第四章习题课微分方程2
- 格式:ppt
- 大小:298.00 KB
- 文档页数:18
第四章 高阶微分方程§4.1 线性微分方程的一般理论习题4.11.设)(t x 和)(t y 是区间[]b a ,上的连续函数,证明:若在区间[]b a ,上有≠)()(t y t x 常数或≠)()(t x t y 常数,则)(t x 和)(t y 在区间[]b a ,上线性无关.(提示:用反证法) 证明 )(t x 和)(t y 是区间[]b a ,上线性相关,则存在不全为0的常数21,c c 使得0)()(21≡+t y c t x c ,[]b a t ,∈,若)0(,021≠≠c c 或得12)()(c c t y t x -≡(或21)()(c c t x t y -≡)[]b a t ,∈∀成立。
与假设矛盾,故)(t x 和)(t y 在区间[]b a ,上线性无关.2.证明非齐次线性方程的叠加原理:设)(1t x ,)(2t x 分别是非齐次线性方程)()()(1111t f x t a dt xd t a dt x d n n n n n =+++-- (1) )()()(2111t f x t a dtxd t a dt x d n n n nn =+++-- (2) 的解,则)()(21t x t x +是方程)()()()(21111t f t f x t a dtxd t a dt x d n n n n n +=+++-- (3) 的解.证明 因为)(1t x ,)(2t x 分别是方程(1)、(2)的解,所以)()()(1111111t f x t a dt x d t a dt x d n n n n n =+++-- , )()()(2212112t f x t a dtx d t a dt x d n n n nn =+++-- , 二式相加得,)()())(()()()(21211211121t f t f x x t a dt x x d t a dt x x d n n n n n +=++++++-- ,即)()(21t x t x +是方程(3)的解.3.(1).试验证022=-x dt x d 的基本解组为tt e e -,,并求方程t x dtx d cos 22=-的通解。
4-2.5μF 电容的端电压如图示。
(1)绘出电流波形图。
(2)确定2μs t =和10μs t =时电容的储能。
解:(1)由电压波形图写出电容端电压的表达式:10 0μs 1μs10 1μs 3μs ()1040 3μs 4μs 0 4μs t t t u t t t t≤≤⎧⎪≤≤⎪=⎨-+≤≤⎪⎪≤⎩式中时间t 的单位为微秒;电压的单位为毫伏。
电容伏安关系的微分形式:50 0μs 1μs 0 1μs 3μs()()50 3μs 4μs 0 4μs t t du t i t C t dt t<<⎧⎪<<⎪==⎨-<<⎪⎪<⎩上式中时间的单位为微秒;电压的单位为毫伏;电容的单位为微法拉;电流的单位为毫安。
电容电流的波形如右图所示。
(2)电容的储能21()()2w t Cu t =,即电容储能与电容端电压的平方成正比。
当2μs t =时,电容端电压为10毫伏,故:()()22631010μs 11()5101010 2.510J 22t w t Cu ---===⨯⨯⨯⨯=⨯当10μs t =时,电容的端电压为0,故当10μs t =时电容的储能为0。
4-3.定值电流4A 从t=0开始对2F 电容充电,问:(1)10秒后电容的储能是多少100秒后电容的储能是多少设电容初始电压为0。
解:电容端电压:()()()00110422t tC C u t u i d d t C τττ+++=+==⎰⎰;()1021020V C u =⨯=; ()1002100200V C u =⨯=()()211010400J 2C w Cu ==; ()()2110010040000J 2C w Cu ==4-6.通过3mH 电感的电流波形如图示。
(1)试求电感端电压()L u t ,并绘出波形图;(2)试求电感功率()L p t ,并绘出波形图;(3)试求电感储能()L w t ,并绘出波形图。
第四章 抛物型微分方程有限差分法1设已知初边值问题22, 01, 0<(,0)sin , 01(0,)(1,)0, 0 u ux t t x u x x x u t u t t T π⎧∂∂=<<⎪∂∂⎪⎪=≤≤⎨⎪==≤≤⎪⎪⎩T ≤, 试用最简显格式求上述问题的数值解。
取h=0.1,r=0.1.0 1/10 2/10 … 1 T 2τ τt解: 1.矩形网格剖分区域. 取空间步长1, 时间2510h =0.00τ=以及0.01τ=的矩形网格剖分区域, 用节点)表示坐标点(,j k (,)(,)j k x t jh k τ=, 0,1,...1/; 0,1,...,/j h k T τ==, 如图所示.显然, 我们需要求解这(1/1)(/1)h T τ+×+个点对应的函数值. 事实上由已知初边界条件蓝标附近的点可直接得到, 所以只要确定微分方程的解在其它点上的取值即可. 沿用记号[]k(,)j j k u x t =。
u 2. 建立差分格式, 对于11,...1; 0,1,...,1Tj k hτ=−=−, 用向前差商代替关于时间的一阶偏导数, 用二阶中心差商代替关于空间的二阶偏导数, 则可定义最简显格式:1122k k k k k1jj j j u u u u u h ++−+=. 变形j τ−−有:1112(12) (k k k kj j j j u ru r u ru r h τ+−+=+−+=(4.1)用向后差商代替关于时间的一阶偏导数, 用二阶中心差商代替关于空间的二阶偏导数, 则可定义最简显格式最简隐格式:111122k k k k k j jj j j u u u u u h τ++++−−+=11+−1kj +,变形有:1111(12) k k k j j j ru r u ru u ++−−−++−= (4.2)(4.1)*0.5+(4.2)*0.5得CN 格式为:111112222k k k k k k k k j jj j j j j j u u u u u u u u h τ+++−+−−++−+=111++−1kj +x x变形有:111111(22)(22) k k k k k j j j j j ru r u ru ru r u ru ++−−+−−++−=+−+ (4.3)3 初边界点差分格式处理.对于初始条件u x (,0)sin , 01=π≤≤h 离散为(4.4)0sin 0,1,...1/j u jh j π==对于边界条件离散为(0,)(1,)0, 0 u t u t t T ==≤≤00 0,1,.../k k N u u k T τ===(4.5)总结: 联立方程(4.1)(4.4)(4.5)得到已知问题的最简显格式差分方程组:11100(12)1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k j j j j jk k N u ru r u ru T j k h u jh j h u u k T τπτ+−+⎧=+−+⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩ 联立方程(4.2)( 4.4)( 4.5)得到已知问题的最简隐格式差分方程组:1111100(12) 1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k j j j j jk k N ru r u ru u T j k h u jh j h u u k T τπτ++−−+⎧−++−=⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩ 联立方程(4.3)( 4.4)( 4.5)得到已知问题的CN 格式差分方程组:11111100(22)(22) 1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k k j j j j j jk k N ru r u ru ru r u ru T j k h u jh j h u u k T τπτ++−−+−⎧−++−=+−+⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩1k j + 4 求解并显示结果利用软件计算(Matlab)如上最简显格式差分方程组.h=1/10;tau=0.0025;T=0.5; r=tau/h^2;M=1/h+1;N=T/tau+1; u=zeros(M,N);for m=1:Mu(m,1)=sin((m-1)*h*pi); endu(1,1:N)=0;u(M,1:N)=0;for n=1:N-1for m=2:M-1u(m,n+1)=r*(u(m+1,n)+u(m-1,n))+(1-2*r)*u(m,n); end end u=u’ 这样我们就计算出不同时刻不同位置k t j x 对应的函数值(,)j k u x t 取tau=0.0025, 即r=0.25绘图, 取tau=0.01, r=1再绘图,如图()图4.2 习题1数值解图示(左r=0.25, 右r=1)2.试构造初边值问题 ()()()()(), 0.51, 0,,0, 0.51,0.5,0, 1,0.51,, 0u u x x x T t x x u x x x u ⎪∂u t t u t t T x ϕ⎧∂∂∂⎛⎞=<<<≤⎜⎟⎪∂∂∂⎝⎠⎪⎪=≤≤⎨⎪==−≤≤⎪∂⎩的显格式,并给出其按最大范数稳定的充分条件。
常微分方程第四章课后答案大家好,我是你们的语文老师小七。
在高中阶段很多学生对于课本上的知识点都有一些基础认识,但是有些同学在理解了这个知识点之后就不知道该如何去理解了,所以今天我就来给大家讲解一下常微分方程第四章课后习题练习。
这一章节主要讲两个内容:①什么是常微分方程;②常微分方程解法。
第一个内容是常微分方程解法的定义,这是在课本中找不到的知识。
这一部分主要要学习基本的表达式以及一些解析式。
第二个内容是常微分方程中积分法,对于初学者来说这一部分更是需要好好学习了。
下面我们就来了解一下这些知识点吧。
首先要明确一下这章节讲的内容不能单独做练习题,而是需要把每一道例题都做完才行。
这节课除了常规的知识会做一些相关例题之外,还会讲解下几道解析式以及常见的几种情况了。
1.线性表达式的两个性质线性表达式中含有一个值为 y,由定义可知 x的值为 y=0,这种情况下表达式的两个性质分别为①线性表达式有无限长时,函数的阶数不变;②线性表达式随解变小而逐渐递减;③线性表达式对任意一阶值的变换都可以得到对应形式,比如用n× n来表示(如矩阵)。
这两个性质可以通过具体例子来说明这一点。
在函数 x>0时,由于有无穷多个解,每个解都有相应的矩阵,并且在这个矩阵中存在相同的化简问题。
那么解方程中所含有的多变量就是这两个性质。
其中 x 和 y分别表示对一个函数 x和 y取对应微分时变量之间的关系。
另外还有一种情况会用到近似解来证明:即满足 k、 z、?三大条件中有任意一种条件时,可以得到一个近似求解的常微分方程:所以两个函数均满足 k、 z、?三大条件中任意一项就可以得到这类线性表达式下面这个解法:若 y为二元函数,则 y=2 x+1 y^2 x+1 y^2 x^2 x=+1x?1=+1x-2-0 (如矩阵)。
2.等比数列在常微分方程解法方面,我们的解法就是将该解法和实际中计算的解做一个等值处理。
我们通常将等值数列分为等比数列(m= m)和等比数列(m=1)。