专题01 集合概念与运算——2021年高考数学专项复习含真题及解析
- 格式:pdf
- 大小:2.41 MB
- 文档页数:23
考点一集合1.(2021·全国甲卷·T1)设集合M={x|0<x<4},N={x|13≤x≤5},则M∩N=()A.{x|0<x≤13}B.{x|13≤x<4}C.{x|4≤x<5}D.{x|0<x≤5}【命题意图】本题考查考生对集合的运算,意在考查学生的运算求解能力.【解析】选B.将两个集合表示的区域在数轴上表示出来由图知,M∩N={x|13≤x<4}.【反思总结】求解有关集合的交集、并集、补集问题时,必须对集合的相关概念有深刻的理解,善于抓住代表元素,通过观察集合之间的关系,借助Venn图或数轴寻找元素之间的关系,使问题准确解决.2.(2021·全国甲卷·T1)设集合M={1,3,5,7,9},N={x|2x>7},则M∩N=()A.{7,9}B.{5,7,9}C.{3,5,7,9}D.{1,3,5,7,9}【命题意图】本题考查考生对集合的运算,意在考查学生的运算求解能力.【解析】选B.因为2x>7,所以x>72,因此M∩N={5,7,9}.【反思总结】求解有关集合的交集、并集、补集问题时,必须对集合的相关概念有深刻的理解,善于抓住代表元素,通过观察集合之间的关系,借助Venn图或数轴寻找元素之间的关系,使问题准确解决.3.(2021·全国乙卷理科·T2)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.SC.TD.Z【命题意图】本题主要考查集合的交集运算,意在考查考生对基本概念的理解.【解析】选C.s=2n+1,n∈Z,当n=2k,k∈Z时,S={s|s=4k+1,k∈Z},当n=2k+1,k∈Z时S={s|s=4k+3,k∈Z},所以T⫋S,S∩T=T.4.(2021·全国乙卷文科·T1)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则U(M∪N)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}【命题意图】本题主要考查集合的基本运算.【解析】选A.因为M={1,2},N={3,4},所以M∪N={1,2,3,4},所以U(M∪N)={5}.5.(2021·新高考I卷·T1)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}【命题意图】本题考查集合的运算,意在考查学生的运算求解能力.【解析】选B.A∩B={x|-2<x<4}∩B={2,3,4,5}={2,3}.6.(2021·浙江高考·T1)设集合A={x|x≥1},B={x|-1<x<2},则A∩B=()A.{x|x>-1}B.{x|x≥1}C.{x|-1<x<1}D.{x|1≤x<2}【命题意图】本题主要考查集合的运算,由题意结合交集的定义可得结果.【解析】选D.因为A={x|x≥1},B={x|-1<x<2},所以A∩B={x|1≤x<2}.7.(2021·北京新高考·T1)已知集合A={x|-1<x<1},B{x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}【命题意图】本题考查集合的运算,意在考查考生的运算求解能力.【解析】选B.画数轴可得A∪B=(-1,2].【反思总结】求解有关集合的交集、并集、补集问题时,必须对集合的相关概念有深刻的理解,善于抓住代表元素,通过观察集合之间的关系,借助数轴寻找元素之间的关系,使问题准确解决.8.(2021·新高考II卷·T2)若全集U={1,2,3,4,5,6},集合A={1,3,6},B={2,3,4},则A∩=()A.{3}B.{1,6}C.{5,6}D.{1,3}【命题意图】本题考查集合的运算,意在考查学生的运算求解能力.【解析】选B.由题设可得,U B={1,5,6}故A∩={1,6}.【反思总结】求解有关集合的交集、并集、补集问题时,必须对集合的相关概念有深刻的理解,善于抓住代表元素,通过观察集合之间的关系,借助数轴寻找元素之间的关系,使问题准确解决.。
专题01 集合【2021年】1.(2021年全国高考乙卷数学(文)试题)已知全集{}1,2,3,4,5U =,集合{}{}1,2,3,4M N ==,则()UM N ⋃=( )A .{}5B .{}1,2C .{}3,4D .{}1,2,3,4【答案】A 由题意可得:{}1,2,3,4M N =,则(){}5UM N =.故选:A.2.(2021年全国高考乙卷数学(理)试题)已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则ST ( )A .∅B .SC .TD .Z【答案】C【分析】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆, 因此,ST T =.故选:C.3.(2021年全国高考甲卷数学(文)试题)设集合{}{}1,3,5,7,9,27M N x x ==>,则M N =( )A .{}7,9B .{}5,7,9C .{}3,5,7,9D .{}1,3,5,7,9【答案】B【分析】7,2N ⎛⎫=+∞ ⎪⎝⎭,故{}5,7,9M N ⋂=, 故选:B.4.(2021年全国高考甲卷数学(理)试题)设集合{}104,53M x x N xx ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N =( )A .103x x ⎧⎫<≤⎨⎬⎩⎭B .143xx ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤< D .{}05x x <≤【答案】B【分析】因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭, 故选:B.5.(2021年全国新高考Ⅰ卷数学试题)设集合{}24A x x =-<<,{}2,3,4,5B =,则A B =( )A .{}2B .{}2,3C .{}3,4D .{}2,3,4【答案】B【分析】由题设有{}2,3A B ⋂=,故选:B .【2012年——2020年】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【分析】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.2.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2C .2D .4【答案】B【分析】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-. 故选:B.3.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知集合A ={x ||x |<3,x ⅠZ },B ={x ||x |>1,x ⅠZ },则A ∩B =( ) A .∅ B .{–3,–2,2,3) C .{–2,0,2} D .{–2,2}【答案】D因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2AB =-.故选:D.4.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()UA B ⋃=( )A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A【分析】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U2,3A B =-.故选:A.5.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3C .4D .5【答案】B【分析】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B6.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A .2B .3C .4D .6【答案】C【分析】由题意,AB 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C.7.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B AA .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C【分析】由已知得{}1,6,7U C A =,所以U B C A ⋂={6,7},故选C . 8.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C 【分析】【详解】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .9.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(–1,+∞) B .(–∞,2) C .(–1,2) D .∅【答案】C 【分析】本题借助于数轴,根据交集的定义可得. 【详解】由题知,(1,2)A B =-,故选C .10.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A .(-∞,1) B .(-2,1) C .(-3,-1) D .(3,+∞)【答案】A【分析】由题意得,{}{}23,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .11.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B =A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A 【分析】21,x ≤∴11x -≤≤,Ⅰ{}11B x x =-≤≤,则{}1,0,1AB =-,故选A .12.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))已知集合{}02A =,,{}21012B =--,,,,,则A B =A .{}02,B .{}12,C .{}0D .{}21012--,,,, 【答案】A 【分析】详解:根据集合交集中元素的特征,可以求得{}0,2AB =,故选A.13.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))已知集合{}220A x x x =-->,则A =RA .{}12x x -<< B .{}12x x -≤≤C .}{}{|12x x x x <-⋃ D .}{}{|1|2x x x x ≤-⋃≥【答案】B【详解】:解不等式220x x -->得12x x <->或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.14.(2018年全国普通高等学校招生统一考试文数(全国卷II ))已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,7【答案】C 【详解】详解:{1,3,5,7},{2,3,4,5}A B ==,{3,5}A B ∴⋂=,故选C15.(2018年全国卷Ⅰ文数高考试题)已知集合1}{0|A x x -≥=,{0,1,2}B =,则A B =A .{0}B .{1}C .{1,2}D .{0,1,2}【答案】C【分析】:由集合A 得x 1≥, 所以{}A B 1,2⋂= 故答案选C.16.(2018年全国普通高等学校招生统一考试理数(全国卷II ))已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为( )A .9B .8C .5D .4【答案】A 【分析】223x y +≤23,x ∴≤x Z ∈1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.17.(2018年全国卷Ⅰ理数高考试题)已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 【答案】C【解析】详解:由集合A 得x 1≥,所以{}A B 1,2⋂=故答案选C.18.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R【答案】A【详解】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x =<<=<,选A . 19.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B R = C .{|1}AB x x =>D .AB =∅【答案】A【解析】Ⅰ集合{|31}x B x =<Ⅰ{}0B x x =<Ⅰ集合{|1}A x x =<Ⅰ{}0A B x x ⋂=<,{}|1A B x x ⋃=<故选A20.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷))设集合{1,2,3},{2,3,4}A B ==,则AB =A .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 【答案】A 【详解】由题意{1,2,3,4}A B ⋃=,故选A.21.(2017年全国普通高等学校招生统一考试理科数学(新课标2卷))设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B = ( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5【答案】C【详解】Ⅰ 集合{}124A =,,,{}2|40B x x x m =-+=,{}1A B =Ⅰ1x =是方程240x x m -+=的解,即140m -+= Ⅰ3m =Ⅰ{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C22.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))已知集合A={1,2,3,4},B={2,4,6,8},则A B 中元素的个数为 A .1 B .2C .3D .4【答案】B【详解】由题意可得{}2,4AB =,故A B 中元素的个数为2,所以选B.23.(2017年全国普通高等学校招生统一考试文科数学)已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为( )A .3B .2C .1D .0【答案】B【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x=相交于两点22⎛ ⎝⎭,22⎛-- ⎝⎭,则A B 中有2个元素.故选B. 24.(2016年全国普通高等学校招生统一考试文科数学)设集合{}1,3,5,7A =,{|25}B x x =≤≤,则A B ⋂=A .{1,3}B .{3,5}C .{5,7}D .{1,7}【答案】B【解析】试题分析:集合与集合的公共元素有3,5,故,故选B.25.(2016年全国普通高等学校招生统一考试文科数学)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =A .3(3,)2-- B .3(3,)2-C .3(1,)2D .3(,3)2【答案】D【详解】:集合()(){}{}|130|13A x x x x x =--<=<<,集合,所以3|32A B x x ⎧⎫⋂=<<⎨⎬⎩⎭,故选D.26.(2016年全国普通高等学校招生统一考试文科数学(新课标2卷)已知集合{}1,2,3,A =2{|9}B x x =<,则A B ⋂=A .{2,1,0,1,2,3}--B .{2,1,0,1,2}--C .{1,2,3}D .{1,2}【答案】D【解析】试题分析:由29x <得33x -<<,所以{|33}B x x =-<<,因为{}1,2,3A =,所以{}1,2A B ⋂=,故选D.27.(2016年全国普通高等学校招生统一考试文科数学)已知集合{1,2,3}A =,{|(1)(2)0,}B x x x x Z =+-<∈,则A B ⋃=A .{1}B .{12},C .{0123},,,D .{10123}-,,,, 【答案】C 【详解】试题分析:集合{}{|12,}0,1B x x x Z =-<<∈=,而{}1,2,3A =,所以{}0,1,2,3A B ⋃=,故选C. 28.(2016年全国普通高等学校招生统一考试文科数学(新课标3卷))设集合{}{}0,2,4,6,8,10,4,8A B ==,则AB =A .{4,8}B .{02,6},C .{026,10},, D .{02468,10},,,, 【答案】C 【详解】试题分析:由补集的概念,得{}0,2,6,10AB =,故选C .29.(2016年全国普通高等学校招生统一考试理科数学(新课标3))设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S ⋂T=A .[2,3]B .(−∞,2]⋃[3,+∞)C .[3,+∞)D .(0,2]⋃[3,+∞)【答案】D【详解】:由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{|23}S x x x =≤≥或,所以{|023}S T x x x ⋂=<≤≥或,故选D .30.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知集合{}{|32,},6,8,10,12,14A x x n n N B ==+∈=,则集合A B ⋂中的元素个数为A .5B .4C .3D .2【答案】D 【详解】由已知得A B ⋂中的元素均为偶数,n ∴ 应为取偶数,故{}8,14A B ⋂= ,故选D.31.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知集合{}{}|12,|03,A x x B x x =-<<=<<则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3【答案】A【详解】因为{}|12A x x =-<<,{}|03B x x =<<,所以{}|13.AB x x =-<<故选A.32.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))已知集合21,01,2A =--{,,},{}|(1)(2)0B x x x =-+<,则A B =( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}0,1,2【答案】A【详解】已知得{}|21B x x =-<<,因为21,01,2A =--{,,},所以{}1,0A B ⋂=-,故选A .33.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知集合{}{}|13,|21M x x N x x =-<<=-<<,则M N ⋂=A .B .C .D .【答案】B【详解】试题分析:根据集合的运算法则可得:{}|11M N x x ⋂=-<<,即选B .34.(2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ卷))已知集合,则A .B .C .D .【答案】A【详解】试题分析:由已知得,{|1A x x =≤-或3}x ≥,故{}|21A B x x ⋂=-≤≤-,选A .35.(2014年全国普通高等学校招生统一考试文科数学(全国Ⅰ卷))设集合{}22,0,2,{|20}A B x x x =-=--=,则A B ⋂=A .∅B .C .{}0D .{}2-【答案】B 【详解】:由已知得,{}21B =-,,故{}2A B ⋂=,选B .36.(2013年全国普通高等学校招生统一考试文科数学(新课标1卷))已知集合A={1,2,3,4},2{|,}B x x n n A ==∈,则A∩B=A .{1,4}B .{2,3}C .{9,16}D .{1,2}【答案】A【分析】依题意,,故{}1,4A B ⋂=. 37.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷)已知集合A ={x |x 2-2x >0},B ={x |x ,则( ).A .A ∩B =B .A ⅠB =RC .B ⊆AD .A ⊆B 【答案】B 【详解】依题意{}|02A x x x =或,又因为B ={x |x ,由数轴可知A ⅠB =R ,故选B.38.(2013年全国普通高等学校招生统一考试文科数学)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1 } 【答案】C【详解】因为集合M=,所以M∩N={0,-1,-2},故选C.39.(2013年全国普通高等学校招生统一考试理科数学)已知集合M ={x|(x -1)2<4,xⅠR},N ={-1,0,1,2,3},则M∩N =A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3} 【答案】A【详解】:由(x ﹣1)2<4,解得:﹣1<x <3,即M={x|﹣1<x <3},ⅠN={﹣1,0,1,2,3},ⅠM∩N={0,1,2}.故选A40.(2012年全国普通高等学校招生统一考试文科数学)已知集合A={x|x 2-x -2<0},B={x|-1<x<1},则 A . B . C .A=B D .A∩B=Æ【答案】B 【详解】集合,又,所以B 是A 的真子集,选B.41.(2012年全国普通高等学校招生统一考试理科数学)已知集合{1,2,3,4,5}A ={},(,),,B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为A .3B .6C .8D .10 【答案】D【详解】列举法得出集合()()()()()()()()()(){}2,1314151324252435354B =,,,,,,,,,,,,,,,,,,,共含10个元素.故答案选D .。
『高考复习·精推资源』『题型归纳·高效训练』高考复习·归纳训练2021年高考文科数学一轮复习:题型全归纳与高效训练突破专题1.1 集合的概念与运算目录一、题型全归纳 (1)题型一集合的含义与表示 (1)题型二集合的基本关系 (2)题型三集合的基本运算 (3)题型四利用集合的运算求参数 (4)题型五集合中的新定义问题 (5)二、高效训练突破 (6)一、题型全归纳题型一集合的含义与表示【题型要点】与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集、点集还是其他类型的集合.(2)看这些元素满足什么限制条件.(3)根据限制条件求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性.【例1】已知集合A={1,2,3,4,5},B={(x,y)|x∈A且y∈A且x-y∈A},则B中所含元素的个数为() A.3B.6C.8D.10【答案】D【解析】(1)由x∈A,y∈A,x-y∈A,得x-y=1或x-y=2或x-y=3或x-y=4,所以集合B={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},所以集合B 中有10个元素. 【例2】)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________. 【答案】-32【解析】因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),当m =-32时,m +2=12≠3,符合题意.所以m =-32.题型二 集合的基本关系【题型要点】(1)判断集合间的关系,要注意先对集合进行化简,再进行判断,并且在描述关系时,要尽量精确.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系(要注意区间端点的取舍),进而转化为参数所满足的关系,常用数轴、V enn 图等来直观解决这类问题.【例1】已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3 D .4【答案】D【解析】 由题意可得,A ={1,2},B ={1,2,3,4},又因为A ⊆C ⊆B ,所以C ={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4}.【例2】已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为______. 【答案】(-∞,1]【解析】当m ≤0时,B =∅,显然B ⊆A . 当m >0时,因为A ={x |-1<x <3}. 当B ⊆A 时,在数轴上标出两集合,如图,所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为(-∞,1].题型三 集合的基本运算【题型要点】集合基本运算的求解策略【例1】(2020·郑州市第一次质量预测)设全集U =R ,集合A ={x |-3<x <1},B ={x |x +1≥0},则∁U (A ∪B )=( )A .{x |x ≤-3或x ≥1}B .{x |x <-1或x ≥3}C .{x |x ≤3}D .{x |x ≤-3}【答案】D【解析】因为B ={x |x ≥-1},A ={x |-3<x <1},所以A ∪B ={x |x >-3},所以∁U (A ∪B )={x |x ≤-3}.故选D. 【例2】(2020黄冈调研)已知函数f (x )=11-x 2的定义域为M ,g (x )=ln(1-x )的定义域为N ,则M ∪(∁R N )=( ) A .{x |x >-1} B .{x |x ≥1} C .∅ D .{x |-1<x <1}【答案】A【解析】由1-x >0得N ={x |x <1},∁R N ={x |x ≥1},而由1-x 2>0得M ={x |-1<x <1},所以M ∪(∁R N )={x |x >-1}.题型四 利用集合的运算求参数【题型要点】根据集合的运算结果求参数的值或取值范围的方法(1)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若集合是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取到. (2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解. (3)根据求解结果来确定参数的值或取值范围.【例1】已知集合A ={x |x 2≥4},B ={m }.若A ∪B =A ,则m 的取值范围是( ) A .(-∞,-2) B .[2,+∞)C .[-2,2]D .(-∞,-2]∪[2,+∞)【答案】D.【解析】:因为A ∪B =A ,所以B ⊆A ,即m ∈A ,得m 2≥4,解得m ≥2或m ≤-2.【例2】集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4 【答案】D【解析】根据并集的概念,可知{a ,a 2}={4,16},故a =4.【例3】(河南省洛阳市2019-2020学年高三上学期期中数学试题)已知集合{}3log (2)2A x x =-≤,{}20B x x m =->,若A B ⊆,则实数m 的取值范围是( ) A .]4∞(-, B .4∞(-,)C .22∞(-,)D .22]∞(-,【答案】A【解析】{}{}3log (2)2211A x x x x =-≤=<≤,{}202m B x x m x x ⎧⎫=->=>⎨⎬⎩⎭, A B ⊆,则2,42mm ≤≤,故选A. 题型五 集合中的新定义问题【题型要点】(1)紧扣“新”定义:分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题的关键所在.(2)把握“新”性质:集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质. (3)遵守“新”法则:准确把握新定义的运算法则,将其转化为集合的交集、并集与补集的运算即可. 【例1】定义集合的商集运算为A B ={x |x =m n ,m ∈A ,n ∈B }.已知集合A ={2,4,6},B ={x |x =k2-1,k ∈A },则集合BA ∪B 中的元素个数为( )A .6B .7C .8D .9【答案】 B【解析】 由题意知,B ={0,1,2},B A ={0,12,14,16,1,13},则B A ∪B ={0,12,14,16,1,13,2},共有7个元素,故选B.【例2】设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知集合A ={x |0<x <2},B ={y |y ≥0},则A ⊗B =________. 【答案】:{0}∪[2,+∞)【解析】:由已知A ={x |0<x <2},B ={y |y ≥0}, 又由新定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B },。
2021年高考数学一轮复习 专题1.1 集合的概念及其基本运算(测)理(含解析)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1. 【河北省“五个一名校联盟” xx 届高三教学质量监测(一)1】设集合,,则 ( )A. B. C. D.【答案】B2. 【xx 届太原五中模拟】已知集合,,若,则( )A .B .C .或D .或 【答案】C .3. 已知集合,若,则实数的取值范围为 ( ) A .B .C .D .【答案】A4. 在实数集上定义运算:.若关于的不等式的解集是集合 的子集,则实数的取值范围是( ). A. B. C. D. 【答案】D5. 若集合{}{}2|,|2,M x y x N y y x x R ====-∈,则 ( )A. B. C. D. 【答案】A6.【xx 届北京市西城区二模】已知集合,,若,则实数的 取值范围是( )A .B .C .D . 【答案】D7.设和是两个集合,定义集合或且.若, ,那么等于( )A.[-1,4]B.(-∞,-1]∪[4,+∞)C.(-3,5)D.(-∞,-3)∪[-1,4]∪(5,+∞) 【答案】D8.【xx 届湖南省长沙市二模】 已知集合}{22(,)1,(,)()94x y M x y N x y y k x b ⎧⎫=+===-⎨⎬⎩⎭,若,使得成立,则实数b 的取值范围是( ) A . B . C . D . 【答案】B9.设集合,,则满足且的集合S 的个数是( ) A .57 B .56 C .49 D .8【答案】B10.【xx届江西师大附中高三三模】设集合,,集合中所有元素之和为8,则实数的取值集合为()A.B. C. D.【答案】C11.【xx届内蒙古北方重工业集团三中模拟】如图所示的韦恩图中,、是非空集合,定义*表示阴影部分集合.若,,,则*B=().A. B. C. D.【答案】C12.【xx届北京东城区示范校模拟】设集合,集合,若,则实数的取值范围是()A. B. C. D.【答案】C二、填空题(本大题共4小题,每小题5分,共20分。
2021年高考数学一轮复习专题1.1 集合的概念及其基本运算(讲)理(含解析)【课前小测摸底细】1.【课本典型习题,P12第3题】设集合,,求,.【答案】当时,,;当时,,;当时,则,;当,,时,,.2.【xx高考天津,理1】已知全集,集合,集合,则集合( )(A)(B)(C)(D)【答案】A3. 【云南省玉溪一中xx届高三上学期第一次月考试卷】设集合,,则的子集的个数是()A.4 B.3 C .2 D.1【答案】A4.【基础经典试题】集合,集合,则等于( )A. B. C. D.【答案】B5.【改编自xx年江西卷理科】若集合,则集合中的元素的非空子集个数为( )A.7 B.6 C.5 D.4【答案】A【考点深度剖析】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算.【经典例题精析】考点1 集合的概念【1-1】若,集合,求的值________.【答案】2【1-2】已知集合A={x|x2+mx+4=0}为空集,则实数m的取值范围是( )A.(-4,4) B.[-4,4] C.(-2,2) D.[-2,2]【答案】A【1-3】已知A={a+2,(a+1)2,a2+3a+3},若1∈A,则实数a构成的集合B的元素个数是( ) A.0 B.1 C.2 D.3【答案】B【课本回眸】1、集合的含义:某些指定的对象集在一起就成为一个总体,这个总体就叫集合,其中每一个对象叫元素。
2、集合中元素的三个特性:确定性、互异性、无序性.(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素,这叫集合元素的确定性;(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,这叫集合元素的互异性;(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样,这叫集合元素的无序性.3、元素与集合之间只能用“”或“”符号连接.4、集合的表示常见的有四种方法.(1)自然语言描述法:用自然的文字语言描述。
考点规范练1集合1.(2021广东中山高三期末)设集合A={x∈Z|x2≤4},B={1,2,a},且A∪B=A,则实数a的取值集合为()A.{-2,-1,0}B.{-2,-1}C.{-1,0}D.{-2,-1,1}答案A解析由题得A={x∈Z|x2≤4}={-2,-1,0,1,2},因为B={1,2,a},且A∪B=A,所以实数a的取值集合为{-2,-1,0}.2.已知集合M={x|x2-2x<0},N={-2,-1,0,1,2},则M∩N=()A.⌀B.{1}C.{0,1}D.{-1,0,1}答案B解析由集合M中不等式得x(x-2)<0,解得0<x<2,即M=(0,2),又N={-2,-1,0,1,2},故M∩N={1},故选B.3.若集合A={1,2,3},B={(x,y)|x+y-4>0,x,y∈A},则集合B的真子集个数为()A.5B.6C.7D.8答案C解析由已知,得x=2,y=3;x=3,y=2;x=3,y=3满足题意,所以B={(2,3),(3,2),(3,3)},集合B中有3个元素,故真子集有23-1=7(个).4.(2021全国Ⅰ,理2)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.⌀B.SC.TD.Z答案C解析当n=2k,k∈Z时,S1={s|s=4k+1,k∈Z}=T;当n=2k+1,k∈Z时,S2={s|s=4k+3,k∈Z},又S=S1∪S2,所以T⫋S,故S∩T=T.5.已知集合A={y|y=2x},B={x|x2-3x+2≤0},则()A.A∩B=⌀B.A∪B=RC.A⊆BD.B⊆A答案D解析因为A={y|y=2x}={y|y>0},B={x|x2-3x+2≤0}={x|1≤x≤2},所以A∩B={x|1≤x≤2}≠⌀,故选项A 不正确;A∪B={y|y>0}≠R,故选项B不正确;根据子集的定义有B⊆A,故选项C不正确,D正确.6.若全集U=R,集合A={x|y=lg(6-x)},B={x|2x>1},则图中阴影部分表示的集合是()A.(2,3)B.(-1,0]C.[0,6)D.(-∞,0]答案D解析由于A={x|y=lg(6-x)}={x|x<6},B={x|2x>1}={x|x>0},则阴影部分表示的集合是(∁U B)∩A=(-∞,0]∩(-∞,6)=(-∞,0].7.(多选)(2021广东湛江二模)已知集合A={x∈R|x2-3x-18<0},B={x∈R|x2+ax+a2-27<0},则下列说法中正确的是()A.若A=B,则a=-3B.若A⊆B,则a=-3C.若B=⌀,则a≤-6或a≥6D.若B⫋A,则-6<a≤-3或a≥6答案ABC解析A={x∈R|-3<x<6},若A=B,则a=-3,且a2-27=-18,故A正确;当a=-3时,A=B,故D不正确;若A⊆B,则(-3)2+a·(-3)+a2-27≤0且62+6a+a2-27≤0,解得a=-3,故B正确;当B=⌀时,a2-4(a2-27)≤0,解得a≤-6或a≥6,故C正确.8.设集合A={x|3x-1<m},若1∈A,且2∉A,则实数m的取值范围是()A.2<m<5B.2≤m<5C.2<m≤5D.2≤m≤5答案C解析因为集合A={x|3x-1<m},而1∈A,且2∉A,所以3×1-1<m,且3×2-1≥m,解得2<m≤5.9.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%答案C解析设既喜欢足球又喜欢游泳的学生比例数为x.由Venn图可知,82%-x+60%=96%,解得x=46%,故选C.10.已知集合P={y|y2-y-2>0},Q={x|x2+ax+b≤0}.若P∪Q=R,且P∩Q=(2,3],则a+b=()A.-5B.5C.-1D.1答案A解析因为P={y|y2-y-2>0}={y|y>2,或y<-1},由P∪Q=R及P∩Q=(2,3],得Q=[-1,3],所以-a=-1+3,b=-1×3,即a=-2,b=-3,a+b=-5.11.已知全集U={a1,a2,a3,a4},集合A是全集U的恰有两个元素的子集,且满足下列三个条件:①若a1∈A,则a2∈A;②若a3∉A,则a2∉A;③若a3∈A,则a4∉A.则集合A=(用列举法表示).答案{a2,a3}解析假设a1∈A,则a2∈A,由若a3∉A,则a2∉A可知,a3∈A,故假设不成立;假设a4∈A,则a3∉A,a2∉A,a1∉A,故假设不成立.故集合A={a2,a3}.。
2021年高考数学专题复习第1讲集合的概念与运算练习新人教A版[考情展望] 1.给定集合,直接考查集合的交、并、补集的运算.2.与方程、不等式等知识相结合,考查集合的交、并、补集的运算.3.利用集合运算的结果,考查集合间的基本关系.4.以新概念或新背景为载体,考查对新情境的应变能力.一、集合的基本概念1.集合中元素的三个特性:确定性、互异性、无序性.2.元素与集合的关系:属于或不属于,表示符号分别为∈和∉.3.常见数集的符号表示:集合自然数集正整数集整数集有理数集实数集表示N N+(N*) Z Q R 集合的三种表示方法:列举法、描述法、描述法的一般形式的结构特征在描述法的一般形式{x∈I|p(x)}中,“x”是集合中元素的代表形式,I是x的范围,“p(x)”是集合中元素x的共同特征,竖线不可省略.二、集合间的基本关系1.子集:若对∀x∈A,都有x∈B,则A⊆B或B⊇A.2.真子集:若A⊆B,但∃x∈B,且x∉A,则A B或B A.3.相等:若A⊆B,且B⊆A,则A=B.4.空集的性质:∅是任何集合的子集,是任何非空集合的真子集.子集与真子集的快速求解法一个含有n个元素的集合有2n个子集,有2n-1个真子集,有2n-2个非空真子集.三、集合的基本运算1.集合间的两个等价转换关系(1)A∩B=A⇔A⊆B;(2)A∪B=A⇔B⊆A.2.集合间运算的两个常用结论:(1)∁U(A∩B)=(∁U A)∪(∁U B);(2)∁U(A∪B)=(∁U A)∩(∁U B).1.已知集合A={0,1},则下列式子错误的是( )A.0∈A B.{1}∈AC.∅⊆A D.{0,1}⊆A【解析】∵{1}⊆A,∴{1}∈A错误,其余均正确.【答案】 B2.已知集合A={x|x>1},B={x|-1<x<2},则A∩B=( )A.{x|-1<x<2} B.{x|x>-1}C.{x|-1<x<1} D.{x|1<x<2}【解析】∵A={x|x>1},B={x|-1<x<2},∴如图所示,A∩B={x|1<x<2}.【答案】 D3.已知集合M ={1,2,3},N ={x ∈Z |1<x <4},则( ) A .M ⊆N B .N =M C .M ∩N ={2,3}D .M ∪N =(1,4)【解析】 ∵N ={x ∈Z |1<x <4}={2,3}, ∴M ∩N ={2,3}. 【答案】 C4.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2 D .4【解析】 ∵A ={0,2,a },B ={1,a 2},A ∪B ={0,1,2,4,16},∴⎩⎪⎨⎪⎧a 2=16,a =4.∴a =4,故选D.【答案】 D5.(xx·山东高考)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩(∁U B )=( )A .{3}B .{4}C .{3,4}D .∅【解析】 ∵U ={1,2,3,4},∁U (A ∪B )={4}, ∴A ∪B ={1,2,3}.又∵B ={1,2},∴{3}⊆A ⊆{1,2,3}. 又∁U B ={3,4},∴A ∩(∁U B )={3}. 【答案】 A6.(xx·江苏高考)集合{-1,0,1}共有________个子集. 【解析】 由于集合中有3个元素,故该集合有23=8(个)子集. 【答案】 8考向一 [001] 集合的基本概念(1)(xx·山东高考)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .5D .9(2)(xx·柳州模拟)已知集合A ={m +2,2m 2+m ,-3},若3∈A ,则m 的值为________. 【思路点拨】 (1)用列举法把集合B 中的元素一一列举出来.(2)先由m +2=3或2m 2+m =3求得m 的值,再检验集合中的元素是否满足互异性. 【尝试解答】 (1)方法一: 当x =0,y =0时,x -y =0; 当x =0,y =1时,x -y =-1; 当x =0,y =2时,x -y =-2; 当x =1,y =0时,x -y =1; 当x =1,y =1时,x -y =0; 当x =1,y =2时,x -y =-1; 当x =2,y =0时,x -y =2; 当x =2,y =1时,x -y =1;当x =2,y =2时,x -y =0.根据集合中元素的互异性知,B 中元素有0,-1,-2,1,2,共5个.方法二:如下表所示:∴x -y 的值只有-2(2)∵3∈A ,∴m +2=3或2m 2+m =3,解得m =1或m =-32.当m =1时,m +2=2m 2+m =3,不满足集合元素的互异性,当m =-32时,A =⎩⎨⎧⎭⎬⎫-3,12,3满足题意.故m =-32.【答案】 (1)C (2)-32规律方法1 1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其它的集合.2.对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性. 对点训练 (1)(xx·深圳模拟)已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .10(2)已知集合A ={x |ax 2-3x +2=0},若A =∅,则实数a 的取值范围为________. 【解析】 (1)因为A ={1,2,3,4,5},所以集合A 中的元素都为正数,若x -y ∈A ,则必有x -y >0,即x >y .当y =1时,x 可取2,3,4,5,共有4个数; 当y =2时,x 可取3,4,5,共有3个数; 当y =3时,x 可取4,5,共有2个数; 当y =4时,x 只能取5,共有1个数; 当y =5时,x 不能取任何值.综上,满足条件的实数对(x ,y )的个数为4+3+2+1=10,即集合B 中的元素共有10个,故选D.(2)∵A =∅,∴方程ax 2-3x +2=0无实根, 当a =0时,x =23不合题意,当a ≠0时,Δ=9-8a <0,∴a >98.【答案】 (1)D (2)⎝ ⎛⎭⎪⎫98,+∞ 考向二 [002] 集合间的基本关系(1)已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},则a 2 014+b 2 014=________.(2)已知集合A ={x |x 2-3x -10≤0},B ={x |m +1≤x ≤2m -1},若A ∪B =A ,则实数m 的取值范围是________.【思路点拨】 (1)0∈⎩⎨⎧⎭⎬⎫a ,b a,1,则b =0,1∈{a 2,a,0},则a 2=1,a ≠1,从而a ,b可求.(2)A ∪B =A ⇒B ⊆A ,分B =∅和B ≠∅两种情况求解. 【尝试解答】 (1)由已知得b a=0及a ≠0,所以b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 014+b2 014=(-1)2 014=1.(2)A ={x |x 2-3x -10≤0}={x |-2≤x ≤5}, 又A ∪B =A ,所以B ⊆A .①若B =∅,则2m -1<m +1,此时m <2.②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①、②可得,符合题意的实数m 的取值范围为m ≤3. 【答案】 (1)1 (2)(-∞,3] 规律方法2 1.解答本例2时应注意两点:一是A ∪B =A ⇒B ⊆A ;二是B ⊆A 时,应分B =∅和B ≠∅两种情况讨论.2.已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常合理利用数轴、Venn 图化抽象为直观.对点训练 (1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(2)若集合M ={x |x 2+x -6=0},N ={x |ax +2=0,a ∈R },且M ∩N =N ,则实数a 的取值集合是________.【解析】 (1)由x 2-3x +2=0得x =1或x =2, ∴A ={1,2}.由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)因为M ∩N =N ,所以N ⊆M .又M ={-3,2}, 若N =∅,则a =0.若N ≠∅,则N ={-3}或N ={2}.所以-3a +2=0或2a +2=0,解得a =23或a =-1.所以a 的取值集合是⎩⎨⎧⎭⎬⎫-1,0,23.【答案】 (1)D (2)⎩⎨⎧⎭⎬⎫-1,0,23考向三 [003] 集合的基本运算(1)(xx·湖南师大附中模拟)设集合A ={1,2,3,5,7},B ={x ∈Z |1<x ≤6},全集U =A ∪B ,则A ∩(∁U B )等于( )A .{1,4,6,7}B .{2,3,7}C .{1,7}D .{1}(2)(xx·烟台模拟)设全图1-1-1集U=R,M={x|x2+3x<0},N={x|x<-1},则图1-1-1中阴影部分表示的集合为( )A.{x|x≥-1} B.{x|-3<x<0}C.{x|x≤-3} D.{x|-1≤x<0}【思路点拨】(1)求B→求A∪B→求∁U B→求A∩(∁U B).(2)求M→分析阴影区域表示的集合→借助数轴求该集合.【尝试解答】(1)∵B={x∈Z|1<x≤6}={2,3,4,5,6}.又A={1,2,3,5,7} .∴A∪B={1,2,3,4,5,6,7}.∴∁U B={1,7}.∴A∩(∁U B)={1,7}.(2)∵M={x|x2+3x<0}={x|-3<x<0},N={x|x<-1}∴∁U N={x|x≥-1}.又由Venn图可知,该阴影部分表示的集合为M∩(∁U N).所以M∩(∁U N)={x|-1≤x<0}.【答案】(1)C (2)D规律方法3 1.求解本例2的关键是明确阴影区域元素的属性.2.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.对点训练(1)(xx·浙江高考)设集合S={x|x>-2},T={x|x2+3x-4≤0},则(∁R S)∪T=( )A.(-2,1] B.(-∞,-4]C.(-∞,1] D.[1,+∞)图1-1-2(2)如图1-1-2,已知U={1,2,3,4,5,6,7,8,9,10},集合A={2,3,4,5,6,8},B={1,3,4,5,7},C={2,4,5,7,8,9},用列举法写出图中阴影部分表示的集合为________.【解析】(1)因为S={x|x>-2},所以∁R S={x|x≤-2}.而T={x|-4≤x≤1},所以(∁R S)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1}.(2)由图可知,该阴影部分表示的集合为A∩C∩(∁U B).又A∩C={2,4,5,8},∁U B={2,6,8,9,10},故A∩C∩(∁U B)={2,8}.【答案】(1)C (2){2,8}思想方法之一数形结合思想在集合中的妙用数形结合思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维相结合,使问题化难为易、化抽象为具体.数形结合思想在集合中的应用具体体现在以下三个方面:(1)利用Venn图,直观地判断集合的包含或相等关系.(2)利用Venn图,求解有限集合的交、并、补运算.(3)借助数轴,分析无限集合的包含或相等关系或求解集合的交、并、补运算结果及所含参变量的取值范围问题.————[1个示范例] ————[1个对点练] ————(xx·天津高考)已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m=________,n=________.【解析】∵A={x|-5<x<1},B={x|(x-m)(x-2)<0},且A∩B={x|-1<x<n}.如图所示由图可知A∩B={x|-1<x<1},故n=1,m=-1.,设A={x|-2<x<-1,或x>1},B={x|x2+ax+b≤0}.已知A∪B={x|x>-2},A∩B={x|1<x≤3},则a=________,b=________.【解析】如图所示.设想集合B所表示的范围在数轴上移动,显然当且仅当B覆盖住集合{x|-1≤x≤3}时符合题意.根据一元二次不等式与一元二次方程的关系,可知-1与3是方程x2+ax+b=0的两根,∴a=-(-1+3)=-2,b=(-1)×3=-3.【答案】-2 -321908 5594 喔37004 908C 邌21015 5217 列KJ=21630 547E 呾26011 659B 斛33432 8298 芘!40745 9F29 鼩30838 7876 硶 5。
专题01 集合的概念与运算【考点总结】1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法2.A B(或B A)3.∁A={x|x∈U,且x∉1.三种集合运用的性质(1)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.(2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.(3)补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A;∁U(A∩B)=(∁U A)∪(∁U B);∁U(A∪B)=(∁U A)∩(∁U B).2.集合基本关系的四个结论(1)空集是任意一个集合的子集,是任意一个非空集合的真子集.(2)任何一个集合是它本身的子集,即A ⊆A .空集只有一个子集,即它本身. (3)集合的子集和真子集具有传递性:若A ⊆B ,B ⊆C ,则A ⊆C ;若AB ,BC ,则AC .(4)含有n 个元素的集合有2n 个子集,有2n -1个非空子集,有2n -1个真子集,有2n -2个非空真子集. 【易错总结】(1)忽视集合中元素的互异性致误; (2)忽视空集的情况致误; (3)忽视区间端点值致误.例1.已知集合A ={1,3,m },B ={1,m },若B ⊆A ,则m =________.解析:因为B ⊆A ,所以m =3或m =m ,即m =3或m =0或m =1,根据集合元素的互异性可知,m ≠1,所以m =0或3.答案:0或3例2.已知集合M ={x |x -2=0},N ={x |ax -1=0},若M ∩N =N ,则实数a 的值是________.解析:易得M ={2}.因为M ∩N =N ,所以N ⊆M ,所以N =∅或N =M ,所以a =0或a =12.答案:0或12例3.已知集合A ={x |x 2-4x +3<0},B ={x |2<x <4},则A ∩B =________,A ∪B =________,(∁R A )∪B =________.解析:由已知得A ={x |1<x <3},B ={x |2<x <4},所以A ∩B ={x |2<x <3},A ∪B ={x |1<x <4}, (∁R A )∪B ={x |x ≤1或x >2}.答案:(2,3) (1,4) (-∞,1]∪(2,+∞) 【考点解析】【考点】一、集合的概念例1.设集合A ={x ∈Z ||x |≤2},B ={y |y =x 2+1,x ∈A },则B 中的元素有( )A .5个B .4个C .3个D .无数个解析:选C.依题意有A ={-2,-1,0,1,2},代入y =x 2+1得到B ={1,2,5},故B 中有3个元素.例2.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =________.解析:当a =0时,显然成立;当a ≠0时,Δ=(-3)2-8a =0,即a =98.答案:0或98例3.已知集合A ={x ∈N |1<x <log 2k },集合A 中至少有3个元素,则k 的取值范围为________.解析:因为集合A 中至少有3个元素,所以log 2k >4,所以k >24=16.答案:(16,+∞)例4.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.解析:由题意得m +2=3或2m 2+m =3, 则m =1或m =-32.当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意; 当m =-32时,m +2=12,而2m 2+m =3,符合题意,故m =-32.答案:-32求解与集合中的元素有关问题的注意事项(1)如果题目条件中的集合是用描述法表示的集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型的集合.(2)如果是根据已知列方程求参数值,一定要将参数值代入集合中检验是否满足元素的互异性. 【考点】二、集合的基本关系例1、(1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则( )A .B ⊆A B .A =BC .ABD .BA(2)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(3)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________. 【解析】 (1)由x 2-3x +2=0得x =1或x =2,所以A ={1,2}.由题意知B ={1,2,3,4},比较A ,B 中的元素可知AB ,故选C.(2)因为A ={1,2},B ={1,2,3,4},A ⊆C ⊆B ,则集合C 可以为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.(3)因为B ⊆A ,所以①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①②可得,符合题意的实数m 的取值范围为m ≤3. 【答案】 (1)C (2)D (3)(-∞,3] 【迁移探究1】 (变条件)本例(3)中,若BA ,求m 的取值范围?解:因为BA ,①若B =∅,成立,此时m <2.②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5,且边界点不能同时取得,解得2≤m ≤3.综合①②,m 的取值范围为(-∞,3].【迁移探究2】 (变条件)本例(3)中,若A ⊆B ,求m 的取值范围.解:若A ⊆B ,则⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m ≤-3,m ≥3.所以m 的取值范围为∅.【迁移探究3】 (变条件)若将本例(3)中的集合A 改为A ={x |x <-2或x >5},试求m 的取值范围.解:因为B ⊆A ,所以①当B =∅时,2m -1<m +1,即m <2,符合题意.②当B ≠∅时,⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2,解得⎩⎪⎨⎪⎧m ≥2,m >4或⎩⎪⎨⎪⎧m ≥2,m <-12.即m >4.综上可知,实数m 的取值范围为(-∞,2)∪(4,+∞). (1)判断两集合关系的方法①对描述法表示的集合,把集合化简后,从表达式中寻找两集合间的关系; ②对于用列举法表示的集合,从元素中寻找关系. (2)根据两集合间的关系求参数的方法已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、V enn 图等来直观解决这类问题.[提醒] 空集是任何集合的子集,当题目条件中有B ⊆A 时,应分B =∅和B ≠∅两种情况讨论.例1.(2020·河北唐山第一次模拟)设集合M ={x |x 2-x >0},N =⎩⎨⎧x ⎪⎪⎭⎬⎫1x <1,则( ) A .M N B .N MC .M =ND .M ∪N =R解析:选C.集合M ={x |x 2-x >0}={x |x >1或x <0},N =⎩⎨⎧x ⎪⎪⎭⎬⎫1x <1={x |x >1或x <0},所以M =N .故答案为C.例2.设M 为非空的数集,M ⊆{1,2,3},且M 中至少含有一个奇数元素,则这样的集合M 共有( )A .6个B .5个C .4个D .3个解析:选A.由题意知,M ={1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.例3.若集合A ={1,2},B ={x |x 2+mx +1=0,x ∈R },且B ⊆A ,则实数m 的取值范围为________.解析:①若B =∅,则Δ=m 2-4<0, 解得-2<m <2,符合题意; ②若1∈B ,则12+m +1=0,解得m =-2,此时B ={1},符合题意; ③若2∈B ,则22+2m +1=0,解得m =-52,此时B =⎩⎨⎧⎭⎬⎫2,12,不合题意.综上所述,实数m 的取值范围为[-2,2). 答案:[-2,2)【考点】三、集合的基本运算 角度一 集合的运算例1、(1)(2019·高考全国卷Ⅰ)已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N =( )A .{x |-4<x <3}B .{x |-4<x <-2}C .{x |-2<x <2}D .{x |2<x <3}(2)(2020·河南焦作模拟)若集合A ={x |2x 2-9x >0},B ={y |y ≥2},则(∁R A )∪B =( ) A.⎣⎡⎦⎤2,92 B .∅C .[0,+∞)D .(0,+∞)【解析】 (1)通解:因为N ={x |-2<x <3},M ={x |-4<x <2},所以M ∩N ={x |-2<x <2},故选C. 优解:由题可得N ={x |-2<x <3}. 因为-3∉N ,所以-3∉M ∩N ,排除A ,B ; 因为2.5∉M ,所以2.5∉M ∩N ,排除D.故选C.(2)因为A ={x |2x 2-9x >0}=⎩⎨⎧⎭⎬⎫x ⎪⎪x >92或x <0,所以∁RA =⎩⎨⎧⎭⎬⎫x ⎪⎪0≤x ≤92,又B ={y |y ≥2},所以(∁R A )∪B =[0,+∞).故选C.【答案】 (1)C (2)C 角度二 利用集合的运算求参数例2、(1)(2020·江西上饶重点中学六校联考)已知A =[1,+∞),B =[0,3a -1],若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B .⎣⎡⎦⎤12,1 C.⎣⎡⎭⎫23,+∞D .(1,+∞)(2)集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为________.(3)已知集合A ={x |x 2-x -12>0},B ={x |x ≥m }.若A ∩B ={x |x >4},则实数m 的取值范围是________.【解析】 (1)由题意可得3a -1≥1,解得a ≥23,即实数a 的数值范围是⎣⎡⎭⎫23,+∞.故选C. (2)根据并集的概念,可知{a ,a 2}={4,16},故只能是a =4.(3)集合A ={x |x <-3或x >4},因为A ∩B ={x |x >4},所以-3≤m ≤4. 【答案】 (1)C (2)4 (3)[-3,4] (1)集合运算的常用方法①若集合中的元素是离散的,常用Venn 图求解;②若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况. (2)利用集合的运算求参数的值或取值范围的方法①与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到;②若集合能一一列举,则一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解. [提醒] 在求出参数后,注意结果的验证(满足互异性).例1.(2020·江西吉安一中、新余一中等八所中学联考)已知集合M =[-1,1],N ={y |y =x 2,x ∈M },则M ∩N =( )A .[0,1]B .[-1,1]C .[0,1)D .(0,1]解析:选A.由于M =[-1,1],N ={y |y =x 2,x ∈M },所以N =[0,1],所以M ∩N =[0,1].故选A. 例2.(2020·安徽宣城八校联考)如图,设全集U =N ,集合A ={1,3,5,7,8},B ={1,2,3,4,5},则图中阴影部分表示的集合为( )A .{2,4}B .{7,8}C .{1,3,5}D .{1,2,3,4,5}解析:选A.由题图可知阴影部分表示的集合为(∁U A )∩B ,因为集合A ={1,3,5,7,8},B ={1,2,3,4,5},U =N ,所以(∁U A )∩B ={2,4}.故选A.例3.已知集合A ={x |-1<x <2},B ={x |y =-x 2-2x },则A ∩B =( )A .{x |-1<x <0}B .{x |-1<x ≤0}C .{x |0<x <2}D .{x |0≤x <2}解析:选B.因为函数y =-x 2-2x 有意义,所以-x 2-2x ≥0,解得-2≤x ≤0,所以集合B ={x |-2≤x ≤0}.又集合A ={x |-1<x <2},所以A ∩B ={x |-1<x ≤0}.故选B. 【技巧总结】集合新定义问题中的核心素养例1、(1)(2020·河南南阳第一中学第十四次考试)定义集合运算:A ⊙B ={Z |Z =xy ,x ∈A ,y ∈B },设集合A ={-1,0,1},B ={sin α,cos α},则集合A ⊙B 的所有元素之和为( )A .1B .0C.-1 D.sin α+cos α(2)(2020·河北保定一模)设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|1<2x<4},Q={y|y=2+sin x,x∈R},那么P-Q=()A.{x|0<x≤1} B.{x|0≤x<2}C.{x|1≤x<2} D.{x|0<x<1}【解析】(1)因为x∈A,所以x的可能取值为-1,0,1.同理,y的可能取值为sin α,cos α,所以xy的所有可能取值为(重复的只列举一次):-sin α,0,sin α,-cos α,cos α,所以所有元素之和为0.故选B.(2)由题意得P={x|0<x<2},Q={y|1≤y≤3},所以P-Q={x|0<x<1}.故选D.【答案】(1)B(2)D(1)以集合为背景的新定义问题常以“问题”为核心,以“探究”为途径,以“发现”为目的,这类试题只是以集合为依托,考查考生对新概念的理解,充分体现了核心素养中的数学抽象.(2)解决集合的新定义问题的两个切入点①正确理解新定义.这类问题不是简单的考查集合的概念或性质问题,而是以集合为载体的有关新定义问题.常见的命题形式有新概念、新法则、新运算等;②合理利用集合性质.运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,但关键之处还是合理利用集合的运算与性质.。
2021年高考数学一轮复习第一章集合与常用逻辑用语第1课集合的概念及运算文(含解析)1.集合的含义与表示①集合中元素的三个特征:确定性、互异性、无序性.②集合中元素与集合的关系意义符号表示属于集合是集合的元素不属于集合不是集合的元素③集合的表示法:列举法、描述法、韦恩图.④常用数集的表示集合自然数集正整数集整数集有理数集实数集表示2.集合间的基本关系①子集:若对∀x∈A,都有x∈B,则A⊆B.②真子集:若A⊆B,但∃x∈B,且x∉A,则A B.③相等:若A⊆B,且B⊆A,则A=B.④空集是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算4.集合A元素的个数为n则①A的子集个数为.②A的真子集个数为.5. 集合的运算及性质,.【例1】(xx延庆一模)已知集合,,,则()A.或 B.或 C.或 D.或【答案】B【解析】∵,∴,∴或.若,则,满足.若,解得或.若,则,满足.若,显然不成立,综上:或.【变式】(xx黑龙江质检)设集合,,则()A. B. C. D.【答案】B【解析】∵,∴.【例2】(xx惠州调研)已知集合,,若,则实数的所有可能取值的集合为()A. B. C. D.【答案】D【解析】(1)若时,得,满足;(2)若时,得.,∴或,解得,或.故所求实数的值为,或,或.【变式】已知集合,且,则实数的取值范围是()A. B. C. D.【答案】C【解析】∵,∴.(1)当时,则,解得.(2)当时,则,解得.∴实数的取值范围是.【例3】(xx揭阳一模)已知集合,集合,则()A .B .C .D .【答案】D【解析】∵,,∴.【变式】(xx 山东高考)已知集合、均为全集的子集,且,,则( )A .B .C .D .【答案】A【解析】∵,∴且,∵,∴,,∴,或,或,或,∴,.【例4】(xx 珠海一模)设为全集,对集合,定义运算“”,满足,则对于任意集合,()A .B .C .D .【答案】D【解析】()[()]()()U U U X Y Z X Y Z X Y Z ⊕⊕=⊕=.【变式】设、为两个非空实数集合,定义集合,若,,则中元素的个数为( )A .9B .8C .7D .6【答案】B【解析】∵,,,∴当时,的值为1,2,6;当时,的值为3,4,8;当时,的值为6,7,11,∴,∴中有8个元素.第1课 集合的概念及运算的课后作业1.(xx 福建高考)若集合,则的子集个数为( )A .2B .3C .4D .16【答案】C【解析】∵,∴的子集为.2.(xx 惠州调研)已知集合,,则( )A .B .C .D .【答案】C【解析】,故.3.(xx 全国高考)设集合则中的元素个数为( )A .B .C .D .【答案】B【解析】,有4个元素.4.(xx 中山质检)设全集,集合,,则图中的阴影部分表示的集合为( )AB .C .D . .5.(xx·惠州一模)若集合 , ,则A∩B=( )A .-1B .{-1}C .{-1,5}D .{1,-1}【答案】B【解析】由集合A 中的方程,解得: 或,所以集合 ,由集合B 中的方程,解得: 或,所以集合 ,则 .故选B.6. (xx·新课标全国卷Ⅰ)已知集合 ,,则 ( )A .{1,4}B .{2,3}C .{9,16}D .{1,2}【答案】A【解析】因为,所以 .所以 .所以,故选A.7.(xx·梅州二模)已知集合 ,集合,且A∩B={1},则A∪B=( )A .{0,1,3}B .{1,2,4}C .{0,1,2,3}D .{0,1,2,3,4}【答案】C【解析】因为,集合 ,且A∩B={1},所以,解得: 或 ,当 时, ,不合题意,舍去;当 时, ,此时,所以 ,集合 ,则 .故选C.8.若全集 ,集合 ,则 ________.【答案】{x|0<x<1}9.(xx·上海卷)若集合 , ,则A∩B=________.【答案】⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<x <1 【解析】解得集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >12,集合B ={x|-1<x <1},求得A∩B=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 12<x <1. 10.(xx·河南调研)设全集 , ,, ,则集合 的所有子集是________________.【答案】 、{1}、{2}、{1,2}【解析】因为,所以 ,所以|a +1|=3,且 ,解得 或 .所以 .11.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 6x +1≥1,x∈R , ,若 ,求实数m 的值. 【解析】由6x +1>1,得x -5x +1≤0,所以-1<x≤5,即A ={x|-1<x≤5}, 又A∩B={x|-1<x <4},所以4是方程 的根,于是,解得m=8.此时,符合题意,故实数m的值为8.12.设全集,已知集合,.(1)求;(2)记集合,已知集合,若B∪A=A,求实数的取值范围.【解析】(1)∵,,∴,.(2) ,∵,,∴或,当时,,∴;当时,,解得从而,综上所述,所求的取值范围为.t30464 7700 眀28956 711C 焜 28147 6DF3 淳L-23767 5CD7 峗25830 64E6 擦,ugt。