2HM ∴=或6,即2m =或6.1(23)H ∴-,,2(61)H -,. ······················································································· (10分) 直线1FH 的解析式为111742y x =-.当4y =-时,1811x =. 直线2FH 的解析式为71942y x =-+.当4y =-时,547x =.∴当1811t =秒或547秒时,直线FP 把FAC △分成面积之比为1:3的两部分. ····· (12分) 说明:只求对一个值的给11分.。
(2008年安徽省)某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价油价上涨,这个月进口石油的费用反而比上个月增加了14%。
求这个月的石油价格相对上个月的增长率。
20.(2008年芜湖市)在抗震救灾活动中,某厂接到一份订单,要求生产7200顶帐篷支援四川灾区,后来由于情况紧急,接收到上级指示,要求生产总量比原计划增加20%,且必须提前4天完成生产任务,该厂迅速加派人员组织生产,实际每天比原计划每天多生产720顶,请问该厂实际每天生产多少顶帐篷?河北周建杰分类(2008年泰州市)15.一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率是.tan)(2008年泰州市)24.如图某堤坝的横截面是梯形ABCD,背水坡AD的坡度i(即 为1︰1.2,坝高为5米,现为了提高堤坝的防洪抗洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD加宽1米,形成新的背水坡EF,其坡度为1︰1.4,已知堤坝总长度为4000米.(1)求完成该工程需要多少土方?(4分)(2)该工程由甲、乙两个工程队同时合作完成.按原计划需要20天.准备开工前接到上级通知,汛期可能提前,要求两个工程队提高工作效率,甲队工作效率提高30%,乙队工作效率提高40%,结果提前5天完成.问这两个工程队原计划每天各完成多少土方?(5分)第24题图(2008年南京市)25.(7分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当2(第25题)(2008年遵义市)26.(12分)某超市销售有甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.应用;(2)问主要考查一元一次不等式组的应用.以下是江西康海芯的分类:1. (2008年郴州市)我国政府从2007年起对职业中专在校学生给予生活补贴.每生每年补贴1500元.某市预计2008年职业中专在校生人数是2007年的1.2倍,且要在2007年的基础上增加投入600万元.2008年该市职业中专在校生有多少万人,补贴多少万元?辽宁省岳伟分类2008年桂林市1.某校在教学楼前铺设小广场地面,其图案设计如图。
方程(组)的应用题一.选择题1.(2008年浙江省衢州市)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x,则下面所列方程正确的是( )A、 B、C、 D、答案:A2.(2008年四川巴中市)巴中日报讯:今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为,则可列方程为()A.B.C.D.答案:B3.(2008 河北)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为,根据题意,下面所列方程正确的是()A.B.C.D.答案:A4.(2008湖北襄樊)某种药品零售价经过两次降价后的价格为降价前的81%,则平均每次降价()A.10%B.19%C.9.5%D.20%答案:A5.(2008四川达州市)某商品原价100元,连续两次涨价后售价为120元,下面所列方程正确的是()A.B.C.D.答案:B6.(2008年浙江省衢州)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x,则下面所列方程正确的是( )A、 B、C、 D、答案:A7. (2008年荆州)甲、乙、丙三家超市为了促销一种定价均为m元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品最划算应到的超市是()A.甲B.乙C.丙D. 乙或丙答案:B8.(2008年庆阳市)某商品经过两次连续降价,每件售价由原来的55元降到了35元.设平均每次降价的百分率为x,则下列方程中正确的是()A.55 (1+x)2=35 B.35(1+x)2=55C.55 (1-x)2=35 D.35(1-x)2=55答案:C9.(2008齐齐哈尔)5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是()答案:D10.(2008年四川省宜宾市)小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x月后他能捐出100元,则下列方程中能正确计算出x的是( )A. 10x+20=100B.10x-20=100C. 20-10x=100D.20x+10=100 答案:A11.(2008 湖北荆门)用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x,y表示矩形的长和宽(x>y),则下列关系式中不正确的是( )(A) x+y=12 . (B) x-y=2.(C) xy=35. (D) x+y=144.答案:D12.(2008山东东营)某书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为()A.26元 B.27元 C.28元D.29元答案:C13.(2008湖南株洲)5.“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?”解决此问题,设鸡为只,兔为只,则所列方程组正确的是A.B.C.D.答案:C二、填空题1. (2008新疆乌鲁木齐市)乌鲁木齐农牧区校舍改造工程初见成效,农牧区最漂亮的房子是学校.2005年市政府对农牧区校舍改造的投入资金是5786万元,2007年校舍改造的投入资金是8058.9万元,若设这两年投入农牧区校舍改造资金的年平均增长率为,则根据题意可列方程为.答案:2.(2008泰州市)一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率是.答案:10%3.(2008 河南实验区)在一幅长50cm,宽30cm的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个规划土地的面积是1800cm,设金色纸边的宽为cm,那么满足的方程为答案:+40-75=04. (2008 山东临沂)某电动自行车厂三月份的产量为1000辆,由于市场需求量不断增大,五月份的产量提高到1210辆,则该厂四、五月份的月平均增长率为________.答案:10%5. (2008宁夏)某市对一段全长1500米的道路进行改造.原计划每天修米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了天.答案:6. (2008年山东省青岛市)为了帮助四川地震灾区重建家园,某学校号召师生自愿捐款.第一次捐款总额为20000元,第二次捐款总额为56000元,已知第二次捐款人数是第一次的2倍,而且人均捐款额比第一次多20元.求第一次捐款的人数是多少?若设第一次捐款的人数为,则根据题意可列方程为.答案:7. (08浙江温州)为了奖励兴趣小组的同学,张老师花92元钱购买了《智力大挑战》和《数学趣题》两种书.已知《智力大挑战》每本18元.《数学趣题》每本8元,则《数学趣题》买了本.答案:78.(08山东省日照市)书店把一本新书按标价的九折出售,仍可获利20%.若该书的进价为21元,则标价为.答案:28元9.(2008年浙江省绍兴市)若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需元.答案:1210.(2008年江苏省南通市)苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克________元.答案:411.(2008 湖北恩施)一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本为元. 答案:12512.(2008 河北)图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是 g.答案:2013.(2008 河南)某商店一套夏装的进价为220元,按标价的80%销售可获利72元,则该服装的标价为元。
湖北省襄阳市中考数学真题及答案(满分120分,考试时间120分钟)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.2.如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是()A.132° B.128° C.122° D.112°3.下列运算一定正确的是()A.a+a=a2 B.a2•a3=a6 C.(a3)4=a12 D.(ab)2=ab24.下列说法正确的是()A.“买中奖率为的奖券10张,中奖”是必然事件B.“汽车累积行驶10000km,从未出现故障”是不可能事件C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D.若两组数据的平均数相同,则方差小的更稳定5.如图所示的三视图表示的几何体是()A. B. C. D.6.不等式组中两个不等式的解集在数轴上表示正确的是()A. B. C. D.7.如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是()A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C8.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹.若设小马有x匹,大马有y匹,则下列方程组中正确的是()A. B. C. D.9.已知四边形ABCD是平行四边形,AC,BD相交于点O,下列结论错误的是()A.OA=OC,OB=ODB.当AB=CD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD且AC⊥BD时,四边形ABCD是正方形10.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0;②3a+c=0;③4ac﹣b2<0;④当x>﹣1时,y随x的增大而减小.其中正确的有()A.4个 B.3个 C.2个 D.1个二、填空题:本大题共6个小题,每小题3分,共18分.11.函数y=中自变量x的取值范围是.12.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=°.13.《易经》是中国传统文化的精髓.如图是易经的一种卦图,图中每一卦由三根线组成(线形为或),如正北方向的卦为,从图中三根线组成的卦中任取一卦,这一卦中恰有2根和1根的概率为.14.汽车刹车后行驶的距离s(单位:米)关于行驶时间t(单位:秒)的函数关系式是s=15t﹣6t2.则汽车从刹车到停止所用时间为秒.15.在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于°.16.如图,矩形ABCD中,E为边AB上一点,将△ADE沿DE折叠,使点A的对应点F恰好落在边BC上,连接AF交DE于点N,连接BN.若BF•AD=15,tan∠BNF=,则矩形ABCD的面积为.三、解答题:本大题共9个小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.(6分)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y)﹣2y(3x+5y),其中x=,y=﹣1.18.(6分)襄阳东站的建成运营标志着我市正式进入高铁时代,郑万高速铁路襄阳至万州段的建设也正在推进中.如图,工程队拟沿AC方向开山修路,为加快施工进度,需在小山的另一边点E处同时施工.要使A、C、E三点在一条直线上,工程队从AC上的一点B取∠ABD=140°,BD=560米,∠D=50°.那么点E与点D间的距离是多少米?(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)19.(6分)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的,这样120吨水可多用3天,求现在每天用水量是多少吨?20.(6分)3月14日是国际数学日,“数学是打开科学大门的钥匙.”为进一步提高学生学习数学的兴趣,某校开展了一次数学趣味知识竞赛(竞赛成绩为百分制),并随机抽取了50名学生的竞赛成绩(本次竞赛没有满分),经过整理数据得到以下信息:信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含前端点值,不含后端点值).信息二:第三组的成绩(单位:分)为74 71 73 74 79 76 77 76 76 73 72 75根据信息解答下列问题:(1)补全第二组频数分布直方图(直接在图中补全);(2)第三组竞赛成绩的众数是分,抽取的50名学生竞赛成绩的中位数是分;(3)若该校共有1500名学生参赛,请估计该校参赛学生成绩不低于80分的约为人.21.(7分)如图,反比例函数y1=(x>0)和一次函数y2=kx+b的图象都经过点A(1,4)和点B(n,2).(1)m=,n=;(2)求一次函数的解析式,并直接写出y1<y2时x的取值范围;(3)若点P是反比例函数y1=(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,则△POM的面积为.(8分)如图,AB是⊙O的直径,E,C是⊙O上两点,且=,连接AE,AC.过点C 22.作CD⊥AE交AE的延长线于点D.(1)判定直线CD与⊙O的位置关系,并说明理由;(2)若AB=4,CD=,求图中阴影部分的面积.23.(10分)受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?(3)若甲,乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a千克水果获得的利润不少于1650元,求a的最小值.(11分)在△ABC中,∠BAC═90°,AB=AC,点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE.24.(1)特例发现:如图1,当AD=AF时,①求证:BD=CF;②推断:∠ACE=°;(2)探究证明:如图2,当AD≠AF时,请探究∠ACE的度数是否为定值,并说明理由;(3)拓展运用:如图3,在(2)的条件下,当=时,过点D作AE的垂线,交AE于点P,交AC于点K,若CK=,求DF的长.25.(12分)如图,直线y=﹣x+2交y轴于点A,交x轴于点C,抛物线y=﹣x2+bx+c经过点A,点C,且交x轴于另一点B.(1)直接写出点A,点B,点C的坐标及拋物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标;(3)将线段OA绕x轴上的动点P(m,0)顺时针旋转90°得到线段O′A′,若线段O′A′与抛物线只有一个公共点,请结合函数图象,求m的取值范围.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.【知识考点】绝对值.【思路分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解题过程】解:|﹣2|=2.故选:B.【总结归纳】本题考查了绝对值的定义,关键是利用了绝对值的性质.2.如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是()A.132° B.128° C.122° D.112°【知识考点】平行线的性质.【思路分析】根据平行线的性质得到∠BEF=180°﹣∠EFG=116°,根据角平分线的定义得到∠BEG=∠BEF=58°,由平行线的性质即可得到结论.【解题过程】解:∵AB∥CD,∠EFG=64°,∴∠BEF=180°﹣∠EFG=116°,∵EG平分∠BEF交CD于点G,∴∠BEG=∠BEF=58°,∵AB∥CD,∴∠EGD=180°﹣∠BEG=122°.故选:C.【总结归纳】此题考查了平行线的性质与角平分线的定义.解题的关键是掌握两直线平行,同旁内角互补与两直线平行,内错角相等的知识点.3.下列运算一定正确的是()A.a+a=a2 B.a2•a3=a6 C.(a3)4=a12 D.(ab)2=ab2【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】分别根据合并同类项法则,同底数幂的乘法法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.【解题过程】解:A.a+a=2a,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.(a3)4=a12,故本选项符合题意;D.(ab)2=a2b2,故本选项不合题意.故选:C.【总结归纳】本题主要考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.4.下列说法正确的是()A.“买中奖率为的奖券10张,中奖”是必然事件B.“汽车累积行驶10000km,从未出现故障”是不可能事件C.襄阳气象局预报说“明天的降水概率为70%”,意味着襄阳明天一定下雨D.若两组数据的平均数相同,则方差小的更稳定【知识考点】算术平均数;方差;随机事件;概率的意义;概率公式.【思路分析】根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分析,即可得出答案.【解题过程】解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;B、汽车累积行驶10000km,从未出现故障”是随机事件,故本选项错误;C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;D、若两组数据的平均数相同,则方差小的更稳定,故本选项正确;故选:D.【总结归纳】此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键.5.如图所示的三视图表示的几何体是()A. B. C. D.【知识考点】由三视图判断几何体.【思路分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解题过程】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.故选:A.【总结归纳】考查了由三视图判断几何体,主视图和左视图的大致轮廓为长方形的几何体为柱体.6.不等式组中两个不等式的解集在数轴上表示正确的是()A. B. C. D.【知识考点】在数轴上表示不等式的解集;解一元一次不等式组.【思路分析】根据不等式组可以得到该不等式组的解集,从而可以在数轴上表示出来,本题得以解决.【解题过程】解:由不等式组得﹣2≤x<1,该不等式组的解集在数轴表示如下:故选:A.【总结归纳】本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式组的方法.7.如图,Rt△ABC中,∠ABC=90°,根据尺规作图的痕迹判断以下结论错误的是()A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C【知识考点】作图—基本作图.【思路分析】证明△ADE≌△ADB即可判断A,B正确,再根据同角的补角相等,证明∠EDC=∠BAC即可.【解题过程】解:由作图可知,∠DAE=∠DAB,∠DEA=∠B=90°,∵AD=AD,∴△ADE≌△ADB(AAS),∴DB=DE,AB=AE,∵∠AED+∠B=180°∴∠BAC+∠BDE=180°,∵∠EDC+∠BDE=180°,∴∠EDC=∠BAC,故A,B,C正确,故选:D.【总结归纳】本题考查作图﹣基本作图,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹.若设小马有x匹,大马有y匹,则下列方程组中正确的是()A. B. C. D.【知识考点】数学常识;由实际问题抽象出二元一次方程组.【思路分析】根据“3匹小马能拉1片瓦,1匹大马能拉3片瓦”,即可得出关于x,y的二元一次方程组,此题得解.【解题过程】解:根据题意可得:,故选:C.【总结归纳】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.已知四边形ABCD是平行四边形,AC,BD相交于点O,下列结论错误的是()A.OA=OC,OB=ODB.当AB=CD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD且AC⊥BD时,四边形ABCD是正方形【知识考点】平行四边形的判定与性质;菱形的性质;菱形的判定;矩形的判定;正方形的判定.【思路分析】根据正方形的判定,矩形的判定、菱形的判定方法分别判断后即可确定正确的选项.【解题过程】解:A、根据平行四边形的性质得到OA=OC,OB=OD,该结论正确;B、当AB=CD时,四边形ABCD还是平行四边形,该选项错误;C、根据有一个角是直角的平行四边形是矩形可以判断该选项正确;D、当AC=BD且AC⊥BD时,根据对角线相等可判断四边形ABCD是矩形,根据对角线互相垂直可判断四边形ABCD 是菱形,故四边形ABCD是正方形,该结论正确;故选:B.【总结归纳】本题考查了正方形的判定,矩形的判定、平行四边形的性质及菱形的判定方法,牢记判定方法是解答本题的关键.10.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0;②3a+c=0;③4ac﹣b2<0;④当x>﹣1时,y随x的增大而减小.其中正确的有()A.4个 B.3个 C.2个 D.1个【知识考点】二次函数图象与系数的关系.【思路分析】二次函数图象与系数的关系以及二次函数的性质,逐一分析判断即可.【解题过程】解:①∵抛物线开口向上,且与y轴交于负半轴,∴a>0,c<0,∴ac<0,结论①正确;②∵抛物线对称轴为直线x=1,∴﹣=1,∴b=﹣2a,∵抛物线经过点(﹣1,0),∴a﹣b+c=0,∴a+2a+c=0,即3a+c=0,结论②正确;③∵抛物线与x轴由两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,结论③正确;④∵抛物线开口向上,且抛物线对称轴为直线x=1,∴当x<1时,y随x的增大而减小,结论④错误;故选:B.【总结归纳】本题主要考查抛物线与x轴的交点坐标,二次函数图象与函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.二、填空题:本大题共6个小题,每小题3分,共18分.11.函数y=中自变量x的取值范围是.【知识考点】函数自变量的取值范围.【思路分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解题过程】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.【总结归纳】本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.12.如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=°.【知识考点】三角形内角和定理;三角形的外角性质.【思路分析】先根据等腰三角形的性质及三角形内角和定理可求出∠B的度数,再根据三角形外角的性质可求出∠ADC的度数,再由三角形内角和定理解答即可.【解题过程】解:∵AB=AD,∠BAD=20°,∴∠B===80°,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∵AD=DC,∴∠C===40°.【总结归纳】本题涉及到三角形的内角和定理、三角形外角的性质及等腰三角形的性质,属较简单题目.13.《易经》是中国传统文化的精髓.如图是易经的一种卦图,图中每一卦由三根线组成(线形为或),如正北方向的卦为,从图中三根线组成的卦中任取一卦,这一卦中恰有2根和1根的概率为.【知识考点】概率公式.【思路分析】从八卦中任取一卦,基本事件总数n=8,这一卦中恰有2根和1根的基本事件个数m =3,由概率公式即可得出答案.【解题过程】解:从八卦中任取一卦,基本事件总数n=8,这一卦中恰有2根和1根的基本事件个数m=3,∴这一卦中恰有2根和1根的概率为=;故答案为:.【总结归纳】本题考查了概率公式、古典概率;熟练掌握概率公式是解题的关键.14.汽车刹车后行驶的距离s(单位:米)关于行驶时间t(单位:秒)的函数关系式是s=15t﹣6t2.则汽车从刹车到停止所用时间为秒.【知识考点】二次函数在给定区间上的最值.【思路分析】利用配方法求二次函数最值的方法解答即可.【解题过程】解:∵s=15t﹣6t2=﹣6(t﹣1.25)2+9.375,∴汽车从刹车到停下来所用时间是1.25秒.故答案为:1.25.【总结归纳】考查了二次函数最值的应用,此题主要利用配方法求最值的问题,根据已知得出顶点式是解题关键.15.在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于°.【知识考点】线段垂直平分线的性质;垂径定理;圆周角定理.【思路分析】根据弦BC垂直平分半径OA,可得OD:OB=1:2,得∠BOC=120°,根据同弧所对圆周角等于圆心角的一半即可得弦BC所对的圆周角度数.【解题过程】解:如图,∵弦BC垂直平分半径OA,∴OD:OB=1:2,∴∠BOD=60°,∴∠BOC=120°,∴弦BC所对的圆周角等于60°或120°.故答案为:60°或120°.【总结归纳】本题考查了圆周角定理、垂径定理、线段垂直平分线的性质,解决本题的关键是掌握圆周角定理.16.如图,矩形ABCD中,E为边AB上一点,将△ADE沿DE折叠,使点A的对应点F恰好落在边BC上,连接AF 交DE于点N,连接BN.若BF•AD=15,tan∠BNF=,则矩形ABCD的面积为.【知识考点】矩形的性质;翻折变换(折叠问题);解直角三角形.【思路分析】由折叠的性质得出∠BNF=∠BEF,由条件得出tan∠BEF=,设BF=x,BE=2x,由勾股定理得出EF=3x,得出AB=BF,则可得出答案.【解题过程】解:∵将△ADE沿DE折叠,使点A的对应点F恰好落在边BC上,∴AF⊥DE,AE=EF,∵矩形ABCD中,∠ABF=90°,∴B,E,N,F四点共圆,∴∠BNF=∠BEF,∴tan∠BEF=,设BF=x,BE=2x,∴EF==3x,∴AE=3x,∴AB=5x,∴AB=BF.∴S矩形ABCD=AB•AD=BF•AD=×15=15.故答案为:15.【总结归纳】本题考查了折叠的性质,矩形的性质,锐角三角函数,勾股定理等知识,熟练掌握折叠的性质是解题的关键.三、解答题:本大题共9个小题,共72分.解答应写出文字说明,证明过程或演算步骤.17.(6分)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y)﹣2y(3x+5y),其中x=,y=﹣1.【知识考点】整式的混合运算—化简求值.【思路分析】原式利用完全平方公式,平方差公式,以及单项式乘多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解题过程】解:原式=4x2+12xy+9y2﹣4x2+y2﹣6xy﹣10y2=6xy,当x=,y=﹣1时,原式=6××(﹣1)=6﹣6.【总结归纳】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.(6分)襄阳东站的建成运营标志着我市正式进入高铁时代,郑万高速铁路襄阳至万州段的建设也正在推进中.如图,工程队拟沿AC方向开山修路,为加快施工进度,需在小山的另一边点E处同时施工.要使A、C、E三点在一条直线上,工程队从AC上的一点B取∠ABD=140°,BD=560米,∠D=50°.那么点E与点D间的距离是多少米?(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【知识考点】解直角三角形的应用.【思路分析】求出∠E的度数,再在Rt△BDE 中,依据三角函数进行计算即可.【解题过程】解:∵A、C、E三点在一条直线上,∠ABD=140°,∠D=50°,∴∠E=140°﹣50°=90°,在Rt△BDE中,DE=BD•cos∠D=560×cos50°≈560×0.64=358.4(米).答:点E与点D间的距离是358.4米.【总结归纳】考查直角三角形的边角关系,构造直角三角形是解决问题的关键.19.(6分)在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的,这样120吨水可多用3天,求现在每天用水量是多少吨?【知识考点】分式方程的应用.【思路分析】设原来每天用水量是x吨,则现在每天用水量是x吨,根据现在120吨水比以前可多用3天,即可得出关于x的分式方程,解之经检验后即可得出结论.【解题过程】解:设原来每天用水量是x吨,则现在每天用水量是x吨,依题意,得:﹣=3,解得:x=10,经检验,x=10是原方程的解,且符合题意,∴x=8.答:现在每天用水量是8吨.【总结归纳】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.20.(6分)3月14日是国际数学日,“数学是打开科学大门的钥匙.”为进一步提高学生学习数学的兴趣,某校开展了一次数学趣味知识竞赛(竞赛成绩为百分制),并随机抽取了50名学生的竞赛成绩(本次竞赛没有满分),经过整理数据得到以下信息:信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含前端点值,不含后端点值).信息二:第三组的成绩(单位:分)为74 71 73 74 79 76 77 76 76 73 72 75根据信息解答下列问题:(1)补全第二组频数分布直方图(直接在图中补全);(2)第三组竞赛成绩的众数是分,抽取的50名学生竞赛成绩的中位数是分;(3)若该校共有1500名学生参赛,请估计该校参赛学生成绩不低于80分的约为人.【知识考点】用样本估计总体;频数(率)分布直方图;中位数;众数.【思路分析】(1)计算出第2组60~70组的人数,即可补全频数分布直方图;(2)根据中位数、众数的意义,分别求出第3组的众数,样本中位数;(3)样本估计总体,样本中80分以上的占,因此估计总体1500人的是80分以上的人数.【解题过程】解:(1)50﹣4﹣12﹣20﹣4=10(人),补全频数分布直方图如图所示:(2)第3组数据出现次数最多的是76,共出现3次,因此众数是76,抽取的50人的成绩从小到大排列处在第25、26位的两个数的平均数为=78,因此中位数是78, 故答案为:76,78;(3)1500×=720(人),故答案为:720.【总结归纳】考查频数分布直方图的意义和制作方法,理解中位数、众数的意义和计算方法是正确解答的前提.21.(7分)如图,反比例函数y1=(x>0)和一次函数y2=kx+b的图象都经过点A(1,4)和点B(n,2).(1)m=,n=;(2)求一次函数的解析式,并直接写出y1<y2时x的取值范围;(3)若点P是反比例函数y1=(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,则△POM的面积为.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)把A的坐标代入反比例函数的解析式求出m,得出反比例函数的解析式,把B的坐标代入反比例函数的解析式,能求出n,即可得出B的坐标;(2)分别把A、B的坐标代入一次函数的解析式得出方程组,求出方程组的解,即可得出一次函数的解析式;根据图象求得y1<y2时x的取值范围;(3)根据反比例函数系数k的几何意义即可求得.【解题过程】解:(1)∵把A(1,4)代入y1=(x>0)得:m=1×4=4,∴y=,∵把B(n,2)代入y=得:2=,解得n=2;故答案为4,2;(2)把A(1,4)、B(2,2)代入y2=kx+b得:,解得:k=﹣2,b=6,即一次函数的解析式是y=﹣2x+6.由图象可知:y1<y2时x的取值范围是1<x<2;(3)∵点P是反比例函数y1=(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,∴S△POM=|m|==2,故答案为2.【总结归纳】本题考查了用待定系数法求一次函数、反比例函数的解析式,一次函数与反比例函数的交点问题的应用,通过做此题培养了学生的计算能力和观察图形的能力,题目比较典型,是一道比较好的题目.22.(8分)如图,AB是⊙O的直径,E,C是⊙O上两点,且=,连接AE,AC.过点C作CD⊥AE交AE的延长线于点D.(1)判定直线CD与⊙O的位置关系,并说明理由;(2)若AB=4,CD=,求图中阴影部分的面积.【知识考点】勾股定理;垂径定理;圆周角定理;直线与圆的位置关系;扇形面积的计算.【思路分析】(1)连接OC,根据=,求得∠CAD=∠BAC,根据等腰三角形的性质得到∠BAC=∠ACO,推出AD∥OC,根据平行线的性质得到OC⊥CD,于是得到CD是⊙O的切线;(2)连接OE,连接BE交OC于F,根据垂径定理得到OC⊥BE,BF=EF,由圆周角定理得到∠AEB=90°,根据矩形的性质得到EF=CD=,根据勾股定理得到AE===2,求得∠AOE=60°,连接CE,推出CE∥AB,根据三角形和扇形的面积公式即可得到结论.【解题过程】(1)证明:连接OC,∵=,∴∠CAD=∠BAC,∵OA=OC,∴∠BAC=∠ACO,∴∠CAD=∠ACO,∴AD∥OC,∵AD⊥CD,∴OC⊥CD,∴CD是⊙O的切线;(2)解:连接OE,连接BE交OC于F,∵=,∴OC⊥BE,BF=EF,∵AB是⊙O的直径,∴∠AEB=90°,∴∠FED=∠D=∠EFC=90°,∴四边形DEFC是矩形,∴EF=CD=,∴BE=2,∴AE===2,∴AE=AB,∴∠ABE=30°,∴∠AOE=60°,∴∠BOE=120°,∵=,∴∠COE=∠BOC=60°,连接CE,∵OE=OC,∴△COE是等边三角形,∴∠ECO=∠BOC=60°,∴CE∥AB,∴S△ACE=S△COE,∵∠OCD=90°,∠OCE=60°,∴∠DCE=30°,∴DE=CD=1,∴AD=3,∴图中阴影部分的面积=S△ACD﹣S扇形COE=3﹣=﹣.【总结归纳】本题考查了直线与圆的位置关系,勾股定理,垂径定理,扇形的面积的计算,正确的作出辅助线是解题的关键.23.(10分)受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?(3)若甲,乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a千克水果获得的利润不少于1650元,求a的最小值.【知识考点】一元一次不等式组的应用;一次函数的应用.【思路分析】(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.(2)设购进甲种水果为a千克,则购进乙种水果(100﹣a)千克,根据实际意义可以确定a的范围,结合付款总金额(元)与种水果的购进量之间的函数关系可以分类讨论最少费用为多少.(3)根据(2)的结论分情况讨论.【解题过程】解:(1)当0≤x≤50时,设y=kx,根据题意得50k=1500,解得k=30;∴y=30x;当x>50时,设y=k1x+b,根据题意得,,解得,∴y=24x+3000.∴y=,(2)设购进甲种水果为a千克,则购进乙种水果(100﹣a)千克,∴40≤a≤60,当40≤a≤50时,w1=30a+25(100﹣a)=5a+2500.当a=40 时.w min=2700 元,当50<a≤60时,w2=24a+300+25(100﹣a)=﹣a+2800.当a=60时,w min=2740 元,∵2740>2700,∴当a=40时,总费用最少,最少总费用为2700 元.此时乙种水果100﹣40=60(千克).答:购进甲种水果为40千克,购进乙种水果60千克,才能使经销商付款总金额w(元)最少.(3)由题意可设甲种水果为千克,乙种水果为千克。
2007年湖北省襄樊市初中毕业、升学统一考试数学试题(非课改区)姓名______________ 报名号______________ 考试号______________ 说明:1.本卷由卷Ⅰ、卷Ⅱ组成.卷Ⅰ为选择题,卷Ⅱ为非选择题。
卷Ⅰ在答题卡上涂黑作答,不在卡上涂黑作答无效;卷Ⅱ在试卷上作答.2.答题前考生应在试卷及答题卡的指定位置填写姓名及报名号、考试号.3.考试结束后,由监考老师将答题卡、卷Ⅰ、卷Ⅱ按要求回收. 卷Ⅰ 选择题(共36分)一.选择题(本大题共12道小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一个是符合题目要求的,请将其序号在卡上涂黑作答)01.21−的倒数是( ). A 、21 B 、2 C 、21− D 、-202.下列计算中,不正确的是( ).A 、-3a +2a =-aB 、(-2x 2y)3=-6x 6y 3C 、3ab 2•(-2a)=-6a 2b 2D 、(-5xy)2÷5x 2y =5y03.已知关于x 的方程3x +2a =2的解是a -1,则a 的值是( ).A 、1B 、53C 、51D 、-1 04.函数2x y −=的自变量x 的取值范围是( ).A 、x 是任意实数B 、x ≤2C 、x ≥2D 、x >205.10名初中毕业生的中考体育成绩分别为:28、30、29、22、28、25、27、28、19、27.这组数据的众数和中位数分别是( ). A 、28,27.5 B 、27,27.5 C 、28,28 D 、28,27 06.如图,直线AB 、CD 相交于点O ,OE ⊥AB 于O ,∠COE =55°,则∠BOD 的度数是( ). A 、40° B 、45° C 、30° D 、35°07.□ABCD 中,AC 交BD 于点O ,再添加一个条件,仍不能判定四边形ABCD 是矩形的是( ). A 、AB =AD B 、OA =OB C 、AC =BD D 、DC ⊥BC08.某商品原价为a 元,因需求量大,经营者连续两次提价,每次提价10%,后因市场物价调整,又一次降价20%,降价后这种商品的价格是( ).A 、1.08a 元B 、0.88a 元C 、0.968a 元D 、a 元 09.计算:cos 245°+tan60°•cos30°等于( ). A 、1 B 、 C 、2 D 、 10.如图,直线l 1∥l 2∥l 3,另两条直线分别交l 1、l 2、l 3于点A 、B 、C 及点D 、E 、F ,且AB =3,DE =4,EF =2,则( ). A 、BC ∶DE =1∶2 B 、BC ∶DE =2∶3 C 、BC •DE =8 D 、BC •DE =611.已知圆锥的母线长为5cm ,底面半径为3cm ,则圆锥的表面积为( ). A 、15πcm 2 B 、24πcm 2 C 、30πcm 2 D 、39πcm 2 12.如图,△ABC 是边长为10的等边三角形,以AC 为直径作⊙O ,D 是BC 上一点,BD =2,以点D 为圆心,OB 为半径的⊙D 与⊙O 的位置关系为( ). A 、相交 B 、外离 C 、外切 D 、内切 A (第06题图) B DC EO A (第10题图) B C D E F A (第12题图)B C D O2007年中考数学试题汇编——一次方程(组)和分式方程一、选择题1、(2007陕西课改)中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到 3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金元,则所列方程正确的是()CA.B.C.D.2、(2007浙江丽水)方程组 ,由②①,得正确的方程是()BA.B.C.D.3、(2007江苏苏州)方程组的解是( )DA.B.C.D.4、(2007湖南株州)二元一次方程组的解是:() AA. B. C. D.5、(2007山东淄博)若方程组的解是则方程组2008年湖北省襄樊市初中毕业、升学统一考试数学试题一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.2的相反数是()A.B.2−C.12D.12−2.下列运算正确的是()A.12x x x=i B.623(6)(2)3x x x−÷−=C.a a a −=−D.22(2)4x x−=−3.如图1,已知AD 与BC相交于点O,∥,如果B∠=�,30D∠=�,则AOC∠的大小为()A.�B.�C.�D.�4.下列说法正确的是()A.的平方根是B.将点−−,向右平移5个单位长度到点C.是无理数D.点−−,关于轴的对称点是5.在正方形网格中,△的位置如图2所示,则B∠的值为()A.12B.2C.2D.36.某种商品零售价经过两次降价后的价格为降价前的,则平均每次降价()A.B.C.D.7.顺次连接等腰梯形四边中点所得四边形是()A.菱形B.正方形C.矩形D.等腰梯形8.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度(单位:kg/m3)是体积(单位:m3)的反比例函数,它的图象如图3所示,当时,气体的密度是()A.5kg/m3B.2kg/m3C.100kg/m3D,1kg/m39.如图4,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是()2009年襄樊市初中毕业、升学统一考试数 学 试 题一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符号题目要求的,请将序号在答题卡上涂黑作答.1.为数轴上表示1−的点,将A 点沿数轴向左移动个单位长度到点,则点所表示的数为( )A .−B .3 C.1 D .或− 2.如图1是由四个相同的小正方体组成的立体图形,它的俯视图为( )3.通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( )A .3.110−×B . 3.110−×C . 3.110−×D . 4.如图2,已知直线AB CD DCF =°∥,∠,且=,则等于( ) A .° B .° C .° D .°5.下列计算正确的是( )A .B .C .D . 6.函数的自变量的取值范围是( ) A .B .C .D .7.分式方程的解为( ) A .1 B .-1 C .-2 D .-38.如图3,在边长为1的正方形网格中,将向右平移两个单位长度得到则与点关于轴对称的点的坐标是( )A .B .C .D . 9.若一次函数的函数值随的增大而减小,且图象与轴的正半轴相交,那A F B CDE 图2 y x O (A ) B C 图3图1 A . B . C . D .2009年中考数学分类汇编专题测试——不等式(组)一、选择题1.(08山东省日照市)在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值范围为( )A.-1<m <3 B.m >3 C.m <-1 D.m >-12.(2008浙江义乌)不等式组312840x x −>⎧⎨−⎩,≤的解集在数轴上表示为( )3.(2008山东烟台) 关于不等式x a −+≥的解集如图所示,的值是()A、0 B 、2 C 、-2 D 、-44.(2008年山东省临沂市)若不等式组⎨⎧−>+<+1472,03x x a x 的解集为,则a 的取值范围为( )A. a >0 B . a =0 C . a >4 D . a =45.(2008年辽宁省十二市)不等式组的解集在数轴上表示正确的是( )6.(2008年天津市)若,则估计的值所在的范围是( ) A.B. C. D.7.(2008年四川巴中市)点在第二象限,则的取值范围是( ) A.B. C. D.8.(2008年成都市)在函数y=中,自变量x 的取值范围是( );-31 0 A . -3 1 0 B . -3 1 0 C . -3 1 0 D .A .B .C . 1 0 2D .2011年襄阳市初中毕业、升学统一考试数学试题一、选择题本大题共12各小题每小题3分共36分在每小题给出的四个选项中只有一项是符合题目要求的,请将其序号填涂在答题卡上相应位置!1.2−的倒数是A .2−B .2C .12−D .122.下列运算正确的是A .2a a a −=B .236()a a −=−C .632x x x ÷=D .222()x y x y +=+3.若x y 、为实数,且10x ++=,则2011()x y 的值是A .0B .1C .1−D .2011−4.如图1,CD ∥AB ,∠1=120°,∠2=80°,则∠E 的度数是A .40°B .60°C .80°D .120°5.下列图形是中心对称图形而不是轴对称图形的是6下列说法正确的是A .0()2π是无理数B .3是有理数C .是无理数D .7.下列事件中.属于必然事件的是A .抛掷一枚1元硬币落地后.有国徽的一面向上B .打开电视任选一频道,正在播放襄阳新闻C .到一条绕段两端点距离相等的点在该线段的垂直平分线上D .某种彩票的中奖率是l 0%,则购买该种彩票100张一定中奖8.由—些相同的小立方块搭成的几何体的三视图如图2所示.则搭成该几何体的小立方块有A .3块B .4块C .6块D .9块9.在△ABC 中,∠C=90°.AC=3cm .BC=4cm ,若⊙A .⊙B 的半径分别为1cm ,4cm .则⊙A 与⊙B 的位置关系是A .外切B .内切C .相交D .外离10.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是A .茭形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形11.2011年春我市发生了严重干旱.市政府号召居民节约用水.为了解居民用水情况.在某小区随机抽查了l0户家庭的月用水量.结果如下表;月用水量(吨)567户数262则关于这l0户家庭的月用水量,下列说法错误的是A .众数是6B .极差是2C .平均数是6D .方差是412.已知函数2(3)21y k x x =−++的图象与x 轴有交点.则k 的取值范围是A .k<4B .k≤4C .k<4且k≠3D .k≤4且k≠3二、填空题:(本大题共5个小题.每小题3分.共l5分)'把答案填在答题卡的对应位置的横线上.13.为了推进全民医疗保险工作.截止2011年5月31日.今年中央财政已累计下拨医疗卫生补助佥1346亿元.这个金额用科学记数法表示为_______________元.14.在207国道襄阳段改造工程中,需沿AC 方向开山修路(如图3所示),为了加快施工进度,要在小山的另一边同时施工.从AC上的一点B 取∠ABD=140°,BD=1000m ,∠D=50°.为了使开挖点E 在直线AC 上.那么DE=_______________m 。
2008年湖北省武汉市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2008•武汉)小怡家的冰箱冷藏室温度是5℃,冷冻室的温度是﹣2℃,则她家冰箱冷藏室温度比冷冻室温度高()A.3℃ B.﹣3℃C.7℃ D.﹣7℃2.(3分)(2008•武汉)不等式x<3的解集在数轴上表示为()A.B.C.D.3.(3分)(2008•武汉)已知关于x的方程4x﹣3m=2的解是x=m,则m的值是()A.2 B.﹣2 C.D.﹣4.(3分)(2008•武汉)计算的结果是()A.2 B.±2C.﹣2 D.45.(3分)函数y=中,自变量x的取值范围是()A.x>5 B.x<5 C.x≥5D.x≤56.(3分)(2008•武汉)如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴,若∠AFC+∠BCF=150°,则∠AFE+∠BCD的大小是()A.150°B.300°C.210°D.330°7.(3分)(2008•武汉)如图是一个五环图案,它由五个圆组成,下排的两个圆的位置关系是()A.内含B.外切C.相交D.外离8.(3分)(2008•武汉)如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是()A.250m B.250m C.m D.250m9.(3分)(2008•武汉)一个无盖的正方体盒子的平面展开图可以是下列图形中的()A.只有图①B.图①、图② C.图②、图③ D.图①、图③10.(3分)(2008•武汉)“祝福北京”、“祝福奥运”是每个中国人良好的心愿.亮亮、兵兵和军军三个同学都有一套外形完全相同,背面写着“祝福”、“北京”、“奥运”字样的三张卡片.他们分别从自己的一套卡片中随机抽取一张,抽取得三张卡片中含有“祝福”、“北京”、“奥运”的概率是()A.B.C.D.11.(3分)(2008•武汉)2009年某市应届初中毕业生人数约10.8万.比去年减少约0.2万,其中报名参加高级中等学校招生考试(简称中考)的人数约10.5万,比去年增加0.3万,下列结论:①与2008年相比,2009年该市应届初中毕业生人数下降了×100%;②与2008年相比,2009年该市应届初中毕业生报名参加中考人数增加了×100%;③与2008年相比,2009年该市应届初中毕业生报名参加中考人数占应届初中毕业生人数的百分比提高了(﹣)×100%.其中正确的个数是()A.0 B.1 C.2 D.312.(3分)(2008•武汉)下列命题:①若a+b+c=0,则b2﹣4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2﹣4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的是()A.只有①②③ B.只有①③④ C.只有①④D.只有②③④二、填空题(共4小题,每小题3分,满分12分)13.(3分)(2008•武汉)在创建国家生态园林城市活动中,某市园林部门为了扩大城市的绿化面积.进行了大量的树木移栽.下表记录的是在相同的条件下移栽某种幼树的棵数与成活棵树:依此估计这种幼树成活的概率是.(结果用小数表示,精确到0.1)移栽棵数100 1000 10000成活棵数89 910 900814.(3分)(2008•武汉)如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式组x<kx+b<0的解集为.15.(3分)(2008•武汉)如图,半径为5的⊙P与y轴交于点M(0,﹣4),N(0,﹣10),函数y=(x<0)的图象过点P,则k= .16.(3分)(2008•武汉)下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依次规律,拼搭第8个图案需小木棒根.三、解答题(共9小题,满分72分)17.(6分)(2008•武汉)解方程:x2﹣x﹣5=0.18.(6分)(2008•武汉)先化简,再求值:,其中x=2.19.(6分)(2008•武汉)如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.20.(7分)(2008•武汉)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了名居民的年龄,扇形统计图中a= ,b= ;(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.21.(7分)(2008•武汉)(1)点(0,1)向下平移2个单位后的坐标是,直线y=2x+1向下平移2个单位后的解析式是;(2)直线y=2x+1向右平移2个单位后的解析式是;(3)如图,已知点C为直线y=x上在第一象限内一点,直线y=2x+1交y轴于点A,交x轴于B,将直线AB沿射线OC方向平移个单位,求平移后的直线的解析式.22.(8分)(2008•武汉)如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.(1)求证:DE是⊙O的切线;(2)若=,求的值.23.(10分)(2008•武汉)某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的销量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?24.(10分)正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F.如图1,当点P与点O重合时,显然有DF=CF.(1)如图2,若点P在线段AO上(不与点A、O重合),PE⊥PB且PE交CD 于点E.①求证:DF=EF;②写出线段PC、PA、CE之间的一个等量关系,并证明你的结论;(2)若点P在线段OC上(不与点O、C重合),PE⊥PB且PE交直线CD于点E.请完成图3并判断(1)中的结论①、②是否分别成立?若不成立,写出相应的结论.(所写结论均不必证明)25.(12分)(2008•武汉)如图1,抛物线y=ax2﹣3ax+b经过A(﹣1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B.(1)求此抛物线的解析式;(2)若直线y=kx﹣1(k≠0)将四边形ABCD面积二等分,求k的值;(3)如图2,过点E(1,﹣1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°后得△MNQ(点M,N,Q分别与点A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.2008年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)【考点】有理数的减法.菁优网版权所有【分析】本题是有理数运算的实际应用,认真阅读列出正确的算式,用冷藏室温度减去冷冻室的温度,就是冰箱冷藏室温度与冷冻室温度的温差.【解答】解:依题意得:5﹣(﹣2)=5+2=7℃.故选C.【点评】有理数运算的实际应用题是中考的常见题,其解答关键是依据题意正确地列出算式.2.(3分)【考点】在数轴上表示不等式的解集.菁优网版权所有【分析】不等式x<3表示所有<3的数组成的集合,即数轴上3左边的点的集合.【解答】解:由于x<3,所以表示3的点应该是空心点,折线的方向应该是向左.故选B.【点评】本题考查不等式解集的表示方法,将不等式的解集在数轴上表示出来,体现了数形结合的思想,是我们必须要掌握的知识,也是中考的常考点.不等式x<3的解集用数轴表示时,3应为空心点,且解集向左,本题考查用数轴表示不等式的解集.3.(3分)【考点】一元一次方程的解.菁优网版权所有【分析】此题用m替换x,解关于m的一元一次方程即可.【解答】解:由题意得:x=m,∴4x﹣3m=2可化为:4m﹣3m=2,可解得:m=2.故选:A.【点评】本题考查代入消元法解一次方程组,可将4x﹣3m=2和x=m组成方程组求解.4.(3分)【考点】算术平方根.菁优网版权所有【分析】由于表示4的算术平方根,所以根据算术平方根定义即可求出结果.【解答】解:=2.故选:A.【点评】此题主要考查了算术平方根的定义,比较简单.5.(3分)【考点】函数自变量的取值范围;二次根式有意义的条件.菁优网版权所有【分析】根据二次根式的性质,被开方数大于或等于0,列不等式求范围.【解答】解:根据题意得:x﹣5≥0解得:x≥5故选C.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)【考点】轴对称的性质.菁优网版权所有【分析】认真读题、观察图形,由CF所在的直线是它的对称轴,得角相等,结合已知,答案可得.【解答】解:轴对称图形按对称轴折叠后两边可以完全重合,∠AFC+∠BCF=150°,则∠EFC+∠DCF=150°,所以∠AFE+∠BCD=300°.故选B.【点评】本题考查了轴对称的性质;掌握好轴对称的基本性质,找出相等角度是正确解答本题的关键.7.(3分)【考点】圆与圆的位置关系.菁优网版权所有【分析】根据两圆交点的个数来确定圆与圆的位置关系.【解答】解:∵下排两圆没有交点,∴它们的位置关系是外离.故选D.【点评】本题主要考查了圆与圆之间的位置关系,要掌握住特点依据图形直观的判断.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交.8.(3分)【考点】解直角三角形的应用-方向角问题.菁优网版权所有【分析】由已知可得,∠AOB=30°,OA=500m,根据三角函数定义即可求得AB的长.【解答】解:由已知得,∠AOB=30°,OA=500m.则AB=OA=250m.故选A.【点评】本题主要考查了方向角含义,正确记忆三角函数的定义是解决本题的关键.9.(3分)【考点】几何体的展开图.菁优网版权所有【分析】利用正方体及其表面展开图的特点解题.【解答】解:图②,经过折叠后,没有上下底面,侧面是由5个正方形组成,与正方体的侧面是4个正方形围成不相符,所以不是无盖的正方体盒子的平面展开图,故选D.【点评】正方体共有11种表面展开图,把11种展开图都去掉一个面得无盖的正方体展开图,把相同的归为一种得无盖正方体有8种表面展开图.10.(3分)【考点】概率公式.菁优网版权所有【分析】他们分别从自己的一套卡片中随机抽取一张的组合有3×3×3=27种,抽取得三张卡片中含有“祝福”、“北京”、“奥运”的有6种,所以概率=6÷27=.【解答】解:P(含有“祝福”、“北京”、“奥运”)=.故本题答案为:.故选C.【点评】本题考查可能条件下的概率,用到的知识点为:概率等于所求情况数与总情况数之比.11.(3分)【考点】有理数的混合运算.菁优网版权所有【分析】分别列出代数式表示出各年的人数变化的量,即可判定出正确结论的个数.【解答】解:根据题意可知,①与2008年相比,2009年该市应届初中毕业生人数下降了×100%,错误;②与2008年相比,2009年该市应届初中毕业生报名参加中考人数增加了×100%,错误;③与2008年相比,2009年该市应届初中毕业生报名参加中考人数占应届初中毕业生人数的百分比提高了(﹣)×100%,正确.故选B.【点评】本题考查有理数运算在实际生活中的应用,利用所学知识解答实际问题是我们应具备的能力.认真审题,准确地列出式子是解题的关键.12.(3分)【考点】抛物线与x轴的交点.菁优网版权所有【分析】①②③小题利用移项与变形b2﹣4ac与0的大小关系解决;处理第④小题时不要疏忽二次函数y=ax2+bx+c与y轴的交点情况.【解答】解:①b2﹣4ac=(﹣a﹣c)2﹣4ac=(a﹣c)2≥0,正确;②若b>a+c,则△的大小无法判断,故不能得出方程有两个不等实根,错误;③b2﹣4ac=4a2+9c2+12ac﹣4ac=4(a+c)2+5c2,因为a≠0,故(a+c)2与c2不会同时为0,所以b2﹣4ac>0,正确;④二次函数y=ax2+bx+c与y轴必有一个交点,而这个交点有可能跟图象与x 轴的交点重合,故正确.故选B.【点评】考查二次函数y=ax2+bx+c的图象与x轴交点的个数.二、填空题(共4小题,每小题3分,满分12分)13.(3分)【考点】利用频率估计概率.菁优网版权所有【分析】成活的总棵树除以移栽的总棵树即为所求的概率.【解答】解:根据抽样的意义可得幼树成活的概率为(++)÷3≈0.9.故本题答案为:0.9.【点评】本题利用了用大量试验得到的频率可以估计事件的概率.用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)【考点】一次函数与一元一次不等式.菁优网版权所有【分析】由图象得到直线y=kx+b与坐标轴的两个交点坐标,利用待定系数法求得一次函数的解析式,即可得到不等式组,解不等式组即可求解.【解答】解:直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,根据题意得:,解得:,则不等式组x<kx+b<0是:x<﹣x﹣3<0,解得:﹣3<x<﹣2.故本题答案为:﹣3<x<﹣2.【点评】本题考查了待定系数法求函数解析式,以及一元一次不等式组的解法,正确求得不等式组是关键.15.(3分)【考点】垂径定理;待定系数法求反比例函数解析式.菁优网版权所有【分析】先设y=再根据k的几何意义求出k值即可.【解答】解:连接PM,作PQ⊥MN,根据勾股定理可求出PQ=4,根据圆中的垂径定理可知点OQ=|﹣4﹣3|=7,所以点P的坐标为(﹣4,﹣7),则k=28.【点评】主要考查了圆中有关性质和反比例函数系数k的几何意义.反比例函数系数k的几何意义为:反比例函数图象上的点的横纵坐标之积是定值k,同时|k|也是该点到两坐标轴的垂线段与两坐标轴围成的矩形面积.本题综合性强,考查知识面广,能较全面考查学生综合应用知识的能力.16.(3分)【考点】规律型:图形的变化类.菁优网版权所有【分析】分析题意,找到规律,并进行推导得出答案.【解答】解:分析可得:第1个图形中,有4根火柴;第2个图形中,有4+6=10根火柴;第3个图形中,有10+8=18根火柴;…第8个图形中,共用火柴的根数是4+6+8+10+12+14+16+18=88根.【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力.三、解答题(共9小题,满分72分)17.(6分)【考点】解一元二次方程-公式法.菁优网版权所有【分析】此题考查了公式法解一元二次方程,解题时要注意将方程化为一般形式,确定a、b、c的值,代入公式即可求解.【解答】解:∵a=1,b=﹣1,c=﹣5∴△=b2﹣4ac=21>0∴∴x1=,x2=.【点评】解此题的关键是熟练应用求根公式,要注意将方程化为一般形式,确定a、b、c的值.18.(6分)【考点】分式的化简求值.菁优网版权所有【分析】先把分式化简,再将x的值代入求解.【解答】解:原式==;当x=2时,原式=.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.分式先化简再求值的问题,难度不大.19.(6分)【考点】相似三角形的判定.菁优网版权所有【分析】由FD∥AB,FE∥AC,可知∠B=∠FDE,∠C=∠FED,根据三角形相似的判定定理可知:△ABC∽△FDE.【解答】证明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.【点评】本题很简单,考查的是相似三角形的判定定理:(1)如果两个三角形的两个角对应相等,那么这两个三角形相似;(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.20.(7分)【考点】扇形统计图;用样本估计总体;条形统计图.菁优网版权所有【分析】(1)根据“15~40”的百分比和频数可求总数,进而求出b的值,最后求出a;(2)利用总数和百分比求出频数再补全条形图;(3)用样本估计总体即可.【解答】解:(1)根据“15到40”的百分比为46%,频数为230人,可求总数为230÷46%=500,a=×100%=20%,b=×100%=12%;故答案为:20%;12%;(2);(3)在扇形图中,0~14岁的居民占20%,有3500人,则年龄在15~59岁的居民占(1﹣20%﹣12%)=68%,人数为3500×=11900.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.21.(7分)【考点】一次函数图象与几何变换;坐标与图形变化-平移.菁优网版权所有【分析】(1),(2)直接利用平移中点的变化规律求解即可.(3)将直线AB沿射线OC方向平移个单位,其实是先向右平移3个单位长度,再向上平移3个单位长度.【解答】解:(1)(0,﹣1),y=2x+1﹣2=2x﹣1;(2)y=2(x﹣2)+1=2x﹣3;(3)∵点C为直线y=x上在第一象限内一点,则直线上所有点的坐标横纵坐标相等,∴将直线AB沿射线OC方向平移个单位,其实是先向右平移3个单位长度,再向上平移3个单位长度.∴y=2(x﹣3)+1+3,即y=2x﹣2.【点评】本题考查图形的平移变换和函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移减,右移加;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.22.(8分)【考点】切线的判定.菁优网版权所有【分析】(1)连接OD,只需证明OD⊥DE即可;(2)连接BC,设AC=3k,AB=5k,BC=4k,可证OD垂直平分BC,利用勾股定理可得到OG,得到DG,于是AE=4k,然后通过OD∥AE,利用相似比即可求出的值.【解答】(1)证明:连接OD,∵OD=OA,∴∠OAD=∠ADO,∵∠EAD=∠BAD,∴∠EAD=∠ADO,∴OD∥AE,∴∠AED+∠ODE=180°,∵DE⊥AC,即∠AED=90°,∴∠ODE=90°,∴OD⊥DE,∵OD是圆的半径,∴DE是⊙O的切线;(2)解:连接OD,BC交OD于G,如图,∵AB为直径,∴∠ACB=90°,又∵OD∥AE,∴∠OGB=∠ACB=90°,∴OD⊥BC,∴G为BC的中点,即BG=CG,又∵=,∴设AC=3k,AB=5k,根据勾股定理得:BC==4k,∴OB=AB=,BG=BC=2k,∴OG==,∴DG=OD﹣OG=﹣=k,又∵四边形CEDG为矩形,∴CE=DG=k,∴AE=AC+CE=3k+k=4k,而OD∥AE,∴===.【点评】考查了切线的判定定理,能够综合运用角平分线的性质、全等三角形的判定和性质以及平行线分线段成比例定理.23.(10分)【考点】二次函数的应用;一次函数的应用.菁优网版权所有【分析】根据题意可得到函数关系式,并得到x的取值范围.再得到总利润的函数式,两个式子结合起来,可得到定价.【解答】解:(1)由题意,y=150﹣10x,0≤x≤5且x为正整数;(2)设每星期的利润为w元,则w=(40+x﹣30)y=(x+10)(150﹣10x)=﹣10(x﹣2.5)2+1562.5∵x为非负整数,∴当x=2或3时,利润最大为1560元,又∵销量较大,∴x=2,即当售价为42元时,每周的利润最大且销量较大,最大利润为1560元.答:当售价为42元时,每星期的利润最大且每星期销量较大,每星期的最大利润为1560元.【点评】利用了二次函数的性质,以及总利润=售价×销量.24.(10分)【考点】正方形的性质;线段垂直平分线的性质.菁优网版权所有【分析】(1)由正方形的性质证得△BQP≌△PFE,从而得到DF=EF,由于△PCF 和△PAG均为等腰直角三角形,故有PA=PG,PC=CF,易得PA=EF,进而得到PC、PA、CE满足关系为:PC=CE+PA;(2)同(1)证得DF=EF,三条线段的数量关系是PA﹣PC=CE.【解答】解:(1)如图2,延长FP交AB于点Q,①∵AC是正方形ABCD对角线,∴∠QAP=∠APQ=45°,∴AQ=PQ,∵AB=QF,∴BQ=PF,∵PE⊥PB,∴∠QPB+∠FPE=90°,∵∠QBP+∠QPB=90°,∴∠QBP=∠FPE,∵∠BQP=∠PFE=90°,∴△BQP≌△PFE,∴QP=EF,∵AQ=DF,∴DF=EF;②如图2,过点P作PG⊥AD.∵PF⊥CD,∠PCF=∠PAG=45°,∴△PCF和△PAG均为等腰直角三角形,∵四边形DFPG为矩形,∴PA=PG,PC=CF,∵PG=DF,DF=EF,∴PA=EF,∴PC=CF=(CE+EF)=CE+EF=CE+PA,即PC、PA、CE满足关系为:PC=CE+PA;(2)结论①仍成立;结论②不成立,此时②中三条线段的数量关系是PA﹣PC=CE.如图3:①∵PB⊥PE,BC⊥CE,∴B、P、C、E四点共圆,∴∠PEC=∠PBC,在△PBC和△PDC中有:BC=DC(已知),∠PCB=∠PCD=45°(已证),PC边公共边,∴△PBC≌△PDC(SAS),∴∠PBC=∠PDC,∴∠PEC=∠PDC,∵PF⊥DE,∴DF=EF;②同理:PA=PG=DF=EF,PC=CF,∴PA=EF=(CE+CF)=CE+CF=CE+PC即PC、PA、CE满足关系为:PA﹣PC=CE.【点评】本题是一个动态几何题,考查用正方形性质、线段垂直平分线的性质、三角形相似的条件和性质进行有条理的思考和表达能力,还考查按要求画图能力.25.(12分)(【考点】二次函数综合题.菁优网版权所有【分析】首先把已知坐标代入解析式求出抛物线解析式.然后作辅助线过点C 作CH⊥AB于点H,得出四边形ABCD是等腰梯形,由矩形的中心对称性得出过P点且与CD相交的任一直线将梯形ABCD的面积平分.设M(m,n),N (m﹣2,n+1)利用等式关系求出m,n的值后即可.【解答】解:(1)∵抛物线y=ax2﹣3ax+b过A(﹣1,0)、C(3,2),∴0=a+3a+b,2=9a﹣9a+b.解得a=﹣,b=2,∴抛物线解析式y=﹣x2+x+2.(2)如图1,过点C作CH⊥AB于点H,由y=﹣x2+x+2得B(4,0)、D(0,2).又∵A(﹣1,0),C(3,2),∴CD∥AB.由抛物线的对称性得四边形ABCD是等腰梯形,∴S△AOD=S△BHC.设矩形ODCH的对称中心为P,则P(,1).由矩形的中心对称性知:过P点任一直线将它的面积平分.∴过P点且与CD相交的任一直线将梯形ABCD的面积平分.当直线y=kx﹣1经过点P时,得1=k﹣1∴k=.∴当k=时,直线y=x﹣1将四边形ABCD面积二等分.(3)如图2,由题意知,∵△AEF绕平面内某点旋转180°后得△MNQ,∴设绕点I旋转,联结AI,NI,MI,EI,∵AI=MI,NI=EI,∴四边形AEMN为平行四边形,∴AN∥EM且AN=EM.∵E(1,﹣1)、A(﹣1,0),∴设M(m,n),则N(m﹣2,n+1)∵M、N在抛物线上,∴n=﹣m2+m+2,n+1=﹣(m﹣2)2+(m﹣2)+2,解得m=3,n=2.∴M(3,2),N(1,3).【点评】本题的综合性强,是不可多得的一道答题.重点考查了二次函数的有关知识以及平行四边形,梯形的性质,难度较大.。
湖北省襄樊市初中毕业、升学一致考试数学试卷一、选择题:本大题共12 个小题,每题3 分,共 36 分。
在每题给出的四个选项中,只有一项为哪一项符号题目要求的,请将序号在答题卡上涂黑作答。
1. A 为数轴上表示1的点,将 A 点沿数轴向左挪动 2 个单位长度到 B 点,则 B 点所表示的数为()A .3 B . 3 C .1 D .1或 3 2.以以下图是由四个同样的小正方体构成的立体图形,它的俯视图为()3.经过世界各国卫生组织的协作和努力,甲型 H1N1 流感疫情获得了有效的控制,到当前 为止,全世界感染人数约为20000 人左右,占全世界人口的百分比约为 0.0000031 ,将数字 0.0000031 用科学记数法表示为()A . 3.1 10 5B . 3.1 10 6C . 3.110 7D . 3.110 84.以以下图,已知直线 AB ∥ CD ,∠ DCF 110 ,且 AE AF ,则 ∠A 等于()A . 30B . 40C . 50D . 705.以下计算正确的选项是()A . a 2 a 3a 6 B . a 8 a 4 a 2 C . a 3a 2a 5D . 2a 2 38a 61 的自变量 x 的取值范围是()6.函数 yx 2A . x 0B . x ≥ 2C . x2D . x27.分式方程xx1的解为( )x 3 x 1A . 1B .-1C .-2D .-38.以以下图,在边长为1 的正方形网格中,将△ABC向右平移两个单位长度获得△ABC,则与点 B 对于x 轴对称的点的坐标是()A.0,1 B.11,C.2,1 D.1,19.若一次函数y kx b的函数值y随x的增大而减小,且图象与y 轴的正半轴订交,那么对 k 和 b 的符号判断正确的选项是()A.k 0,b 0 B .k 0,b 0C.k 0,b 0 D .k 0,b 010.以以下图,AB是⊙ O 的直径,点D在AB的延伸线上,DC切⊙O于C,∠A 25 .若则∠D 等于()A.40B.50C.60D.70 11.为了改良居民住宅条件,我市计划用将来两年的时间,将城镇居民的住宅面积由此刻的人均约为 10m 2提升到 12.1m 2,若每年的年增加率同样,则年增加率为()A.9% B.10% C.11% D.12%12 .以以下图,在□ABCD中,AE BC于E,AE EB EC a,且 a 是一元二次方程x2 2x 3 0 的根,则□ABCD 的周长为()A . 4 2 2B .12 6 2C .222D . 22或12 6 2二、填空题:本大题共 5 个小题,每题 3 分,共 15 分.把答案填在答题卡的相应地点上.13.计算:81 2 1.3214.已知⊙12的半径分别为 3cm 和2cm ,,则⊙ 1 2的地点关系O 和⊙ O且 O 1O 2 1cm O与⊙ O为.15.抛物线 yx 2 bx c 的图象以以下图所示,则此抛物线的分析式为.16.在 △ ABC 中, AB AC 12cm ,BC 6cm ,D 为 BC 的中点, 动点 P 从 B 点出发, 以每秒 1 cm 的速度沿 B AC 的方向运动.设运动时间为 t ,那么当 t秒 时,过 D 、 P 两点的直线将 △ ABC 的周长分红两个部分,使此中一部分是另一部分的2倍.17.以以下图,在 Rt △ ABC 中, ∠ C 90°,AC 4,BC 2,分别以 AC 、 BC 为直径画半圆,则图中暗影部分的面积为.(结果保存 )三、解答题:本大题共 9 个小题,共 69 分.解答应写出文字说明、证明过程或演算步骤,而且写在答题卡上每题对应的答题地区内.18.(本小题满分 5 分)计算:a 2 8 a 2 2 2a4 a 2aa19.(本小题满分 5 分)江涛同学统计了他家 10 月份的电话清单,按通话时间画出直方图,从左到右分别为一、二、三、四组。
2008年湖北省各地中考数学试题精选几 何 选 择 题(1) 2008年湖北省鄂州市中考数学几何选择题(08湖北鄂州)5.图1是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是( A )A .B .C .D .(08湖北鄂州)6.如图2,已知ABC △中,45ABC ∠=,4AC =,H 是高AD 和BE 的交点,则线段BH 的长度为( B ) AB .4 C.D .5(08湖北鄂州)8.如图3,利用标杆BE 测量建筑物DC 的高度,如果标杆BE 长为1.2米,测得 1.6AB = 米,8.4BC =米.则楼高CD 是( B ) A .6.3米B .7.5米C .8米D .6.5米(08湖北鄂州)9.因为1sin 302=,1sin 2102=- ,所以sin 210sin(18030)sin30=+=-;因为sin 45=sin 225= ,所以sin 225sin(18045)sin 45=+=-, 由此猜想、推理知:一般地当α为锐角时有sin(180)sin αα+=- ,由此可知:sin 240=( C )A .12-B.C.D.(08湖北鄂州)12.ABC △A2A 与边BC 相切于D 点,则AB AC 的值为(D )2 13图1D CBAE H 图2E ABC图3AB .4 C.2D.(08湖北鄂州)14.如图6,Rt ABC △中,90ACB ∠= ,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴影部分面积)为( C ) A.7π3 B.4π3+ C .πD.4π3+(2) 2008年湖北省武汉市中考数学几何选择题(08湖北武汉)6.如图,六边形ABCDEF 是轴对称图形.CF 所在的直线是它的对称轴,若∠AFC+ ∠BCF =150°,则∠AFE+∠BCD 的大小是( )(A )150°.(B )300°.(C )210°.(D )330°. 答案 B(08湖北武汉)7.如图是一个五环图案,它由五个圆组成.下排的两个圆的位置关系是( )(A )内含. (B )外切. (C )相交. (D )外离.答案D(08湖北武汉)8.如图,小雅家(图中点O处)门前有一条东西走向的公路, 经测得有一水塔(图中点A处)在她家北偏东60度500m 处,那么水塔所在的位 置到公路的距离AB 是( ). (A )250m (B ) (C (D ) 答案A(08湖北武汉)9.一个无盖的正方体盒子的平面展开图可以是下列图形中的( )(A )只有图①. (B )图①、图②. (C )图②、图③. (D )图①、图③. 答案D图6 AH B OC 1O1H1A1CAO B东北 ③ ② ①FEDCBA(3) 2008年湖北省黄冈市中考数学几何选择题(08湖北黄冈)9.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是( C ) A .长方体B .圆柱体C .球体D .三棱柱(08湖北黄冈)12(多项选择).如图,已知梯形ABCD 中,AD BC ∥,AB CD AD ==,AC BD ,相交于O 点,60BCD ∠=,则下列说法正确的是( ) A .梯形ABCD 是轴对称图形B .2BC AD =C .梯形ABCD 是中心对称图形 D .AC 平分DCB ∠ 答案:ABD(4) 2008年湖北省黄石市中考数学几何选择题(08湖北黄石)3.如图,AB CD ∥,AD 和BC 相交于点O ,35A ∠=,75AOB ∠=,则C ∠等于( C ) A .35B .75C .70D .80(08湖北黄石)4.下列图形中既是轴对称图形,又是中心对称图形的是( B )A .B .C .D . (08湖北黄石)7.下面左图所示的几何体的俯视图是( D )A .B .C .D .ADOCB(08湖北黄石)8.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △ 相似的是( B )(08湖北黄石)12.如图,在等腰三角形ABC 中,120ABC ∠=,点P 是底边AC 上一个动点,M N ,分别是AB BC ,的中点,若PM PN +的最小值为2,则ABC △的周长是( D ) A .2B.2C .4D.4+(5) 2008年湖北省恩施州中考数学几何选择题(08湖北恩施)10. 为了让州城居民有更多休闲和娱乐的地方,政府又新建了几处广场,工人师傅在铺设地面时,准备选用同一种正多边形地砖.现有下面几种形状的正多边形地砖,其中不能..进行平面镶嵌的是( C )A. 正三角形B. 正方形C. 正五边形D. 正六边形 (08湖北恩施)12. 在Rt △ABC 中,∠C =90°,若AC =2BC ,则tan A 的值是( A )A.21 B. 2 C. 55 D. 25(08湖北恩施)13. 将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C ) A. 7 B. 6 C. 5 D. 4(08湖北恩施)16. 如图6,扇形OAB 是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为( B ) A.21 B. 22 C.2 D. 22A .B .C .D .ABAB CPM N(6) 2008年湖北省荆门市中考数学几何选择题(08湖北荆门)6.如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则弧 AmB 等于(C ) (A) 60°. (B) 90°. (C)120°. (D)150°.(08湖北荆门)7.左下图是由若干个小正方形所搭成的几何体及从上面看这个几何体所看到的图形,那么从左边看这个几何体时, 所看到的几何图形是( B )(08湖北荆门)10.用四个全等的矩形和一个小正方形拼成如图所示的大正方形,已知大正方形的面积是144,小正方形的面积是4,若用x ,y 表示矩形的长和 宽(x >y ),则下列关系式中不正确的是 ( D ) (A) x +y =12 . (B) x -y =2. (C) xy =35. (D) x 2+y 2=144.(7) 2008年湖北省荆州市中考数学几何选择题(08湖北荆州)3.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数 是( D ) A.1 B.2 C.3 D.4(08湖北荆州)5.如图,五边形ABCDE 与五边形A′B′C′D′E′是位似图形,O 为位似中心,OD=12OD′,则A′B′:AB 为( D )A.2:3B.3:2C.1:2D.2:1从左面看第7题图(A)(D)(C)(第3题图)′′第10题图(08湖北荆州)8.如图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( C )A.5:3B.3:5C.4:3D.3:4(8) 2008年湖北省十堰市中考数学几何选择题(08湖北十堰)2.下列长度的三条线段,能组成三角形的是(C )A .1cm ,2 cm ,3cmB .2cm ,3 cm ,6 cmC .4cm ,6 cm ,8cmD .5cm ,6 cm ,12cm (08湖北十堰)3.如图,C 、D 是线段AB 上两点,若CB =4cm ,DB=7cm ,且D 是AC 的中点,则AC的长等于(B )A .3cmB .6cmC .11cmD .14cm(08湖北十堰)4.如图,在ΔABC 中,AC=DC=DB ,∠ACD=100°,则∠B 等于(D )A .50°B .40°C .25°D .20°(08湖北十堰)7.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是(D )(08湖北十堰)8.如图,点E 在AD 的延长线上,下列条件中能判断BC ∥AD 的是CA .∠3=∠4B .∠A+∠ADC=180°C .∠1=∠2D .∠A =∠5(第8题图)CB第4题图DA 第3题图D C BA AC第8题图EE54321DBBCA(9) 2008年湖北省天门市中考数学几何选择题(08湖北天门)02.一个几何体的三视图如图所示,则这个几何体是( C ).(08湖北天门)06.如图,a ∥b ,∠1=105°,∠2=140°,则∠3的度数是( B ). A 、75° B 、65° C 、55° D 、50° (08湖北天门)07.下列命题中,真命题是( D).A 、一组对边平行且有一组邻边相等的四边形是平行四边形;B 、顺次连结四边形各边中点所得到的四边形是矩形;C 、等边三角形既是轴对称图形又是中心对称图形;D 、对角线互相垂直平分的四边形是菱形(08湖北天门)08.如图,为了测量河两案A、B 两点的距离,在与AB 垂直的方向点C 处测得AC =a ,∠ACB =α,那么AB 等于( B ). A 、a·sinα B 、a·tanα C 、a·cosαD 、tan a(08湖北天门)10.设计一个商标图案如图中阴影部分,矩形ABCD 中,AB =2BC ,且AB =8cm ,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,则商标图案的面积等于( A ). A 、(4π+8)cm 2 B 、(4π+16)cm 2 C 、(3π+8)cm 2 D 、(3π+16)cm 2(10) 2008年湖北省仙桃、潜江、江汉油田中考数学几何选择题(08湖北仙桃等)3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是 ( B )ABCD主视图左视图俯视图(第2题A123 (第6题abAB Ca α(第08题(第10题正方体 长方体圆柱 圆锥 ABCDABCDEO(第5题图) (第8题图)(08湖北仙桃等)5.如图,四边形ABCD 是菱形,过点A 作BD 的平行线交CD 的延长线于点E ,则下列式子不成立...的是( B ) A. DE DA = B. CE BD = C. 90=∠EAC ° D. E ABC ∠=∠2(08湖北仙桃等)8.如图,小明从半径为5cm 的圆形纸片中剪下40%圆周的一个扇形,然后利用剪 下的扇形制作成一个圆锥形玩具纸帽(接缝处不重叠), 那么这个圆锥的高为( C )A.3cmB.4cmC.21cmD.62cm(11) 2008年湖北省咸宁市中考数学几何选择题(08湖北咸宁)4.在Rt △ABC 中, ∠C =90︒,AB =4,AC =1,则cos A 的值是 【 B 】AB .14CD .4(08湖北咸宁)7.下列说法:①对角线互相平分且相等的四边形是菱形;②计算2-的结果为1; ③正六边形的中心角为60︒;④函数y 的自变量x 的取值范围是x ≥3. 其中正确的个数有 【 C 】 A .1个 B .2个C .3个D .4个(08湖北咸宁)8.如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论: ①△AED ≌△AEF ; ②△ABE ∽△ACD ; ③BE DC DE +=; ④222BE DC DE +=其中正确的是【 B 】 A .②④; B .①④; C .②③; D .①③.40%5=R(图1)(图2)60%(第8题图)ABCDEF(08湖北襄樊)3.如图1,已知AD 与BC 相交于点O ,AB CD ∥,如果40B ∠=,30D ∠=,则AO C ∠的大小为( B ) A .60B .70C .80D .120(08湖北襄樊)5.在正方形网格中,ABC △的位置如图2所示,则cos B ∠的值为( B )A .12B .2C .2D .3(08湖北襄樊)7.顺次连接等腰梯形四边中点所得四边形是( A )A .菱形B .正方形C .矩形D .等腰梯形(08湖北襄樊)9.如图4,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是( C )A .7个B .8个C .9个D .10个(08湖北襄樊)10.如图5,扇形纸扇完全打开后,外侧两竹条AB AC ,夹角为120,AB 的长为30cm ,贴纸部分BD 的长为20cm ,则贴纸部分的面积为( D )A .2100cm π B .2400cm 3π C .2800cm πD .2800cm 3π(08湖北孝感)4.一几何体的三视图如右,这个几何体是( D )A .圆锥B .圆柱C .三棱锥D .三棱柱(08湖北孝感)7.如图a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=( C )A .180B .270C .360D .540(08湖北孝感)9.下列图形中,既是轴对称图形又是中心对称图形的是( A )A .菱形B .梯形C .正三角形D .正五边形(08湖北孝感)11.Rt ABC △中,90C ∠=,8AC =,6BC =,两等圆A ,B 外切,那么图中两个扇形(即阴影部分)的面积之和为( A ) A .254π B .258π C .2516π D .2532π(14) 2008年湖北省宜昌市中考数学几何选择题(08湖北宜昌)1.下列物体的形状类似于球的是( C ).A .茶杯B .羽毛球C .乒乓球D .白炽灯泡(08湖北宜昌)3.如图是江峡中学实验室某器材的主视图和俯视图, 那么这个器材可能是( A ).A .条形磁铁B .天平砝码C .漏斗D .试管(08湖北宜昌)9.如图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点按顺时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( A ). A .120° B .90° C .60° D .30°俯视图左 视 图主视图(第4题图)bM P N 123(第7题图)(第11题图)俯 视 图主 视 图(第3题)(08湖北宜昌)10.如图,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第1个黑色3个正方形组成,第27个正方形组成,那么组成第6( B ).A .22B .23C .24D .25(第10题)(第9题)1A 1A。
湖北省黄冈市2008年初中毕业生升学考试数 学 试 题(考试时间120分钟 满分120分)一、细心填一填,相信你填得对!(每空3分,共33分)1.计算:3-= ;012⎛⎫-= ⎪⎝⎭;cos 45= .2.分解因式:2a a -= ;化简:= ;计算:31(2)4a a ⎛⎫-=⎪⎝⎭. 3.若点(21)P k -,在第一象限,则k 的取值范围是 ;直线2y x b =+经过点(13),,则b = ;抛物线22(2)3y x =-+的对称轴为直线 .4.已知圆锥的底面直径为4cm,其母线长为3cm, 则它的侧面积为 2cm .5.如图,ABC △和DCE △都是边长为2的等边三角形,点B C E ,,在同一条直线上,连接BD ,则BD 的长为 .二、精心选一选,相信你选得准!(A,B,C,D 四个答案中有且只有一个是正确的,请将题中唯一正确的答案序号填入题后的括号内,不填、填错或多填均不得分,本题满分12分)6.要了解一批电视机的使用寿命,从中任意抽取30台电视机进行试验,在这个问题中,30是( ) A .个体 B .总体 C .样本容量 D .总体的一个样本 7.计算a b a bb a a +⎛⎫-÷ ⎪⎝⎭的结果为( )A .a bb-B .a b b + C .a b a - D .a ba + 8.已知反比例函数2y x=,下列结论中,不正确...的是( ) A .图象必经过点(12),B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <9.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是( ) A .长方体 B .圆柱体 C .球体 D .三棱柱A DB CD三、多项选择题,相信你选得全!(共3个小题,每小题3分,共9分,每小题至少有两个答案是正确的,全部选对得3分,对而不全的酌情给分,有对有错或不选均得0分) 10.下列说法中正确的是( ) A 4是一个无理数 B .函数1y x =-x 的取值范围是1x > C .8的立方根是2±D .若点(2)P a ,和点(3)Q b -,关于x 轴对称,则a b +的值为511.下列命题是真命题的是( ) A .一组数据21012--,,,,的方差是3B .要了解一批新型导弹的性能,采用抽样调查的方式C .购买一张福利彩票,中奖.这是一个随机事件D .分别写有三个数字124--,,的三张卡片,从中任意抽取两张,则卡片上的两数之积为正数的概率为1312.如图,已知梯形ABCD 中,AD BC ∥,AB CD AD ==,AC BD ,相交于O 点,60BCD ∠=,则下列说法正确的是( )A .梯形ABCD 是轴对称图形B .2BC AD = C .梯形ABCD 是中心对称图形 D .AC 平分DCB ∠ 四、耐心做一做,试试我能行!(共8道题,满分66分) 13.(本题满分6分)解不等式组255432x x x x -<⎧⎨-+⎩≥,.14.(本题满分7分)已知:如图,点E 是正方形ABCD 的边AB 上任意一点,过点D 作DF DE ⊥交BC 的延长线于点F .求证:DE DF =.ADOC BA E BCF D 12 315.(本题满分7分)2008年5月31日奥运会圣火传递活动在湖北武汉市内举行.我市红城中学校团委在学校七年级8个班中,开展了一次“迎奥运,为奥运加油”的有关知识比赛活动,班级 七(1) 七(2) 七(3) 七(4) 七(5) 七(6) 七(7) 七(8) 得分 90 90 80 80 90 80 100 90 学生人数4646484749455050(1)请直接写出各班代表队得分数的平均数、众数和中位数;(2)学校决定:在本次比赛获得优胜的班级中,随意选取5名学生,免费送到武汉观看奥运圣火,小颖是七(7)班的学生,则她获得免费送到武汉观看奥运圣火的概率是多少?16.(本题满分8分)已知:如图,在ABC △中,AB AC =,以AB 为直径的O 交BC 于点D ,过点D 作DE AC ⊥于点E . 求证:DE 是O 的切线.17.(本题满分8分)如图是“明清影视城”的圆弧形门,黄红同学到影视城游玩,很想知道这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,20AB CD ==cm,200BD =cm,且AB CD ,与水平地面都是垂直的.根据以上数据,请你帮助黄红同学计算出这个圆弧形门的最高点离地面的高度是多少?18.(本题满分8分)某市有一块土地共100亩,某房地产商以每亩80万元的价格购得此地,准备修建“和谐花园”住宅区.计划在该住宅区内建造八个小区(A 区,B 区,C 区H 区),其中A 区,B 区各修建一栋24层的楼房;C 区,D 区,E 区各修建一栋18层的楼房;F 区,G 区,H 区各修建一栋16层的楼房.为了满足市民不同的购房需求,开发商准备将A 区,B 区两个小区都修建成高档,每层8002m ,初步核算成本为800元/2m ;将C 区,D 区,E 区三个小区都修建成中档住宅,每层8002m ,初步核算成本为700元/2m ;将F 区,G 区,H 区三个小区D E C A OB AC B D都修建成经济适用房,每层7502m ,初步核算成本为600元/2m .整个小区内其他空余部分土地用于修建小区公路通道,植树造林,建花园,运动场和居民生活商店等,这些所需费用加上物业管理费,设置安装楼层电梯等费用共计需要9900万元.开发商打算在修建完工后,将高档,中档和经济适用房以平均价格分别为3000元/2m , 2600元/2m 和2100元/2m 的价格销售.若房屋全部出售完,请你帮忙计算出房地产开发商的赢利预计是多少元?19.(本题满分8分)四川汶川大地震发生后,我市某工厂A 车间接到生产一批帐篷的紧急任务,要求必须在12天(含12天)内完成.已知每顶帐篷的成本价为800元,该车间平时每天能生产帐篷20顶.为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高.这样,第一天生产了22顶,以后每天生产的帐篷都比前一天多2顶.由于机器损耗等原因,当每天生产的帐篷数达到30顶后,每增加1顶帐篷,当天生产的所有帐篷,平均每顶的成本就增加20元.设生产这批帐篷的时间为x 天,每天生产的帐篷为y 顶. (1)直接写出y 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)若这批帐篷的订购价格为每顶1200元,该车间决定把获得最高利润的那一天的全部利润捐献给灾区.设该车间每天的利润为W 元,试求出W 与x 之间的函数关系式,并求出该车间捐款给灾区多少钱?20.(本题满分14分)已知:如图,在直角梯形COAB 中,OC AB ∥,以O 为原点建立平面直角坐标系,A B C ,,三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒. (1)求直线BC 的解析式;(2)若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的27? (3)动点P 从点O 出发,沿折线OABD 的路线移动过程中,设OPD △的面积为S ,请直接写出S 与t 的函数关系式,并指出自变量t 的取值范围;(4)当动点P 在线段AB 上移动时,能否在线段OA 上找到一点Q ,使四边形CQPD 为矩形?请求出此时动点P 的坐标;若不能,请说明理由.湖北黄冈2008参考答案: 一、 填空1.3;1;2 222a - 3. K >1; 1; X=2 4. 6π5.二、选择6. C7.A8.B9.C 三.多选题10.B 、D 11.B 、C 、D 12.A 、B 、D 四、解答题(此题备用)13. 13.(本题满分6分)解不等式组25, 543 2. x xx x-<⎧⎨-+⎩≥解:25,543 2.x xx x-<⎧⎨-+⎩≥12()()由不等式(1)得:x<5由不等式(2)得:x≥3所以:5>x≥314.(本题满分7分)已知:如图,点E是正方形ABCD的边AB上任意一点,过点D作DF⊥DE 交BC的延长线于点F.求证:DE=DF.解:∵四边形ABCD是正方形,∴ AD=CD ,∠A=∠DCF=900又∵DF⊥DE,∴∠1+∠3=∠2+∠3∴∠1=∠2在Rt△DAE和Rt△DCE中,∠1=∠2AD=CD∠A=∠DCF∴Rt△DAE≅Rt△DCE∴DE=DF.15解:(1)平均分:87.5分;众数:90分;中位数:90分(2)七(7)的分数为100分,所以七(7)班为优胜班级.共50人,从中选出5名,选中的概率为1 1016证明:连接AD, ∵AB 为⊙O 的直径,∴AD ⊥BC, 又∵AB =AC ,∴D 为BC 的中点. 又∵OB=OA, ∴OD ‖AC ∵ DE ⊥AC ∴DE ⊥OD 所以,DE 是⊙O 的切线. 17.(本题满分8分)解:过圆心O 作OE ⊥AC,连接AD.设圆O 的半径为R,在Rt △AOE 中,AE=2AC =2BD=100 OE=R —AB=R —20∵AE 2+OE 2=OA 2 ∴1002+( R —20)2=R 2解之:R 1=260 cm这个圆弧形门的最高点离地面的高度为2R=520cm 答:这个圆弧形门的最高点离地面的高度为520cm.18.(本题满分8分解:开发商共投资:100×800000+24×800×800×2+18×800×700×3+16×750×600×3+99000000=26156(万元)房屋全部出售完可得:(2×24×800×3000+3×18×800×2600+3×16×750×2100)÷10000=30312(万元)房地产开发商的赢利预计:30312—26156=4156(万元) 所以房地产开发商的赢利预计是4156万元.19.(本题满分8分)解:y=20+2x (12≥x ≥1)(2)当5≥x ≥1时,W=(1200-800)×(2x+20) =800x+8000此时w 随x 的增大而增大,当x=5时,W 最大=12000 当12≥x >5时,W=[]1200800202x 20302x 20--+-+()() =-80(X 2-5X-150)=-80(X-52)2+12500 此时函数图象开口向下,在对称轴右侧,W 随x 的增大而减小. 所以,当x=6时,W 最大=1152020.(1)设直线BC 的解析式为y=kx+b 依题意得:4=k ×0+410=8k+b解之得:k=34; b= 4 所以直线BC 的解析式为y=34x+4(2) t=167(3) s=72t (8>t>0)s=44-2x (18>x ≥8) s=-8184t 55+(4)不存在.理由如下:过C 作CM ⊥AB 于M,易知CM=OA=8AM=OC=4,所以BM=6.假设四边形CQPD 为矩形,则PQ=CD=5,PQ ‖CD,根据Rt △P AQ ∽ Rt △BDP 可求PB=5,PB=PD,这与三角形PBD 是直角三角形相矛盾,所以假设不成立在OA 上不存在点Q,,使四边形CQPD 为矩形。
以下是河北省柳超的分类(2008年贵阳市)13.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122f ⎛⎫=⎪⎝⎭,133f ⎛⎫= ⎪⎝⎭,144f ⎛⎫= ⎪⎝⎭,155f ⎛⎫= ⎪⎝⎭,…利用以上规律计算:1(2008)2008f f ⎛⎫-= ⎪⎝⎭.(2008年贵阳市)10.根据如图2所示的(1),(2),(3)三个图所表示的规律,依次下去第n个图中平行四边形的个数是( )A .3nB .3(1)n n +C .6nD .6(1)n n +(2008年遵义市)16.如图是与杨辉三角形有类似性质的三角形数垒,a b ,是某行的前两个数,当7a =时,b = .以下是江西康海芯的分类:1. (2008年郴州市)因式分解:24x -=____________ ()()22x x +-辽宁省 岳伟 分类2008年桂林市(图2)……(1)(2) (3)1 2 2 3 4 3 4 7 7 4 5 11 14 11 5· · · · · · · · · a b · · · · · · · · (16题图)如图,矩形1111ABCD的面积为4,顺次连结各边中点得到四边形2222ABCD,再顺次连结四边形2222ABCD四边中点得到四边形3333ABCD,依此类推,求四边形n n n n ABCD的面积是 。
18.(2008年湖州市)将自然数按以下规律排列,则2008所在的位置是第 行第 列.10. ( 2008年杭州市) 如图, 记抛物线12+-=x y 的图象与x 正半轴的交点为A , 将线段OA 分成n 等份, 设分点分别为121,,,-n P P P , 过每个分点作x 轴的垂线, 分别与抛物线交于点121,,,-n Q Q Q , 再记直角三角形 ,,22111Q P P Q OP 的面积分别为 ,,21S S ,这样就有,24,21322321nn S n n S -=-=… ; 记21S S W += 1-++n S , 当n 越来越大时, 你猜想W 最接近的常数是( C ) (A) 32 (B)21 (C)31(D) 41(第10题)16. ( 2008年杭州市) 如图, 一个4×2的矩形可以用3种不同的方式分割成2或5或8个小正方形, 那么一个5×3的矩形用不同的方式分割后, 小正方形的个数可以是 ________________ .以下是安徽省马鞍山市成功中学的汪宗兴老师的分类1.(2008年·东莞市)(本题满分9分)(1)解方程求出两个解1x 、2x ,并计算两个解的写出你的结论.24.(2008年双柏县)(本小题9分)依法纳税是每个公民应尽的义务.从2008年3月1日起,新修改后的《中华人民共和国个人所得税法》规定,公民每月收入不超过2000元,不需交税;超过2000元的部分为全月应纳税所得额,都应纳税,且根据超过部分的多少按不同的税率纳税,详细的税率如下表:(1)某工厂一名工人2008年3月的收入为2 400元,问他应交税款多少元? (2)设x 表示公民每月收入(单位:元),y 表示应交税款(单位:元),(第16题)当2500≤x ≤4000时,请写出y 关于x 的函数关系式;(3)某公司一名职员2008年4月应交税款120元,问该月他的收入是多少元?(08年宁夏回族自治区)商场为了促销,推出两种促销方式:方式①:所有商品打7.5折销售: 方式②:一次购物满200元送60元现金.(1)杨老师要购买标价为628元和788元的商品各一件,现有四种购买方案:方案一:628元和788元的商品均按促销方式①购买; 方案二:628元的商品按促销方式①购买,788元的商品按促销方式②购买; 方案三:628元的商品按促销方式②购买,788元的商品按促销方式①购买; 方案四:628元和788元的商品均按促销方式②购买. 你给杨老师提出的最合理购买方案是 .(2)通过计算下表中标价在600元到800元之间商品的付款金额,你总结出商品的购买规律是 。
2008年湖北省襄樊市中考数学试题一、选择题:本大题共10小题,每小题3分,共30分. 1.2的相反数是( ) A .2B .2-C .12D .12-2.下列运算正确的是( ) A .3412x x x = B .623(6)(2)3x x x -÷-= C .23a a a -=-D .22(2)4x x -=-3.如图1,已知AD 与BC 相交于点O ,AB CD ∥,如果40B ∠= ,30D ∠= ,则AOC ∠的大小为( )A .60B .70C .80D .1204.下列说法正确的是( ) A .4的平方根是2 B .将点(23)--,向右平移5个单位长度到点(22)-,CD .点(23)--,关于x 轴的对称点是(23)-, 5.在正方形网格中,ABC △的位置如图2所示,则cos B ∠的值为( )A .12B .2C D 6.某种商品零售价经过两次降价后的价格为降价前的81%, 则平均每次降价( ) A .10% B .19% C .9.5% D .20% 7.顺次连接等腰梯形四边中点所得四边形是( ) A .菱形 B .正方形 C .矩形 D .等腰梯形8.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图3所示,当310mV =时,气体的密度是( )A .5kg/m 3B .2kg/m 3C .100kg/m 3D ,1kg/m 39.如图4,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是( )A .7个B .8个C .9个D .10个10.如图5,扇形纸扇完全打开后,外侧两竹条AB AC ,夹角为120,AB 的长为30cm ,贴纸部分BD 的长为20cm ,则贴纸部分的面积为( ) A .2100cm πB .2400cm 3π C .2800cm π D .2800cm 3π 二、填空题:本大题共6小题,每小题3分,共18分.把答案填在答题卡的相应位置上.11.一方有难,八方支援.截至6月3日12时,中国因汶川大地震共接受国内外捐赠款物423.64亿元,用科学记数法表示为 元.12.如图6,O 中OA BC ⊥,25CDA ∠=,则AOB ∠的度数为 .13.当m = 时,关于x 的分式方程213x mx +=--无解. 14.如图7,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++.则他将铅球推出的距离是 m .15.如图8,张华同学在学校某建筑物的C 点处测得旗杆顶部A 点的仰角为30,旗杆底部B 点的俯角为45 .若旗杆底部B 点到建筑物的水平距离9BE =米,旗杆台阶高1米,则旗杆顶点A 离地面的高度为米(结果保留根号).16.如图9,在锐角AOB ∠内部,画1条射线,可得3个锐角;画2条不同射线,可得6个锐角;画3条不同射线,可得10个锐角;……照此规律,画10条不同射线,可得锐角 个.三、解答题:本大题共9小题,共72分.解答应写出文字说明,证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内. 17.(本小题满分7分)化简求值:222161816416x x x x x x ⎛⎫-+÷ ⎪++--⎝⎭,其中1x =. 18.(本小题满分6分)为了了解学生课业负担情况,某初中在本校随机抽取50名学生进行问卷调查,发现被抽查的学生中,每天完成课外作业时间,最长不足120分钟,没有低于40分钟的.并将抽查结果绘制成了一个不完整的频数分布直方图,如图10所示. (1)请补全频数分布直方图;(2)被调查50名学生每天完成课外作业时间的中位数在 组(填时间范围); (3)若该校共有1200名学生,请估计该校大约有 名学生每天完成课外作业时间在80分钟以上(包括80分钟).19.(本小题满分6分)如图11-1,方格纸中有一透明等腰三角形纸片,按图中裁剪线将这个纸片裁剪成三部分.请你将这三部分小纸片重新分别拼接成;(1)一个非矩形的平行四边形;(2)一个等腰梯形;(3)一个正方形.请在图11-2中画出拼接后的三个图形,要求每张三角形纸片的顶点与小方格顶点重合.如图12,B C E ,,是同一直线上的三个点,四边形ABCD 与四边形CEFG 都是正方形.连接BG DE ,. (1)观察猜想BG 与DE 之间的大小关系,并证明你的结论;(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说出旋转过程;若不存在,请说明理由.21.(本小题满分7分)在一个不透明的布袋中有4个完全相同的乒乓球,把它们分别标号为1,2,3,4,随机地摸出一个乒乓球然后放回,再随机地摸出一个乒乓球.求下列事件的概率: (1)两次摸出的乒乓球的标号相同;(2)两次摸出的乒乓球的标号的和等于5. 22.(本小题满分7分)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意购买了一些送给这个小学的小朋友作为节日礼物.如果每班分10套,那么余5套;如果前面的班级每个班分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套? 23.(本小题满分10分)我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a 元;一月用水超过10吨的用户,10吨水仍按每吨a 元收费,超过10吨的部分,按每吨b 元(b a >)收费.设一户居民月用水x 吨,应收水费y 元,y 与x 之间的函数关系如图13所示. (1)求a 的值;某户居民上月用水8吨,应收水费多少元? (2)求b 的值,并写出当10x >时,y 与x 之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?如图14,直线AB 经过O 上的点C ,并且OA OB =,CA CB =,O 交直线OB 于E D ,,连接EC CD ,.(1)求证:直线AB 是O 的切线;(2)试猜想BC BD BE ,,三者之间的等量关系,并加以证明; (3)若1tan 2CED ∠=,O 的半径为3,求OA 的长.25.(本小题满分12分)如图15,四边形OABC 是矩形,4OA =,8OC =,将矩形OABC 沿直线AC 折叠,使点B 落在D 处,AD 交OC 于E . (1)求OE 的长;(2)求过O D C ,,三点抛物线的解析式;(3)若F 为过O D C ,,三点抛物线的顶点,一动点P 从点A 出发,沿射线AB 以每秒1个单位长度的速度匀速运动,当运动时间t (秒)为何值时,直线PF 把FAC △分成面积之比为1:3的两部分?2008年湖北省襄樊市中考数学试题答案及评分标准一、选择题(每小题3分,共30分)11.104.236410⨯12.5013.6-14.1015.10+ 16.66三、解答题(共72分) 17.解:原式4(4)(4)44x x x x x x -⎛⎫=++-⎪+-⎝⎭··············· (2分) 2(4)(4)x x x =-++ ·························· (3分)22416x x =-+. ··························· (4分)当1x =时,原式21)1)16=-+ ············ (5分)18=. ································ (7分)18.(1)如图1. ··························· (2分)(2)80-100. ···························· (4分) (3)840 ······························· (6分) 19.解:如图2所示.说明:正确画出拼接图形每个2分,共6分.20.解:(1)BG DE =. ······················· (1分) 四边形ABCD 和四边形CEFG 都是正方形,GC CE ∴=,BC CD =,90BCG DCE ∠=∠= . ············ (2分) BCG DCE ∴△≌△. ························· (3分) BG DE ∴=. ····························· (4分) (2)存在.BCG △和DCE △. ···················· (5分) BCG △绕点C 顺时针方向旋转90 后与DCE △重合. ··········· (7分)21.解:将两次摸乒乓球可能出现的结果列表如下:················· (2分) 以上共有16种等可能结果. ······················· (3分) (1)两次摸出的乒乓球标号相同的结果有4种, 故()41164P ==标号相同. ························· (5分) (2)两次摸出的乒乓球的标号的和等于5的结果有4种, 故(5)41164P ==标号的和等于. ······················· (7分)22.解:设该小学有x 个班,则奥运福娃共有(105)x +套.由题意,得10513(1)410513(1).x x x x +<-+⎧⎨+>-⎩,··················· (3分)解之,得1463x <<. ························· (5分) x 只能取整数,5x ∴=,此时10555x +=. ·············· (6分)答:该小学有5个班级,共有奥运福娃55套. ··············· (7分)23.解:(1)当10x ≤时,有y ax =.将10x =,15y =代入,得 1.5a =. · (1分) 用8吨水应收水费8 1.512⨯=(元).··················· (2分) (2)当10x >时,有(10)15y b x =-+. ················· (3分) 将20x =,35y =代入,得351015b =+.2b =. ············ (4分) 故当10x >时,25y x =-. ······················ (5分) (3)因1.510 1.5102446⨯+⨯+⨯<, 所以甲、乙两家上月用水均超过10吨. ·················· (6分) 设甲、乙两家上月用水分别为x 吨,y 吨,则4252546.y x y x =-⎧⎨-+-=⎩, ························ (8分)解之,得1612.x y =⎧⎨=⎩,··························· (9分)故居民甲上月用水16吨,居民乙上月用水12吨. ············ (10分)24.解:(1)证明:如图3,连接OC . ················· (1分) OA OB = ,CA CB =,OC AB ∴⊥. ················· (2分) AB ∴是O 的切线. ························· (3分) (2)2BC BD BE = . ··········· (4分)ED 是直径,90ECD ∴∠= .90E EDC ∴∠+∠= .又90BCD OCD ∠+∠=,OCD ODC ∠=∠,BCD E ∴∠=∠. ··························· (5分) 又CBD EBC ∠=∠ ,BCD BEC ∴△∽△. ·············· (6分) BC BD BE BC∴=.2BC BD BE ∴= . ··················· (7分) (3)1tan 2CED ∠= ,12CD EC ∴=. BCD BEC △∽△,12BD CD BC EC ∴==. ················ (8分)设BD x =,则2BC x =.又2BC BD BE = ,2(2)(6)x x x ∴=+ . ················ (9分)解之,得10x =,22x =.0BD x => ,2BD ∴=.325OA OB BD OD ∴==+=+=. ·················· (10分)25.解:(1) 四边形OABC 是矩形,90CDE AOE ∴∠=∠= ,OA BC CD ==. ··············· (1分)又CED OEA ∠=∠ ,CDE AOE ∴△≌△. ·············· (2分) OE DE ∴=.222()OE OA AD DE ∴+=-,即2224(8)OE OE +=-,解之,得3OE =. ············· (3分) (2)835EC =-=.如图4,过D 作DG EC ⊥于G , DGE CDE ∴△≌△. ··········· (4分)DE DG EC CD ∴=,DE EG EC DE =.125DG ∴=,95EG =. 241255D ⎛⎫∴ ⎪⎝⎭,.·············· (5分) 因O 点为坐标原点,故可设过O C D ,,三点抛物线的解析式为2y ax bx =+.26480242412.555a b a b +=⎧⎪∴⎨⎛⎫+= ⎪⎪⎝⎭⎩,解之,得5325.4a b ⎧=-⎪⎪⎨⎪=⎪⎩, 255324y x x =-+. ·························· (7分) (3) 抛物线的对称轴为4x =,∴其顶点坐标为542⎛⎫ ⎪⎝⎭,.设直线AC 的解析式为y kx b =+,则804.k b b +=⎧⎨=-⎩,解之,得124.k b ⎧=⎪⎨⎪=-⎩,142y x ∴=-. ···························· (9分) 设直线FP 交直线AC 于142H m m ⎛⎫- ⎪⎝⎭,,过H 作HM OA ⊥于M .AMH AOC ∴△∽△.::HM OC AH AC ∴=.:1:3FAH FHC S S = △△或3:1,:1:3AH HC ∴=或3:1,::1:4HM OC AH AC ∴==或3:4. 2HM ∴=或6,即2m =或6.1(23)H ∴-,,2(61)H -,.······················ (10分) 直线1FH 的解析式为111742y x =-.当4y =-时,1811x =. 直线2FH 的解析式为71942y x =-+.当4y =-时,547x =.∴当1811t =秒或547秒时,直线FP 把FAC △分成面积之比为1:3的两部分. (12分)说明:只求对一个值的给11分.。