高考数学大一轮复习热点聚焦与扩展专题16恒成立问题——参变分离法
- 格式:doc
- 大小:4.12 MB
- 文档页数:27
专题16 恒成立问题——参变分离法【热点聚焦与扩展】无论是不等式的证明、解不等式,还是不等式的恒成立问题、有解问题、无解问题,构造函数,运用函数的思想,利用导数研究函数的性质(单调性和最值),达到解题的目的,是一成不变的思路,合理构思,善于从不同角度分析问题是解题的法宝.利用导数求解含参数的问题时,首先,要具备必要的基础知识(导数的几何意义、导数在单调性上的应用、函数的极值求法、最值求法等);其次,要灵活掌握各种解题方法和运算技巧,比如参变分离法,分类讨论思想和数形结合思想等.1、参变分离:顾名思义,就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式.然后可利用其中一个变量的范围求出另一变量的范围2、如何确定变量与参数:一般情况下,那个字母的范围已知,就将其视为变量,构造关于它的函数,另一个字母(一般为所求)视为参数.3、参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行.但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法.例如:()21log a x x -<,111axx e x-+>-等 (2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题.(可参见”恒成立问题——最值分析法“中的相关题目) 4、参变分离后会出现的情况及处理方法:(假设x 为自变量,其范围设为D ,()f x 为函数;a 为参数,()g a 为其表达式)(1)若()f x 的值域为[],m M①()(),x D g a f x ∀∈≤,则只需要()()min g a f x m ≤= ()(),x D g x f x ∀∈<,则只需要()()min g a f x m <= ②()(),x D g a f x ∀∈≥,则只需要()()max =g a f x M ≥ ()(),x D g a f x ∀∈>,则只需要()()max =g a f x M > ③()(),x D g a f x ∃∈≤,则只需要()()max g a f x M ≤=()(),x D g a f x ∃∈<,则只需要()()max g a f x M <= ④()(),x D g a f x ∃∈≥,则只需要()()min g a f x m ≥= ()(),x D g a f x ∃∈>,则只需要()()min g a f x m >= (2)若()f x 的值域为(),m M① ()(),x D g a f x ∀∈≤,则只需要()g a m ≤()(),x D g a f x ∀∈<,则只需要()g a m ≤(注意与(1)中对应情况进行对比) ② ()(),x D g a f x ∀∈≥,则只需要()g a M ≥()(),x D g a f x ∀∈>,则只需要()g a M ≥(注意与(1)中对应情况进行对比) ③ ()(),x D g a f x ∃∈≤,则只需要()g a M <(注意与(1)中对应情况进行对比) ()(),x D g a f x ∃∈<,则只需要()g a M <④ ()(),x D g a f x ∃∈≥,则只需要()g a m >(注意与(1)中对应情况进行对比) ()(),x D g a f x ∃∈>,则只需要()g a m >x/k-+w5、多变量恒成立问题:对于含两个以上字母(通常为3个)的恒成立不等式,先观察好哪些字母的范围已知(作为变量),那个是所求的参数,然后通常有两种方式处理(1)选择一个已知变量,与所求参数放在一起与另一变量进行分离.则不含参数的一侧可以解出最值(同时消去一元),进而多变量恒成立问题就转化为传统的恒成立问题了.(2)将参数与变量进行分离,即不等号一侧只含有参数,另一侧是双变量的表达式,然后按所需求得双变量表达式的最值即可.【经典例题】例1.【2018年(衡水金卷调研卷)三】若存在,不等式成立,则实数的最大值为( ) A. B.C. 4D.【答案】A 【解析】设,则故选例2.【2018届河北省邯郸市高三1月】已知关于x 的不等式2cos 2m x x ≥-在上恒成立,则实数m 的取值范围为( )A. [)3,+∞B. ()3,+∞C. [)2,+∞ D. ()2,+∞ 【答案】C,,, 2m ≥,选C. 例3.【2018届河南省中原名校(即豫南九校)高三第六次考评】在()0,+∞上是增函数,则实数a 的取值范围是( )A. {}1B. {}1-C. (]0,1D. [)1,0- 【答案】B()()2f x x a lnx ='+()f x 在()0+∞,上是增函数, ()0f x ∴'≥在()0+∞,上恒成立故选B例4.【2018(0m >且1m ≠)在[]2,3上单调递增,则实数m 的取值范围为( ) A. (]1,36 B. [)36,+∞C. (][)1,1636,⋃+∞D. (]1,16 【答案】D,由()0g x '≤时()g x 为减函数,即24m x ≥,又24y x =在[]23,上为单调递增,所以2max 4336y =⨯=,所以36m ≥,而此时函数log m y x =为增函数,一减一增为减,故不合题意;同理由()0g x '≥时()g x 为增函数,即24m x ≤,又24y x =在[]23,上为单调递增,所以2min 4216y =⨯=,所以16m ≤,而当1m >时,函数log m y x =为增函数,因此当116m <≤时,同增为增,满足题意.故选D. 例5.已知函数()ln af x x x=-,若()2f x x <在()1,+∞上恒成立,则a 的取值范围是_________ 【答案】1a ≥-【解析】恒成立的不等式为2ln ax x x-<,便于参数分离,所以考虑尝试参变分离法 解:233ln ln ln ax x x x a x a x x x x-<⇔-<⇔>-,其中()1,x ∈+∞ ∴只需要()3maxln a x x x >-,令()3ln g x x x x =-'2()1ln 3g x x x =+- (导函数无法直接确定单调区间,但再求一次导即可将ln x 变为1x,所以二阶导函【名师点睛】求导数的目的是利用导函数的符号得到原函数的单调性,当导函数无法直接判断符号时,可根据导函数解析式的特点以及定义域尝试在求一次导数,进而通过单调性和关键点(边界点,零点)等确定符号. 例6【2018届山西省孝义市高三下学期一模】已知函数.(1)讨论函数的单调性; (2)当时,曲线总在曲线的下方,求实数的取值范围.【答案】(1)当时,函数在上单调递增;当时,在上单调递增,在上单调递减;(2).试题解析:(1)由可得的定义域为,且,若,则,函数在上单调递增;若,则当时,,在上单调递增,当时,,在上单调递减.综上,当时,函数在上单调递增;当时,在上单调递增,在上单调递减.(2)原命题等价于不等式在上恒成立,即,不等式恒成立.∵当时,,∴,即证当时,大于的最大值.又∵当时,,∴,综上所述,.【方法点晴】本题主要考查利用导数研究函数的单调性以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合(图象在上方即可);③ 讨论最值或恒成立;④ 讨论参数.本题是利用方法① 求得的范围.例7【2018届广东省肇庆市高三三模】已知函数,,.(Ⅰ)讨论的单调区间;(Ⅱ)若 ,且恒成立. 求的最大值.【答案】(1)见解析;(2)6.【解析】试题分析:(1)第(1)问,先求导,再对m分类讨论,求函数f(x)的单调区间. (2) 先分离参数,再求的最小值,即得k的最大值.(2)由得,令,,,,,,,点睛:分离参数是处理参数问题的一种重要方法.处理参数问题,常用的有分离参数和分类讨论,如果分离参数方便,就选分离参数.本题就是分离参数,大大地提高了解题效率,优化了解题.例8【2018届新疆乌鲁木齐市高三第三次诊断性测验】设函数,,其中为非零实数.(1)当时,求的极值;(2)是否存在使得恒成立?若存在,求的取值范围,若不存在请说明理由. 【答案】(1)有极大值,无极小值;(2)见解析.试题解析:(1)∵,∴,当时,,,∴有极大值,无极小值;(2)当时,,,∴,设,则,∴,故恒成立,当时,,由于,,而,∴时,,故取,显然,由上知当时,,,∴,综上可知,当时,恒成立.例9【2018届黑龙江省大庆市高三第二次检测】已知函数.(I) 当时,求函数的单调区间;(II) 当时,恒成立,求的取值范围.【答案】(Ⅰ) 单调递增区间为,单调递减区间为. (Ⅱ).试题解析:(Ⅰ)∵,函数定义域为:∴令,由可知,从而有两个不同解.令,则当时,;当时,,所以函数的单调递增区间为,单调递减区间为.(Ⅱ)由题意得,当时,恒成立.令,求导得,设,则,∵∴∴,∴在上单调递增,即在上单调递增,∴当时,单调递减;当时,,单调递增.∴有,∴恒成立矛盾∴实数的取值范围为点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可构造新函数,转化为.例10【2018届山东天成高三第二次大联考】已知函数,.(1)讨论函数的单调性;(2)若,对任意恒成立,求实数的取值范围.【答案】(1)答案见解析;(2).解析;(1),定义域所以.讨论:当时,对或,成立,所以函数在区间,上均是单调递增;当时,对或,成立,所以函数在区间,上均是单调递减;当时,函数是常函数,无单调性.(2)若,对任意恒成立,即对任意恒成立.令,则.讨论:①当,即时,且不恒为0,所以函数在区间单调递增.又,所以对任意恒成立.故符合题意综上实数的取值范围是.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若 就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值).【精选精练】1.【2018年【衡水金卷】(三)】已知函数()f x 的导函数为()f x ',且满足()32123f x x ax bx =+++, ()()24f x f x +='-',若函数()6ln 2f x x x ≥+恒成立,则实数b 的取值范围为( )A. [)64ln3,++∞B. [)5ln5,++∞C. [)66ln6,++∞D. [)4ln2,++∞ 【答案】C设()2136ln 3g x x x x =++,则()()()()2229182361892333x x x x x x g x x x x----+-+-=='=, 可知函数()g x 在区间()0,6内单调递增,在区间()6,+∞内单调递减,可知()()max 666ln6g x g ==+,故实数b 的取值范围为[)66ln6,++∞,故选C.点睛:本题主要考查利用导数求解不等式的恒成立问题求得,考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,求解曲线在某点处的切线方程; (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数; (3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题2.已知函数f(x)=x 2+4x +aln x ,若函数f(x)在(1,2)上是单调函数,则实数a 的取值范围是( ) A. (-6,+∞) B. (-∞,-16)C. (-∞,-16]∪[-6,+∞)D. (-∞,-16)∪(-6,+∞) 【答案】C 【解析】,因为函数在区间上具有单调性,所以或在上恒成立,则有或在上恒成立,所以或在上恒成立,令,当时,,所以或,所以的取值范围是.3.【2018届上海市浦东新区高三下学期(二模)】已知是定义在R 上的偶函数,且在上是增函数,如果对于任意,恒成立,则实数的取值范围是________【答案】点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.4.若函数f(x)=sin x +ax 为R 上的减函数,则实数a 的取值范围是________.【答案】(-∞,-1]【解析】因为是R上的减函数,所以恒成立,即,即恒成立,因为,所以,故答案为.5.【2018年(衡水金卷信息卷)三】已知函数,其中为实数.(1)若曲线在点处的切线方程为,试求函数的单调区间;(2)当,,且时,若恒有,试求实数的取值范围.【答案】(1)函数的单调递增区间为,单调递减区间为;(2).【解析】试题分析:由题意点处的切线方程为,求出的值,继而求出函数的单调性利用单调性将问题中的绝对值去掉,构造新函数来证明结论.解析:(1)函数的定义域为,,,可知..当,即时,,单调递增;当时,,单调递减.所以函数的单调递增区间为,单调递减区间为.(2)函数.则变为,即,设函数,由,得在时为单调递减函数,即,即,也即对与恒成立.因为,可知时,取最大值,即 .对时恒成立,由,可知,即取值范围为.6.【2018届宁夏石嘴山市高三4月(一模)】已知函数(且). (1)若函数在处取得极值,求实数的值;并求此时在上的最大值;(2)若函数不存在零点,求实数的取值范围.【答案】(1).(2).【试题解析】解:(1)函数的定义域为,,,∴在上,单调递减,在上,单调递增,所以时取极小值.所以在上单调递增,在上单调递减;又,,.当时,在的最大值为(2)由于所以函数存在零点②时,,.在上,单调递减,在上,单调递增,所以时取最小值.解得综上所述:所求的实数的取值范围是.7.函数的定义域为(为实数).(1)若函数在定义域上是减函数,求的取值范围;(2)若在定义域上恒成立,求的取值范围.【答案】(1);(2)【解析】试题分析:(1)利用单调性的定义,根据函数在定义域上是减函数,可得不等式恒成立,从而可求的取值范围;(2)利用分离参数思想原题意等价于恒成立,求出右边对应的函数在定义域内的最小值,即可求得的取值范围.试题解析:(1)任取,则有,即恒成立,所以(2)恒成立∵,∴函数在上单调减,∴时,函数取得最小值,即.8.【2018届江苏省无锡市高三第一学期期末】已知函数,,其中.(1)求过点和函数的图像相切的直线方程;(2)若对任意,有恒成立,求的取值范围;(3)若存在唯一的整数,使得,求的取值范围.【答案】(1),.(2).(3).,利用导数工具求得,故此时;②当时,恒成立,故此时;③当时,,利用导数工具求得,故此时.综上:.(3)因为,由(2)知,当,原命题等价于存在唯一的整数成立,利用导数工具求得;当,原命题等价于存在唯一的整数成立,利用导数工具求得.综上:.当时,切线方程为,当时,切线方程为.(2)由题意,对任意有恒成立,①当时,,令,则,令得,,故此时.②当时,恒成立,故此时.③当时,,令,当,存在唯一的整数使得,等价于存在唯一的整数成立,因为最大,,,所以当时,至少有两个整数成立, 所以.当,存在唯一的整数使得,等价于存在唯一的整数成立,因为最小,且,,所以当时,至少有两个整数成立,所以当时,没有整数成立,所有.综上:.9.【2018届河南省焦作市高三第四次模拟】已知()()22xf x mx em R =-∈.(Ⅰ)若()()'g x f x =,讨论()g x 的单调性;(Ⅱ)当()f x 在()()1,1f 处的切线与()223y e x =-+平行时,关于x 的不等式()0f x ax +<在()0,1上恒成立,求a 的取值范围.【答案】(Ⅰ)()g x 在()ln ,m +∞上单调递减,在(),ln m -∞上单调递增. (Ⅱ)(],21a e ∈-∞-.,利用导数求得函数()F x 的单调性与最值,即可得到实数a 的取值范围. 试题解析:(Ⅰ)因为()()'22xg x f x mx e ==-,所以()()'2x g x m e =-,当0m ≤时, ()'0g x <,所以()g x 在R 上单调递减,当0m >时,令()'0g x <,得ln x m >,令()'0g x >,得ln x m <, 所以()g x 在()ln ,m +∞上单调递减,在(),ln m -∞上单调递增. (Ⅱ)由(Ⅰ)得()'122f m e =-,由2222m e e -=-,得1m =,不等式()0f x ax +<即220xx e ax -+<,得在()0,1上恒成立.设()222xxh x xe e x =--,则()()'222221x x x x h x xe e e x x e =+--=-,在区间()0,1上, ()'0h x >,则函数()h x 递增,所以()()11h x h <=-, 所以在区间()0,1上, ()'0F x <,函数()F x 递减.当0x →时, ()F x →+∞,而()121F e =-,所以()()21,F x e ∈-+∞, 因为()a F x <在()0,1上恒成立,所以(],21a e ∈-∞-.10.【2018届辽宁省辽南协作校高三下学期一模】函数()xf x xe lnx ax =--.(1)若函数()y f x =在点()()1,1f 处的切线与直线()()211y e x =--平行,求实数a 的值; (2)若函数()f x 在[)1,∞+上单调递增,求实数a 的取值范围; (3)在(1)的条件下,求()f x 的最小值. 【答案】(1) 1a =;(2) 21a e ≤-;(3)1.单调性,即可求出()min g x ,从而可得实数a 的取值范围;(3)根据(1)的条件,利用导数研究函数的单调性,可推出()'0f x '>恒成立,从而()f x '在()0∞+,上递增,结合零点存在性定理,即可求得()f x 的最小值.试题解析:(1)∵函数()xf x xe lnx ax =--∵函数()y f x =在点()()1,1f 处的切线与直线()()211y e x =--平行 ∴()()12121f e a e =-='-- ∴1a =在[1∞+,)恒成立.使得()00f x '=,此时∴()00,x x ∈时()()0,f x f x '<递减, ()0,x x ∈+∞时()()0,f x f x '>递增点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为()min 0f x >,若()0f x <恒成立,转化为()max 0f x <;(3)若()()f x g x >恒成立,可转化为()()min max f x g x >. 11.【2018届江西省高三监测】已知函数()ln f x x =. (1有两个极值点,求实数a 的取值范围; (2)若关于x 的方程()()1f x m x =+, ()m Z ∈有实数解,求整数m 的最大值. 【答案】(1) 2a >;(2)0.【解析】试题分析:(1零点,即方程210x ax -+=有两个不等的正实数根,(2)方程()ln 1x m x =+,记函数,(0)x >,问题转化为直线y m =与.(2)方程()ln 1x m x =+,,(0)x >,存在()20,x e e ∈,使得()00h x '=,当()00,x x ∈,()0h x '>, ()h x 递增, ()()0,,0x x h x ∈+∞<', ()h x 递减,即()max m h x ≤,()m Z ∈, 故0m ≤,整数m 的最大值为0.12【2018届山东高三天成大联考第二次】已知函数,.(1)讨论函数的单调性;(2)若,对任意恒成立,求实数的取值范围.【答案】(1)答案见解析;(2).【解析】试题分析:(1)对函数求导研究函数的单调性,通过导函数的正负得到原函数的单调区间;(2)对任意恒成立,即对任意恒成立,令,对这个函数求导研究函数的单调性,使得最值大于0即可.解析;(1),定义域所以.讨论:当时,函数是常函数,无单调性.(2)若,对任意恒成立,即对任意恒成立.令,则.讨论:①当,即时,且不恒为0,所以函数在区间单调递增.又,所以对任意恒成立.故符合题意综上实数的取值范围是.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值).。
压轴题高分策略之恒成立问题——参变分离法【知识梳理】1、参变分离:顾名思义,就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式。
然后可利用其中一个变量的范围求出另一变量的范围2、如何确定变量与参数:一般情况下,那个字母的范围已知,就将其视为变量,构造关于它的函数,另一个字母(一般为所求)视为参数。
3、参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则: (1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行。
但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法。
例如:()21log a x x -<,111axx e x-+>-等 (2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题。
(可参见”恒成立问题——最值分析法“中的相关题目)4、参变分离后会出现的情况及处理方法:(假设为自变量,其范围设为D ,()f x 为函数;为参数,()g a 为其表达式) (1)若()f x 的值域为[],m M①()(),x D g a f x ∀∈≤,则只需要()()min g a f x m ≤= ()(),x D g x f x ∀∈<,则只需要()()min g a f x m <= ②()(),x D g a f x ∀∈≥,则只需要()()max =g a f x M ≥ ()(),x D g a f x ∀∈>,则只需要()()max =g a f x M > ③()(),x D g a f x ∃∈≤,则只需要()()max g a f x M ≤= ()(),x D g a f x ∃∈<,则只需要()()max g a f x M <= ④()(),x D g a f x ∃∈≥,则只需要()()min g a f x m ≥= ()(),x D g a f x ∃∈>,则只需要()()min g a f x m >= (2)若()f x 的值域为(),m M① ()(),x D g a f x ∀∈≤,则只需要()g a m ≤()(),x D g a f x ∀∈<,则只需要()g a m ≤(注意与(1)中对应情况进行对比) ② ()(),x D g a f x ∀∈≥,则只需要()g a M ≥()(),x D g a f x ∀∈>,则只需要()g a M ≥(注意与(1)中对应情况进行对比) ③ ()(),x D g a f x ∃∈≤,则只需要()g a M <(注意与(1)中对应情况进行对比) ()(),x D g a f x ∃∈<,则只需要()g a M <④ ()(),x D g a f x ∃∈≥,则只需要()g a m >(注意与(1)中对应情况进行对比) ()(),x D g a f x ∃∈>,则只需要()g a m > 6.多变量恒成立问题:对于含两个以上字母(通常为3个)的恒成立不等式,先观察好哪些字母的范围已知(作为变量),那个是所求的参数,然后通常有两种方式处理(1)选择一个已知变量,与所求参数放在一起与另一变量进行分离。
恒成立问题——参变分离法一、基础知识:1、参变分离:顾名思义,就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式。
然后可利用其中一个变量的范围求出另一变量的范围2、如何确定变量与参数:一般情况下,那个字母的范围已知,就将其视为变量,构造关于它的函数,另一个字母(一般为所求)视为参数。
3、参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行。
但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法。
例如:()21log a x x -<,111axx e x-+>-等 (2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题。
(可参见”恒成立问题——最值分析法“中的相关题目)4、多变量恒成立问题:对于含两个以上字母(通常为3个)的恒成立不等式,先观察好哪些字母的范围已知(作为变量),那个是所求的参数,然后通常有两种方式处理(1)选择一个已知变量,与所求参数放在一起与另一变量进行分离。
则不含参数的一侧可以解出最值(同时消去一元),进而多变量恒成立问题就转化为传统的恒成立问题了。
(2)将参数与变量进行分离,即不等号一侧只含有参数,另一侧是双变量的表达式,然后按所需求得双变量表达式的最值即可。
例1:已知函数()x x f x e ae -=-,若'()f x ≥恒成立,则实数a 的取值范围是_______思路:首先转化不等式,'()x xf x e ae -=+,即x xa e e +≥a 与xe便于分离,考虑利用参变分离法,使,a x 分居不等式两侧,()2x x a e ≥-+,若不等式恒成立,只需()()2maxx xa e≥-+,令()()(223x xxg x ee =-+=-+(解析式可看做关于x e 的二次函数,故配方求最值)()max 3g x =,所以3a ≥ 答案:3a ≥例2:已知函数()ln a f x x x=-,若()2f x x <在()1,+∞上恒成立,则a 的取值范围是_________思路:恒成立的不等式为2ln ax x x-<,便于参数分离,所以考虑尝试参变分离法 解:233ln ln ln ax x x x a x a x x x x-<⇔-<⇔>-,其中()1,x ∈+∞ ∴只需要()3maxln a x x x >-,令()3ln g x x x x =-'2()1ln 3g x x x =+- (导函数无法直接确定单调区间,但再求一次导即可将ln x 变为1x,所以二阶导函数的单调性可分析,为了便于确定()'gx 的符号,不妨先验边界值)()'12g =-,()2''11660x g x x x x-=-=<,(判断单调性时一定要先看定义域,有可能会简化判断的过程) ()'gx ∴在()1,+∞单调递减,()()''10()g x g g x ∴<<⇒在()1,+∞单调递减()()11g x g ∴<=- 1a ∴≥- 答案:1a ≥-小炼有话说:求导数的目的是利用导函数的符号得到原函数的单调性,当导函数无法直接判断符号时,可根据导函数解析式的特点以及定义域尝试在求一次导数,进而通过单调性和关键点(边界点,零点)等确定符号。
恒成立问题是数学中的常见问题,在培养同学们思维的灵活性、创造性等方面起到了积极的作用,也是历年高考的一个热点。
大多是在不等式中,以已知一个变量的取值X围,求另一个变量的取值X围的形式出现。
下面结合实例,介绍这类问题的几种求解策略。
一、参变分离法在给出的不等式中,如果能通过恒等变形将参数与变量分离出来,即:若a≥f(x)恒成立,只需求出f(x)max,则a≥f(x)max;若a≤f(x)恒成立,只需求出f(x)min,则a≤f(x)min,转化为函数求最值。
二、主元变换法在给出的含有两个变量的不等式中,学生习惯把变量x看成是主元(未知数),而把另一个变量a看成参数,在有些问题中这样的解题过程繁琐。
如果把已知取值X围的变量作为主元,把要求取值X围的变量看作参数,则可简化解题过程。
三、分类讨论在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。
四、数形结合数形结合法是先将不等式两端的式子分别看作两个函数,且正确作出两个函数的图像,然后通过观察两图像(特别是交点)的位置关系,列出关于参数的不等式。
五、判别式法对可化为关于x的一元二次不等式对x∈R(或去掉有限个点)恒成立,常用判别式法,先将其化为关于x的一元二次不等式,结合对应的一元二次函数图像,确定二次项系数与判别式满足的条件,化为关于参数的不等式问题,通过解不等式求解。
要注意二次是否可为0。
六、最值法对含参数的不等式恒成立问题,可将其化为f(x)>0或f(x)<0在某个X围上恒成立的问题,则0<[f(x)]min或0>[f(x)] max,先求出f(x)的最值,将其转化为关于m的不等式问题,通过解不等式求出参数m的取值X围。
上面介绍了含参不等式中恒成立问题的几种解法,在解题过程中,要灵活运用题设条件综合分析,选择适当方法准确而快速地解题。
导数与恒成立问题一——参数分离法(3星)(★★★) 教学目标 1.了解可导函数的单调性与其导数的关系;2.了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号),会求一些实际问题的最大值和最小值.知识梳理 5min.设函数在某区间内可导,则()0()f x f x '>⇒在该区间上单调递增;()0()f x f x '<⇒在该区间上单调递减.反之,若()f x 在某区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);若()f x 在某区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0).典例精讲 20min.例1. ★★★已知函数f (x )=log a (x 3-ax )(a >0且a ≠1),如果函数f (x )在区间⎝ ⎛⎭⎪⎫-12,0内单调递增,那么a 的取值范围是________.解析 由题意可知x 3-ax >0,x ∈⎝ ⎛⎭⎪⎫-12,0恒成立,所以a >(x 2)max ,即a ≥14.当14≤a <1时,需函数y =x 3-ax 在⎝ ⎛⎭⎪⎫-12,0上递减,y ′=3x 2-a ≤0,x ∈⎝ ⎛⎭⎪⎫-12,0恒成立,所以a ≥(3x 2)max ,故34≤a <1;当a >1时,需函数y =x 3-ax 在⎝ ⎛⎭⎪⎫-12,0上递增,y ′=3x 2-a ≥0,x ∈⎝ ⎛⎭⎪⎫-12,0恒成立,所以a ≤(3x 2)min ,a ≤0,舍去,综上a 的取值范围是⎣⎢⎡⎭⎪⎫34,1. 答案 ⎣⎢⎡⎭⎪⎫34,1 对于利用导数解法含有参数的单调问题时,一般是将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的运用.例2. ★★★已知函数2()8,()6ln .f x x x g x x m =-+=+是否存在实数,m 使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由。
参变分离求恒成立问题
参变分离是指,在一个函数或方程中引入一个新的变量,并将原变量分离出来,从而得到一个新的方程或函数。
求恒成立问题是指考察某个方程或不等式在满足一定条件下是否恒成立的问题。
因此,参变分离求恒成立问题可以理解为,在参变分离的基础上,求得的新方程或函数在满足一定条件下是否恒成立的问题。
具体的解题方法会根据具体的问题而异,一般情况下,可以通过代数运算、数学推理等方法来解决这类问题。
常见的参变分离求恒成立问题包括代数方程、不等式等的变形、化简、证明等。
需要注意的是,在解题过程中要严格按照数学规则进行推导和运算,遵循逻辑性和严谨性,以确保解答的正确性。
【人教A 版】高中数学重点难点突破:恒成立问题 同步讲义(学生版)【重难点知识点网络】:不等式恒成立问题常见处理方法:① 分离参数()a f x ≥恒成立(()max a f x ≥可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x =图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数.一、分离参数法1、参变分离:顾名思义,就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式.然后可利用其中一个变量的范围求出另一变量的范围2、如何确定变量与参数:一般情况下,那个字母的范围已知,就将其视为变量,构造关于它的函数,另一个字母(一般为所求)视为参数.3、参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行.但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法.例如:()21log a x x -<,111axx e x-+>-等 (2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题.(可参见”恒成立问题——最值分析法“中的相关题目)4、参变分离后会出现的情况及处理方法:(假设x 为自变量,其范围设为D ,()f x 为函数;a 为参数,()g a 为其表达式)(1)若()f x 的值域为[],m M①()(),x D g a f x ∀∈≤,则只需要()()min g a f x m ≤=()(),x D g x f x ∀∈<,则只需要()()min g a f x m <=②()(),x D g a f x ∀∈≥,则只需要()()max =g a f x M ≥()(),x D g a f x ∀∈>,则只需要()()max =g a f x M >③()(),x D g a f x ∃∈≤,则只需要()()max g a f x M ≤=()(),x D g a f x ∃∈<,则只需要()()max g a f x M <=④()(),x D g a f x ∃∈≥,则只需要()()min g a f x m ≥=()(),x D g a f x ∃∈>,则只需要()()min g a f x m >=(2)若()f x 的值域为(),m M① ()(),x D g a f x ∀∈≤,则只需要()g a m ≤()(),x D g a f x ∀∈<,则只需要()g a m ≤(注意与(1)中对应情况进行对比)② ()(),x D g a f x ∀∈≥,则只需要()g a M ≥()(),x D g a f x ∀∈>,则只需要()g a M ≥(注意与(1)中对应情况进行对比)③ ()(),x D g a f x ∃∈≤,则只需要()g a M <(注意与(1)中对应情况进行对比)()(),x D g a f x ∃∈<,则只需要()g a M <④ ()(),x D g a f x ∃∈≥,则只需要()g a m >(注意与(1)中对应情况进行对比)()(),x D g a f x ∃∈>,则只需要()g a m >x/k-+w5、多变量恒成立问题:对于含两个以上字母(通常为3个)的恒成立不等式,先观察好哪些字母的范围已知(作为变量),那个是所求的参数,然后通常有两种方式处理(1)选择一个已知变量,与所求参数放在一起与另一变量进行分离.则不含参数的一侧可以解出最值(同时消去一元),进而多变量恒成立问题就转化为传统的恒成立问题了.(2)将参数与变量进行分离,即不等号一侧只含有参数,另一侧是双变量的表达式,然后按所需求得双变量表达式的最值即可. 二、数形结合法1、函数的不等关系与图象特征:(1)若x D ∀∈,均有()()()f x g x f x <⇔的图象始终在()g x 的下方 (2)若x D ∀∈,均有()()()f x g x f x >⇔的图象始终在()g x 的上方2、在作图前,可利用不等式的性质对恒成立不等式进行变形,转化为两个可作图的函数3、要了解所求参数在图象中扮演的角色,如斜率,截距等4、作图时可“先静再动”,先作常系数的函数的图象,再做含参数函数的图象(往往随参数的不同取值而发生变化)5、在作图时,要注意草图的信息点尽量完备6、什么情况下会考虑到数形结合?利用数形结合解决恒成立问题,往往具备以下几个特点:(1)所给的不等式运用代数手段变形比较复杂,比如分段函数,或者定义域含参等,而涉及的函数便于直接作图或是利用图象变换作图(2)所求的参数在图象中具备一定的几何含义 (3)题目中所给的条件大都能翻译成图象上的特征不等式恒成立问题常见处理方法:① 分离参数()a f x ≥恒成立(()max a f x ≥可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x =图象在()y g x = 上方即可);③ 最值法:讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 最值法求解恒成立问题是三种方法中最为复杂的一种,但往往会用在解决导数综合题目中的恒成立问题.此方法考查学生对所给函数的性质的了解,以及对含参问题分类讨论的基本功.是函数与导数中的难点问题,下面通过典型例题总结此类问题的解法----最值分析法. 三、最值分析法 1、最值法的特点:(1)构造函数时往往将参数与自变量放在不等号的一侧,整体视为一个函数,其函数含参(2)参数往往会出现在导函数中,进而参数不同的取值会对原函数的单调性产生影响——可能经历分类讨论2、理论基础:设()f x 的定义域为D(1)若x D ∀∈,均有()f x C ≤(其中C 为常数),则()max f x C ≤ (2)若x D ∀∈,均有()f x C ≥(其中C 为常数),则()min f x C ≥ 3、技巧与方法:(1)最值法解决恒成立问题会导致所构造的函数中有参数,进而不易分析函数的单调区间,所以在使用最值法之前可先做好以下准备工作:① 观察函数()f x 的零点是否便于猜出(注意边界点的值) ② 缩小参数与自变量的范围:通过代入一些特殊值能否缩小所求参数的讨论范围(便于单调性分析)观察在定义域中是否包含一个恒成立的区间(即无论参数取何值,不等式均成立),缩小自变量的取值范围(2)首先要明确导函数对原函数的作用:即导函数的符号决定原函数的单调性.如果所构造的函数,其导数结构比较复杂不易分析出单调性,则可把需要判断符号的式子拿出来构造一个新函数,再想办法解决其符号.(3)在考虑函数最值时,除了依靠单调性,也可根据最值点的出处,即“只有边界点与极值点才是最值点的候选点”,所以有的讨论点就集中在“极值点”是否落在定义域内. 【重难点题型突破】: 一、分离参数法例1.(1)已知关于x 的不等式2cos 2m x x ≥-在,22ππ⎛⎫-⎪⎝⎭上恒成立,则实数m 的取值范围为( ) A. [)3,+∞ B. ()3,+∞ C. [)2,+∞ D. ()2,+∞(2)已知()()2212ln 22f x x ax x x ax =+--在()0,+∞上是增函数,则实数a 的取值范围是( ) A. {}1 B. {}1- C. (]0,1 D. [)1,0-【变式训练1-1】、若函数()24log m x m f x x ⎛⎫+= ⎪⎝⎭(0m >且1m ≠)在[]2,3上单调递增,则实数m 的取值范围为( )A. (]1,36B. [)36,+∞C. (][)1,1636,⋃+∞D. (]1,16【变式训练1-2】、已知函数()ln f x x =. (1)若函数()()212g x f x ax x =-+有两个极值点,求实数a 的取值范围;(2)若关于x 的方程()()1f x m x =+,()m Z ∈有实数解,求整数m 的最大值.二、数形结合法例2.已知log 12(x +y +4)<log 12(3x +y -2),若x -y ≤λ恒成立,则λ的取值范围是______________.【变式训练2-1】、已知函数在上不单调,则实数的取值范围是__________.【变式训练2-2】、若不等式log sin 2(0,1)a x x a a >>≠对于任意的0,4x π⎛⎤∈ ⎥⎝⎦都成立,则实数a 的取值范围是___________【变式训练2-3】、 已知函数()21f x x mx =+-,若对任意的[],1x m m ∈+,都有()0f x <成立,则实数m 的取值范围是_____________三、最值分析法例3.已知定义在上的偶函数在上单调递减,若不等式对任意恒成立,则实数的取值范是( )A. B. C. D.【变式训练3-1】、已知函数()1xaxf x be =-,曲线()y f x =在点()()1,1f 处的切线方程为()210x e y e +--=.其中 2.71828e =为自然对数的底数(1)求,a b 的值(2)如果当0x ≠时,()12xkf x e -<恒成立,求实数k 的取值范围【变式训练3-2】、设函数()()2ln ,f x x a x a R =-∈ (1)若x e =为()y f x =的极值点,求实数a(2)求实数a 的取值范围,使得对任意的(]0,3x e ∈,恒有()24f x e ≤成立.注:e 为自然对数的底数【人教A 版】高中数学重点难点突破:恒成立问题 同步讲义(教师版)【重难点知识点网络】:不等式恒成立问题常见处理方法:① 分离参数()a f x ≥恒成立(()max a f x ≥可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x =图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数.一、分离参数法1、参变分离:顾名思义,就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式.然后可利用其中一个变量的范围求出另一变量的范围2、如何确定变量与参数:一般情况下,那个字母的范围已知,就将其视为变量,构造关于它的函数,另一个字母(一般为所求)视为参数.3、参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行.但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法.例如:()21log a x x -<,111axx e x-+>-等 (2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题.(可参见”恒成立问题——最值分析法“中的相关题目)4、参变分离后会出现的情况及处理方法:(假设x 为自变量,其范围设为D ,()f x 为函数;a 为参数,()g a 为其表达式)(1)若()f x 的值域为[],m M①()(),x D g a f x ∀∈≤,则只需要()()min g a f x m ≤=()(),x D g x f x ∀∈<,则只需要()()min g a f x m <=②()(),x D g a f x ∀∈≥,则只需要()()max =g a f x M ≥()(),x D g a f x ∀∈>,则只需要()()max =g a f x M >③()(),x D g a f x ∃∈≤,则只需要()()max g a f x M ≤=()(),x D g a f x ∃∈<,则只需要()()max g a f x M <=④()(),x D g a f x ∃∈≥,则只需要()()min g a f x m ≥=()(),x D g a f x ∃∈>,则只需要()()min g a f x m >=(2)若()f x 的值域为(),m M① ()(),x D g a f x ∀∈≤,则只需要()g a m ≤()(),x D g a f x ∀∈<,则只需要()g a m ≤(注意与(1)中对应情况进行对比)② ()(),x D g a f x ∀∈≥,则只需要()g a M ≥()(),x D g a f x ∀∈>,则只需要()g a M ≥(注意与(1)中对应情况进行对比)③ ()(),x D g a f x ∃∈≤,则只需要()g a M <(注意与(1)中对应情况进行对比)()(),x D g a f x ∃∈<,则只需要()g a M <④ ()(),x D g a f x ∃∈≥,则只需要()g a m >(注意与(1)中对应情况进行对比)()(),x D g a f x ∃∈>,则只需要()g a m >x/k-+w5、多变量恒成立问题:对于含两个以上字母(通常为3个)的恒成立不等式,先观察好哪些字母的范围已知(作为变量),那个是所求的参数,然后通常有两种方式处理(1)选择一个已知变量,与所求参数放在一起与另一变量进行分离.则不含参数的一侧可以解出最值(同时消去一元),进而多变量恒成立问题就转化为传统的恒成立问题了.(2)将参数与变量进行分离,即不等号一侧只含有参数,另一侧是双变量的表达式,然后按所需求得双变量表达式的最值即可. 二、数形结合法1、函数的不等关系与图象特征:(1)若x D ∀∈,均有()()()f x g x f x <⇔的图象始终在()g x 的下方 (2)若x D ∀∈,均有()()()f x g x f x >⇔的图象始终在()g x 的上方2、在作图前,可利用不等式的性质对恒成立不等式进行变形,转化为两个可作图的函数3、要了解所求参数在图象中扮演的角色,如斜率,截距等4、作图时可“先静再动”,先作常系数的函数的图象,再做含参数函数的图象(往往随参数的不同取值而发生变化)5、在作图时,要注意草图的信息点尽量完备6、什么情况下会考虑到数形结合?利用数形结合解决恒成立问题,往往具备以下几个特点:(1)所给的不等式运用代数手段变形比较复杂,比如分段函数,或者定义域含参等,而涉及的函数便于直接作图或是利用图象变换作图(2)所求的参数在图象中具备一定的几何含义 (3)题目中所给的条件大都能翻译成图象上的特征不等式恒成立问题常见处理方法:① 分离参数()a f x ≥恒成立(()max a f x ≥可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x =图象在()y g x = 上方即可);③ 最值法:讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 最值法求解恒成立问题是三种方法中最为复杂的一种,但往往会用在解决导数综合题目中的恒成立问题.此方法考查学生对所给函数的性质的了解,以及对含参问题分类讨论的基本功.是函数与导数中的难点问题,下面通过典型例题总结此类问题的解法----最值分析法. 三、最值分析法 1、最值法的特点:(1)构造函数时往往将参数与自变量放在不等号的一侧,整体视为一个函数,其函数含参(2)参数往往会出现在导函数中,进而参数不同的取值会对原函数的单调性产生影响——可能经历分类讨论2、理论基础:设()f x 的定义域为D(1)若x D ∀∈,均有()f x C ≤(其中C 为常数),则()max f x C ≤ (2)若x D ∀∈,均有()f x C ≥(其中C 为常数),则()min f x C ≥ 3、技巧与方法:(1)最值法解决恒成立问题会导致所构造的函数中有参数,进而不易分析函数的单调区间,所以在使用最值法之前可先做好以下准备工作:① 观察函数()f x 的零点是否便于猜出(注意边界点的值) ② 缩小参数与自变量的范围:通过代入一些特殊值能否缩小所求参数的讨论范围(便于单调性分析)观察在定义域中是否包含一个恒成立的区间(即无论参数取何值,不等式均成立),缩小自变量的取值范围(2)首先要明确导函数对原函数的作用:即导函数的符号决定原函数的单调性.如果所构造的函数,其导数结构比较复杂不易分析出单调性,则可把需要判断符号的式子拿出来构造一个新函数,再想办法解决其符号.(3)在考虑函数最值时,除了依靠单调性,也可根据最值点的出处,即“只有边界点与极值点才是最值点的候选点”,所以有的讨论点就集中在“极值点”是否落在定义域内. 【重难点题型突破】: 一、分离参数法例1.(1)已知关于x 的不等式2cos 2m x x ≥-在,22ππ⎛⎫-⎪⎝⎭上恒成立,则实数m 的取值范围为( ) A. [)3,+∞ B. ()3,+∞ C. [)2,+∞ D. ()2,+∞ 【答案】C【解析】22cos x m x -≥最大值,因为当0,2x π⎡⎫∈⎪⎢⎣⎭时()22'22cos 2sin 2()cos cos x x x x x x x -+--= 令()cos sin ,cos sin cos 000y x x x y x x x x y y '=-=--∴=因此2'2()0cos x x -<,由因为22cos x x -为偶函数,所以22cos x x -最大值为202cos0-=,2m ≥,选C. (2)已知()()2212ln 22f x x ax x x ax =+--在()0,+∞上是增函数,则实数a 的取值范围是( ) A. {}1 B. {}1- C. (]0,1 D. [)1,0- 【答案】B【解析】()()221222f x x ax lnx x ax =+-- ()()2f x x a lnx ='+()f x 在()0+∞,上是增函数,()0f x ∴'≥在()0+∞,上恒成立故选B【变式训练1-1】、若函数()24log m x m f x x ⎛⎫+= ⎪⎝⎭(0m >且1m ≠)在[]2,3上单调递增,则实数m 的取值范围为( )A. (]1,36B. [)36,+∞C. (][)1,1636,⋃+∞D. (]1,16 【答案】D【解析】由题意,不妨设()244x m m g x x x x +==+,则()22244m x m g x x x-=-=',由()0g x '≤时()g x 为减函数,即24m x ≥,又24y x =在[]23,上为单调递增,所以2max 4336y =⨯=,所以36m ≥,而此时函数log m y x =为增函数,一减一增为减,故不合题意;同理由()0g x '≥时()g x 为增函数,即24m x ≤,又24y x =在[]23,上为单调递增,所以2min 4216y =⨯=,所以16m ≤,而当1m >时,函数log m y x =为增函数,因此当116m <≤时,同增为增,满足题意.故选D.【变式训练1-2】、已知函数()ln f x x =. (1)若函数()()212g x f x ax x =-+有两个极值点,求实数a 的取值范围; (2)若关于x 的方程()()1f x m x =+,()m Z ∈有实数解,求整数m 的最大值. 【答案】(1)2a >;(2)0.【解析】试题分析:(1)函数()()212g x f x ax x =-+有两个极值点等价于()21y x ax g x x -+='=有两个可变零点,即方程210x ax -+=有两个不等的正实数根,(2)方程()ln 1x m x =+,即ln 1xm x =+,记函数()ln 1x h x x =+,(0)x >,问题转化为直线y m =与()ln 1xh x x =+的交点情况. (2)方程()ln 1x m x =+,即ln 1x m x =+,记函数()ln 1xh x x =+,(0)x >,()()21ln 1x xx h x x +-+'=, 令()1ln x x x x ϕ+=-(0)x >,()2110x x xϕ'=--<, ()x ϕ单调递减,()()()()222222110,011e h e h ee e e e -=>=<++'',存在()20,x e e ∈,使得()00h x '=,即0001ln x x x +=, 当()00,x x ∈,()0h x '>,()h x 递增,()()0,,0x x h x ∈+∞<', ()h x 递减,()02max 00ln 111,1x h x x x e e ⎛⎫∴==∈ ⎪+⎝⎭,即()max m h x ≤,()m Z ∈, 故0m ≤,整数m 的最大值为0.二、数形结合法例2.已知log 12(x +y +4)<log 12(3x +y -2),若x -y ≤λ恒成立,则λ的取值范围是______________.【答案】[10,+∞)点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.【变式训练2-1】、已知函数在上不单调,则实数的取值范围是__________.【答案】0,12,3【解析】已知函数定义域为,,,令,图象如图,∵函数在上不单调,∴区间在零点1或3的两侧,或,解得或.即实数的取值范围是0,12,3.点睛:利用导数研究函数的单调性的关键在于准确判定导数的符号,注意单调函数的充要条件,尤其对于已知单调性求参数值(范围)时,隐含恒成立思想【变式训练2-2】、若不等式log sin 2(0,1)a x x a a >>≠对于任意的0,4x π⎛⎤∈ ⎥⎝⎦都成立,则实数a 的取值范围是___________【答案】,14a π⎛⎫∈⎪⎝⎭【解析】本题选择数形结合,可先作出sin 2y x =在0,4x π⎛⎤∈ ⎥⎝⎦的图象,a 扮演的角色为对数的底数,决定函数的增减,根据不等关系可得01a <<,观察图象进一步可得只需4x π=时,log sin 2a x x ≥,即log sin 21444aa πππ>⋅=⇒>,所以,14a π⎛⎫∈⎪⎝⎭【变式训练2-3】、 已知函数()21f x x mx =+-,若对任意的[],1x m m ∈+,都有()0f x <成立,则实数m 的取值范围是_____________【答案】22⎛⎫-⎪⎝⎭m+1m【名师点睛】本题也可以用最值法求解:若()0f x <,则()max 0f x <,而()f x 是开口向上的抛物线,最大值只能在边界处产生,所以()()010f m f m <⎧⎪⎨+<⎪⎩,再解出m 的范围即可.三、最值分析法例3.已知定义在上的偶函数在上单调递减,若不等式对任意恒成立,则实数的取值范是( )A. B. C. D.【答案】A【解析】因为定义在上的偶函数在上递减,所以在上单调递增,若不等式对于上恒成立,则对于上恒成立,即对于上恒成立,(2)当,即时,在上恒成立,单调递减,因为最大值,最小值,所以,综合可得,无解,(3)当,即时,在上,恒成立,为减函数,在上,恒成立,单调递增,故函数最小值为,若,即,因为,则最大值为,此时,由,求得,综上可得;若,即,因为,则最大值为,【变式训练3-1】、已知函数()1x axf x be =-,曲线()y f x =在点()()1,1f 处的切线方程为()210x e y e +--=.其中 2.71828e =为自然对数的底数(1)求,a b 的值(2)如果当0x ≠时,()12x kf x e-<恒成立,求实数k 的取值范围【答案】(1)1,1;(2)0k ≤.【解析】解:(1)()()()'211x x xa be be axf x be--=-()1x xf x e ∴=- (2)思路:恒成立不等式为:2211x xx ke e-<-,若参变分离,则分离后的函数过于复杂,不利于求得最值,所以考虑利用最值法,先变形不等式,由于21x e -的符号不确定(以0x =为界),从而需进行分类讨论.当0x >时,不等式变形为:()()21210xx k exe k ---->,设()()()2121x x g x k e xe k =----,可观察到()00g =,则若要0x >时,()0g x >,则需()'00g ≥,进而解出0k ≤,再证明0k ≤时,()0g x >即可.将k 的范围缩至0k ≤时再证明0x <时,()0g x >即可.解:由(1)可得恒成立的不等式为:2211x xx ke e-<- 当0x >时,()()22212111x x x xx kxe k e e e-<⇔<--- ()()21210x x k e xe k ⇔---->设()()()2121xx g x k exe k =----,可得()00g =()()()'22121x x g x k e x e =--+()()()()'22121211x x x xg x k e x e e k e x ⎡⎤=--+=---⎣⎦0k ≤()1110x x k e x e x ∴--->-->()'0g x ∴>()g x ∴在()0,+∞单调递增()()00g x g ∴>=,即不等式恒成立当0x <时,()()22212111x xx xx k xe k e e e-<⇔>---()()()212100x x k e xe k g x ⇔----<⇔< 0k ≤∴同理,()()'2110x xg x e k e x ⎡⎤=--->⎣⎦()g x ∴在(),0-∞单调递增()()00g x g ∴<=即0k ≤时不等式在(),0x ∈-∞ 恒成立,综上所述,0k ≤.【变式训练3-2】、设函数()()2ln ,f x x a x a R =-∈ (1)若x e =为()y f x =的极值点,求实数a(2)求实数a 的取值范围,使得对任意的(]0,3x e ∈,恒有()24f x e ≤成立.注:e 为自然对数的底数【答案】(1),3e e ;(2)3a e e ⎡⎤∈⎢⎥⎣⎦. 【解析】解:(1)()()()2'()2ln =2ln 1x a a f x x a x x a x xx -⎛⎫=-+-+- ⎪⎝⎭x e =是()f x 的极值点()()'30a f e e a a e e ⎛⎫∴=--=⇒= ⎪⎝⎭或3a e =,经检验符合题意,3a e a e ∴== 学/科//*网(2)思路一:恒成立的不等式为()22ln 4x a x e -≤,考虑选择最值法当(]0,1x ∈时,无论a 为何值,不等式恒成立(()f x 的单调区间必然含参数,首先将恒成立的部分剔除,缩小x 的取值范围以方便后期讨论)'()f x =()'()=2ln 1a f x x a x x ⎛⎫-+- ⎪⎝⎭,记()2ln 1a h x x x =+-()()22ln 4f x x a x e =-≤恒成立,所以()()2233ln34f e e a e e =-≤33e a e ∴-≤≤+a 的范围,便于分析讨论) ()()110,2ln 0h a h a a ∴=-<=>()()001,,0x a h x ∴∃∈= (解不出具体的极值点,但可以估计其范围,利用零点存在性定理,同时得到a 与0x 的关系:()000210a h x x x =+-=) ()h x 单调递增()()()()001,,0;,,0x x h x x x a h x ∴∈<∈> ()()()()()()'''001,,0;,,0;,,0x x f x x x a f x x a f x ∴∈>∈<∈+∞<若()()22ln 4f x x a x e =-≤,只需()()()()2200022ln 433ln 34f x x a x e f e e a e e ⎧=-≤⎪⎨=-≤⎪⎩①②。
专题16 恒成立问题——参变分离法【热点聚焦与扩展】无论是不等式的证明、解不等式,还是不等式的恒成立问题、有解问题、无解问题,构造函数,运用函数的思想,利用导数研究函数的性质(单调性和最值),达到解题的目的,是一成不变的思路,合理构思,善于从不同角度分析问题是解题的法宝.利用导数求解含参数的问题时,首先,要具备必要的基础知识(导数的几何意义、导数在单调性上的应用、函数的极值求法、最值求法等);其次,要灵活掌握各种解题方法和运算技巧,比如参变分离法,分类讨论思想和数形结合思想等.1、参变分离:顾名思义,就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式.然后可利用其中一个变量的范围求出另一变量的范围2、如何确定变量与参数:一般情况下,那个字母的范围已知,就将其视为变量,构造关于它的函数,另一个字母(一般为所求)视为参数.3、参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行.但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法.例如:()21log a x x -<,111axx e x-+>-等 (2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题.(可参见”恒成立问题——最值分析法“中的相关题目) 4、参变分离后会出现的情况及处理方法:(假设x 为自变量,其范围设为D ,()f x 为函数;a 为参数,()g a 为其表达式)(1)若()f x 的值域为[],m M①()(),x D g a f x ∀∈≤,则只需要()()min g a f x m ≤= ()(),x D g x f x ∀∈<,则只需要()()min g a f x m <= ②()(),x D g a f x ∀∈≥,则只需要()()max =g a f x M ≥ ()(),x D g a f x ∀∈>,则只需要()()max =g a f x M > ③()(),x D g a f x ∃∈≤,则只需要()()max g a f x M ≤=()(),x D g a f x ∃∈<,则只需要()()max g a f x M <= ④()(),x D g a f x ∃∈≥,则只需要()()min g a f x m ≥= ()(),x D g a f x ∃∈>,则只需要()()min g a f x m >= (2)若()f x 的值域为(),m M① ()(),x D g a f x ∀∈≤,则只需要()g a m ≤()(),x D g a f x ∀∈<,则只需要()g a m ≤(注意与(1)中对应情况进行对比) ② ()(),x D g a f x ∀∈≥,则只需要()g a M ≥()(),x D g a f x ∀∈>,则只需要()g a M ≥(注意与(1)中对应情况进行对比) ③ ()(),x D g a f x ∃∈≤,则只需要()g a M <(注意与(1)中对应情况进行对比) ()(),x D g a f x ∃∈<,则只需要()g a M <④ ()(),x D g a f x ∃∈≥,则只需要()g a m >(注意与(1)中对应情况进行对比) ()(),x D g a f x ∃∈>,则只需要()g a m >x/k-+w5、多变量恒成立问题:对于含两个以上字母(通常为3个)的恒成立不等式,先观察好哪些字母的范围已知(作为变量),那个是所求的参数,然后通常有两种方式处理(1)选择一个已知变量,与所求参数放在一起与另一变量进行分离.则不含参数的一侧可以解出最值(同时消去一元),进而多变量恒成立问题就转化为传统的恒成立问题了.(2)将参数与变量进行分离,即不等号一侧只含有参数,另一侧是双变量的表达式,然后按所需求得双变量表达式的最值即可.【经典例题】例1.【2018年(衡水金卷调研卷)三】若存在,不等式成立,则实数的最大值为( ) A. B.C. 4D.【答案】A 【解析】设,则故选例2.【2018届河北省邯郸市高三1月】已知关于x 的不等式2cos 2m x x ≥-在,22ππ⎛⎫- ⎪⎝⎭上恒成立,则实数m 的取值范围为( )A. [)3,+∞B. ()3,+∞C. [)2,+∞ D. ()2,+∞ 【答案】C【解析】22cos x m x -≥最大值,因为当0,2x π⎡⎫∈⎪⎢⎣⎭时()22'22cos 2sin 2()cos cos x x x x x x x -+--= 令()cos sin ,cos sin cos 000y x x x y x x x x y y '=-=--∴=因此2'2()0cos x x -<,由因为22cos x x -为偶函数,所以22cos x x -最大值为202cos0-=, 2m ≥,选C. 例3.【2018届河南省中原名校(即豫南九校)高三第六次考评】已知()()2212ln 22f x x ax x x ax =+--在()0,+∞上是增函数,则实数a 的取值范围是( ) A. {}1 B. {}1- C. (]0,1 D. [)1,0- 【答案】B【解析】()()221222f x x ax lnx x ax =+-- ()()2f x x a lnx ='+()f x Q 在()0+∞,上是增函数, ()0f x ∴'≥在()0+∞,上恒成立故选B例4.【2018届湖南省张家界市高三三模】若函数()24log m x m f x x ⎛⎫+= ⎪⎝⎭(0m >且1m ≠)在[]2,3上单调递增,则实数m 的取值范围为( ) A. (]1,36 B. [)36,+∞C. (][)1,1636,⋃+∞D. (]1,16 【答案】D【解析】由题意,不妨设()244x m m g x x x x +==+,则()22244m x mg x x x-=-=',由()0g x '≤时()g x 为减函数,即24m x ≥,又24y x =在[]23,上为单调递增,所以2max 4336y =⨯=,所以36m ≥,而此时函数log m y x =为增函数,一减一增为减,故不合题意;同理由()0g x '≥时()g x 为增函数,即24m x ≤,又24y x =在[]23,上为单调递增,所以2min 4216y =⨯=,所以16m ≤,而当1m >时,函数log m y x =为增函数,因此当116m <≤时,同增为增,满足题意.故选D. 例5.已知函数()ln af x x x=-,若()2f x x <在()1,+∞上恒成立,则a 的取值范围是_________ 【答案】1a ≥-【解析】恒成立的不等式为2ln ax x x-<,便于参数分离,所以考虑尝试参变分离法 解:233ln ln ln ax x x x a x a x x x x-<⇔-<⇔>-,其中()1,x ∈+∞ ∴只需要()3maxln a x x x >-,令()3ln g x x x x =-'2()1ln 3g x x x =+- (导函数无法直接确定单调区间,但再求一次导即可将ln x 变为1x,所以二阶导函【名师点睛】求导数的目的是利用导函数的符号得到原函数的单调性,当导函数无法直接判断符号时,可根据导函数解析式的特点以及定义域尝试在求一次导数,进而通过单调性和关键点(边界点,零点)等确定符号. 例6【2018届山西省孝义市高三下学期一模】已知函数.(1)讨论函数的单调性; (2)当时,曲线总在曲线的下方,求实数的取值范围.【答案】(1)当时,函数在上单调递增;当时,在上单调递增,在上单调递减;(2).试题解析:(1)由可得的定义域为,且,若,则,函数在上单调递增;若,则当时,,在上单调递增,当时,,在上单调递减.综上,当时,函数在上单调递增;当时,在上单调递增,在上单调递减.(2)原命题等价于不等式在上恒成立,即,不等式恒成立.∵当时,,∴,即证当时,大于的最大值.又∵当时,,∴,综上所述,.【方法点晴】本题主要考查利用导数研究函数的单调性以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合(图象在上方即可);③ 讨论最值或恒成立;④ 讨论参数.本题是利用方法① 求得的范围.例7【2018届广东省肇庆市高三三模】已知函数,,.(Ⅰ)讨论的单调区间;(Ⅱ)若 ,且恒成立. 求的最大值.【答案】(1)见解析;(2)6.【解析】试题分析:(1)第(1)问,先求导,再对m分类讨论,求函数f(x)的单调区间. (2) 先分离参数,再求的最小值,即得k的最大值.(2)由得,令,,,,,,,点睛:分离参数是处理参数问题的一种重要方法.处理参数问题,常用的有分离参数和分类讨论,如果分离参数方便,就选分离参数.本题就是分离参数,大大地提高了解题效率,优化了解题.例8【2018届新疆乌鲁木齐市高三第三次诊断性测验】设函数,,其中为非零实数.(1)当时,求的极值;(2)是否存在使得恒成立?若存在,求的取值范围,若不存在请说明理由.【答案】(1)有极大值,无极小值;(2)见解析.试题解析:(1)∵,∴,当时,,,∴有极大值,无极小值;(2)当时,,,∴,设,则,∴,故恒成立,当时,,由于,,而,∴时,,故取,显然,由上知当时,,,∴,综上可知,当时,恒成立.例9【2018届黑龙江省大庆市高三第二次检测】已知函数.(I) 当时,求函数的单调区间;(II) 当时,恒成立,求的取值范围.【答案】(Ⅰ) 单调递增区间为,单调递减区间为. (Ⅱ).试题解析:(Ⅰ)∵,函数定义域为:∴令,由可知,从而有两个不同解.令,则当时,;当时,,所以函数的单调递增区间为,单调递减区间为.(Ⅱ)由题意得,当时,恒成立. 令,求导得,设,则,∵∴∴,∴在上单调递增,即在上单调递增,∴当时,单调递减;当时,,单调递增.∴有,∴恒成立矛盾∴实数的取值范围为点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可构造新函数,转化为.例10【2018届山东天成高三第二次大联考】已知函数,.(1)讨论函数的单调性;(2)若,对任意恒成立,求实数的取值范围.【答案】(1)答案见解析;(2).解析;(1),定义域所以.讨论:当时,对或,成立,所以函数在区间,上均是单调递增;当时,对或,成立,所以函数在区间,上均是单调递减;当时,函数是常函数,无单调性.(2)若,对任意恒成立,即对任意恒成立.令,则.讨论:①当,即时,且不恒为0,所以函数在区间单调递增.又,所以对任意恒成立.故符合题意综上实数的取值范围是.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若 就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值).【精选精练】1.【2018年【衡水金卷】(三)】已知函数()f x 的导函数为()f x ',且满足()32123f x x ax bx =+++, ()()24f x f x +='-',若函数()6ln 2f x x x ≥+恒成立,则实数b 的取值范围为( )A. [)64ln3,++∞B. [)5ln5,++∞C. [)66ln6,++∞D. [)4ln2,++∞ 【答案】C设()2136ln 3g x x x x =++,则()()()()2229182361892333x x x x x x g x x x x----+-+-=='=, 可知函数()g x 在区间()0,6内单调递增,在区间()6,+∞内单调递减,可知()()max 666ln6g x g ==+,故实数b 的取值范围为[)66ln6,++∞,故选C.点睛:本题主要考查利用导数求解不等式的恒成立问题求得,考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,求解曲线在某点处的切线方程; (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数; (3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题2.已知函数f(x)=x 2+4x +aln x ,若函数f(x)在(1,2)上是单调函数,则实数a 的取值范围是( ) A. (-6,+∞) B. (-∞,-16)C. (-∞,-16]∪[-6,+∞)D. (-∞,-16)∪(-6,+∞) 【答案】C 【解析】,因为函数在区间上具有单调性,所以或在上恒成立,则有或在上恒成立,所以或在上恒成立,令,当时,,所以或,所以的取值范围是.3.【2018届上海市浦东新区高三下学期(二模)】已知是定义在R 上的偶函数,且在上是增函数,如果对于任意,恒成立,则实数的取值范围是________【答案】点睛:解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.4.若函数f(x)=sin x +ax 为R 上的减函数,则实数a 的取值范围是________.【答案】(-∞,-1]【解析】因为是R上的减函数,所以恒成立,即,即恒成立,因为,所以,故答案为.5.【2018年(衡水金卷信息卷)三】已知函数,其中为实数.(1)若曲线在点处的切线方程为,试求函数的单调区间;(2)当,,且时,若恒有,试求实数的取值范围.【答案】(1)函数的单调递增区间为,单调递减区间为;(2).【解析】试题分析:由题意点处的切线方程为,求出的值,继而求出函数的单调性利用单调性将问题中的绝对值去掉,构造新函数来证明结论.解析:(1)函数的定义域为,,,可知..当,即时,,单调递增;当时,,单调递减.所以函数的单调递增区间为,单调递减区间为.(2)函数.则变为,即,设函数,由,得在时为单调递减函数,即,即,也即对与恒成立.因为,可知时,取最大值,即 .对时恒成立,由,可知,即取值范围为.6.【2018届宁夏石嘴山市高三4月(一模)】已知函数(且).(1)若函数在处取得极值,求实数的值;并求此时在上的最大值;(2)若函数不存在零点,求实数的取值范围.【答案】(1).(2).【试题解析】解:(1)函数的定义域为,,,∴在上,单调递减,在上,单调递增,所以时取极小值.所以在上单调递增,在上单调递减;又,,.当时,在的最大值为(2)由于所以函数存在零点②时,,.在上,单调递减,在上,单调递增,所以时取最小值.解得综上所述:所求的实数的取值范围是.7.函数的定义域为(为实数).(1)若函数在定义域上是减函数,求的取值范围;(2)若在定义域上恒成立,求的取值范围.【答案】(1);(2)【解析】试题分析:(1)利用单调性的定义,根据函数在定义域上是减函数,可得不等式恒成立,从而可求的取值范围;(2)利用分离参数思想原题意等价于恒成立,求出右边对应的函数在定义域内的最小值,即可求得的取值范围.试题解析:(1)任取,则有,即恒成立,所以(2)恒成立∵,∴函数在上单调减,∴时,函数取得最小值,即.8.【2018届江苏省无锡市高三第一学期期末】已知函数,,其中. (1)求过点和函数的图像相切的直线方程;(2)若对任意,有恒成立,求的取值范围;(3)若存在唯一的整数,使得,求的取值范围.【答案】(1),.(2).(3).,利用导数工具求得,故此时;②当时,恒成立,故此时;③当时,,利用导数工具求得,故此时.综上:.(3)因为,由(2)知,当,原命题等价于存在唯一的整数成立,利用导数工具求得;当,原命题等价于存在唯一的整数成立,利用导数工具求得.综上:.当时,切线方程为,当时,切线方程为.(2)由题意,对任意有恒成立,①当时,,令,则,令得,,故此时.②当时,恒成立,故此时.③当时,,令,当,存在唯一的整数使得,等价于存在唯一的整数成立,因为最大,,,所以当时,至少有两个整数成立,所以.当,存在唯一的整数使得,等价于存在唯一的整数成立,因为最小,且,,所以当时,至少有两个整数成立,所以当时,没有整数成立,所有.综上:.9.【2018届河南省焦作市高三第四次模拟】已知()()22xf x mx e m R =-∈.(Ⅰ)若()()'g x f x =,讨论()g x 的单调性;(Ⅱ)当()f x 在()()1,1f 处的切线与()223y e x =-+平行时,关于x 的不等式()0f x ax +<在()0,1上恒成立,求a 的取值范围.【答案】(Ⅰ)()g x 在()ln ,m +∞上单调递减,在(),ln m -∞上单调递增. (Ⅱ)(],21a e ∈-∞-.立,设()2xe F x x x=-,利用导数求得函数()F x 的单调性与最值,即可得到实数a 的取值范围. 试题解析:(Ⅰ)因为()()'22xg x f x mx e ==-,所以()()'2x g x m e =-,当0m ≤时, ()'0g x <,所以()g x 在R 上单调递减,当0m >时,令()'0g x <,得ln x m >,令()'0g x >,得ln x m <, 所以()g x 在()ln ,m +∞上单调递减,在(),ln m -∞上单调递增. (Ⅱ)由(Ⅰ)得()'122f m e =-,由2222m e e -=-,得1m =,不等式()0f x ax +<即220xx e ax -+<,得2xe a x x<-在()0,1上恒成立. 设()2x e F x x x =-,则()2222'x x xe e x F x x--=. 设()222xxh x xe e x =--,则()()'222221x x x x h x xe e e x x e =+--=-,在区间()0,1上, ()'0h x >,则函数()h x 递增,所以()()11h x h <=-, 所以在区间()0,1上, ()'0F x <,函数()F x 递减.当0x →时, ()F x →+∞,而()121F e =-,所以()()21,F x e ∈-+∞, 因为()a F x <在()0,1上恒成立,所以(],21a e ∈-∞-.10.【2018届辽宁省辽南协作校高三下学期一模】函数()xf x xe lnx ax =--.(1)若函数()y f x =在点()()1,1f 处的切线与直线()()211y e x =--平行,求实数a 的值; (2)若函数()f x 在[)1,∞+上单调递增,求实数a 的取值范围;(3)在(1)的条件下,求()f x 的最小值. 【答案】(1) 1a =;(2) 21a e ≤-;(3)1.单调性,即可求出()min g x ,从而可得实数a 的取值范围;(3)根据(1)的条件,利用导数研究函数的单调性,可推出()'0f x '>恒成立,从而()f x '在()0∞+,上递增,结合零点存在性定理,即可求得()f x 的最小值.试题解析:(1)∵函数()xf x xe lnx ax =--∴()()11,(0)x f x x e a x x'=+--> ∵函数()y f x =在点()()1,1f 处的切线与直线()()211y e x =--平行 ∴()()12121f e a e =-='-- ∴1a =(2)由题意,需()()110x f x x e a x =--'+≥在[1∞+,)恒成立,即()11x a x e x≤+-在[1∞+,)恒成立. 令()()11x g x x e x =+-,则()()2120x g x x e x+'=+>.又∵()10,10f f e ⎛⎫⎪⎝⎭''使得()00f x '=,此时∴()00,x x ∈时()()0,f x f x '<递减, ()0,x x ∈+∞时()()0,f x f x '>递增点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为()min 0f x >,若()0f x <恒成立,转化为()max 0f x <;(3)若()()f x g x >恒成立,可转化为()()min max f x g x >. 11.【2018届江西省高三监测】已知函数()ln f x x =. (1有两个极值点,求实数a 的取值范围; (2)若关于x 的方程()()1f x m x =+, ()m Z ∈有实数解,求整数m 的最大值. 【答案】(1) 2a >;(2)0.【解析】试题分析:(1零点,即方程210x ax -+=有两个不等的正实数根,(2)方程()ln 1x mx =+,记函数,(0)x >,问题转化为直线y m =与.(2)方程()ln 1x m x =+,即ln 1x m x =+,记函数()ln 1x h x x =+,(0)x >, ()()21ln 1x xx h x x +-+'=, 令()1ln x x x x ϕ+=- (0)x >,()2110x x xϕ'=--<, ()x ϕ单调递减, ()()()()222222110,011e h e h ee e e e -=>=<++'',存在()20,x e e ∈,使得()00h x '=,即0001ln x x x +=, 当()00,x x ∈,()0h x '>, ()h x 递增, ()()0,,0x x h x ∈+∞<', ()h x 递减,()02max 00ln 111,1x h x x x e e ⎛⎫∴==∈ ⎪+⎝⎭,即()max m h x ≤,()m Z ∈, 故0m ≤,整数m 的最大值为0.12【2018届山东高三天成大联考第二次】已知函数,.(1)讨论函数的单调性;(2)若,对任意恒成立,求实数的取值范围.【答案】(1)答案见解析;(2).【解析】试题分析:(1)对函数求导研究函数的单调性,通过导函数的正负得到原函数的单调区间;(2)对任意恒成立,即对任意恒成立,令,对这个函数求导研究函数的单调性,使得最值大于0即可.解析;(1),定义域所以.讨论:当时,函数是常函数,无单调性.(2)若,对任意恒成立,即对任意恒成立.令,则.讨论:①当,即时,且不恒为0,所以函数在区间单调递增.又,所以对任意恒成立.故符合题意综上实数的取值范围是.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立;(3)若恒成立,可转化为(需在同一处取得最值).。