组合数学之常系数递归关系
- 格式:ppt
- 大小:767.50 KB
- 文档页数:58
二阶常系数递推关系求解方法一、递推关系的定义与性质在数学中,递推关系是指通过递推公式来描述数列中各项之间的关系。
常系数递推关系是指递推关系中各项的系数都是常数。
设有一个序列 {an},其中 n 表示序列中的项数。
如果序列满足递推关系 an = c1an-1+ c2an-2 + ... + ck an-k ,其中ci (1 ≤ i ≤ k) 为常数,那么我们称该序列满足一个 k 阶常系数递推关系。
常系数递推关系的性质:1. 齐次性:如果一个递推关系的非齐次项为0,即对于所有的 i,ci = 0,则该递推关系称为齐次线性递推关系。
2. 非齐次性:如果一个递推关系的非齐次项不为0,即存在一些 i,ci ≠ 0,则该递推关系称为非齐次线性递推关系。
3.初值条件:对于一个k阶线性递推关系,需要给出前k项的初值条件才能确定整个序列。
二、求解齐次线性递推关系的通解对于线性递推关系 an = c1an-1+ c2an-2 + ... + ck an-k ,其中ci (1 ≤ i ≤ k) 为常数,我们可以采用特征根法求解其通解。
1. 假设通解为an = λn ,将其代入递推关系,得到λ^n = c1λ^(n-1)+ c2λ^(n-2) + ... + ck λ^(n-k)2.将等式左边的λ^n移至等式右边,得到λ^n - c1λ^(n-1) - c2λ^(n-2) - ... - ck λ^(n-k) = 03.将该齐次方程转化为特征方程,即λ^k - c1λ^(k-1) - c2λ^(k-2) - ... - ck = 04.解特征方程,得到k个实数或复数根λ1,λ2,...,λk。
5.得到齐次线性递推关系的通解为an = A1λ1^n + A2λ2^n + ... + Akλk^n其中A1,A2,...,Ak为待定系数。
通过给定的初值条件,可以使用线性方程组求解方法来确定待定系数A1,A2,...,Ak。
三、求解非齐次线性递推关系的通解对于非齐次线性递推关系 an = c1an-1+ c2an-2 + ... + ck an-k + f(n),其中 f(n) 为一个关于 n 的函数,我们可以采用常数变易法求解其通解。
ACM 暑期集训 组合数学(4) 递推 递归 母函数1 递推关系序列{a n }=a 0,a 1,…,a n ,…,把 a n 与某些a i (i <n )联系起来的等式叫做关于序列{a n }的递推方程。
当给定递推方程和适当的初值就唯一确定了序列。
递推关系分类: (1)按常量部分:齐次递推关系:指常量=0,如F(n)=F(n-1)+F(n-2) 非齐次递推关系:指常量≠0,如F(n)=2*F(n-1)+1 (2)按运算关系:线性关系,如上面的两个;非线性关系,如F(n)=F(n-1)*F(n-2)。
(3)按系数:常系数递推关系,如(1)中的两个;变系数递推关系,如D(n)=(n-1)(D(n-1)+D(n-2)。
(4)按数列的多少一元递推关系,只涉及一个数列,上面的均为一元; 多元递推关系,涉及多个数列,如⎩⎨⎧+=+=----111177n n nn n n a b b b a a Fibonacci 数列为1,1,2,3,5,8,13,.....long long data[100]; data[1]=1; data[2]=1;for(int i=3;i<=50;i++) data[i]=data[i-1]+data[i-2]; while(cin>>n) cout<<data[n]<<endl;例1:直线割平面问题。
在一个无限的平面上有N 条直线,试问这些直线最多能将平面分割成多少区域?F(1) = 2; F(2) = 4; F(3) = 7; F(n)=F(n-1)+n; (n>1)int recurrence(int n) //递推 {f[1]=2;for(i=2;i<=n;i++) f[n]=f[n-1]+n; return f[n]; }int recursion(int n) 递归: {if(n==1) return 2;//递归终止条件 else return recursion(n-1)+n; }更快的方法是求出通项:F(n)=n^(n+1)/2+1例2:HDOJ2050 折线割平面问题在一个无限的平面上有N 条折线,试问这些折线最多能将平面分割成多少区域?F(n)=F(n-1)+4n-3; F(n)=2*n^2-n+1;例3:椭圆割平面问题。
数学中的递归关系与递归公式数学中的递归关系与递归公式是一种重要的数学工具,被广泛应用于各个领域,包括计算机科学、经济学、物理学等。
本文将就递归关系和递归公式的概念、特点以及应用领域进行探讨。
一、递归关系的概念与特点递归关系是指在定义中依赖自身的关系。
换句话说,当前的值取决于前面的值。
在数学中,递归关系常常用于描述数列、集合以及函数之间的关系。
一个典型的递归关系可以用如下的数列来说明:F(n) = F(n-1) + F(n-2),其中F(1)=1,F(2)=1。
在这个数列中,每一个数都是前两个数的和。
递归关系的特点在于它能够将较大的问题转化为较小的子问题,并通过不断地迭代求解子问题来得到最终的结果。
递归关系有以下几个重要的特点:1. 递归关系需要一个或多个初始条件,也称为基本情况。
在上述例子中,F(1)=1和F(2)=1即为初始条件,没有初始条件的递归关系将无法求解。
2. 递归关系必须能够在每一步中将问题规模缩小。
这保证了问题在经过有限次迭代后能够达到基本情况。
3. 递归关系可能存在多个解,每一个解都是基于不同的初始条件得到的。
4. 递归关系的求解通常通过递归公式来实现。
二、递归公式的概念与求解方法递归公式是一种用于求解递归关系的数学表达式。
它用于将问题的较大实例转化为较小实例的解。
通常情况下,递归公式由递归关系的定义式推导得到。
以斐波那契数列为例,递归关系F(n) = F(n-1) + F(n-2)中的递归公式为F(n) = F(n-1) + F(n-2),其中F(1)=1,F(2)=1。
通过递归公式,我们可以直接计算出数列中任意位置的值,而无需通过逐步迭代求解。
除了直接求解递归关系外,递归公式还可以用于证明数学定理和推导数学结论。
通过递归公式,我们可以建立数学模型,进而解决实际问题。
三、递归关系与递归公式的应用1. 计算机科学中的递归关系与递归公式在计算机科学中,递归关系和递归公式被广泛应用于算法分析和设计中。
第一章:1。
2. 求在1000和9999之间各位数字都不相同,而且由奇数构成的整数个数。
解:由奇数构成的4位数只能是由1,3,5,7,9这5个数字构成,又要求各位数字都不相同,因此这是一组从5个不同元素中选4个的排列,所以,所求个数为:P (5,4)=120。
1.4。
10个人坐在一排看戏有多少种就坐方式?如果其中有两人不愿坐在一起,问有多少种就坐方式? 解:这显然是一组10个人的全排列问题,故共有10!种就坐方式。
如果两个人坐在一起,则可把这两个人捆绑在一起,如是问题就变成9个人的全排列,共有9!种就坐方式.而这两个人相捆绑的方式又有2种(甲在乙的左面或右面)。
故两人坐在一起的方式数共有2*9!,于是两人不坐在一 起的方式共有 10!— 2*9!.1.5. 10个人围圆桌而坐,其中两人不愿坐在一起,问有多少种就坐方式? 解:这是一组圆排列问题,10个人围圆就坐共有10!10 种方式。
两人坐在一起的方式数为9!92⨯,故两人不坐在一起的方式数为:9!—2*8!。
1。
14. 求1到10000中,有多少正数,它的数字之和等于5?又有多少数字之和小于5的整数? 解:(1)在1到9999中考虑,不是4位数的整数前面补足0, 例如235写成0235,则问题就变为求: x 1+x 2+x 3+x 4=5 的非负整数解的个数,故有F (4,5)=⎪⎪⎭⎫⎝⎛-+=515456 (2)分为求:x 1+x 2+x 3+x 4=4 的非负整数解,其个数为F (4,4)=35 x 1+x 2+x 3+x 4=3 的非负整数解,其个数为F(4,3)=20 x 1+x 2+x 3+x 4=2 的非负整数解,其个数为F (4,2)=10 x 1+x 2+x 3+x 4=1 的非负整数解,其个数为F (4,1)=4 x 1+x 2+x 3+x 4=0 的非负整数解,其个数为F (4,0)=1将它们相加即得,F (4,4)+F(4,3)+F (4,2)+F (4,1)+F (4,0)=70。
在数学中,递归关系与递推公式是两个常常使用的概念。
它们用于描述数列、函数或者其他数学对象之间的关系,并且在数学问题的解决中起到了重要的作用。
在本文中,我们将详细讲述递归关系和递推公式的概念、性质以及应用。
首先,我们来看递归关系。
递归关系通常用于定义一个数列或者函数,它通过将问题分解为更小的子问题来进行定义。
具体来说,一个递归关系由两部分组成:初始条件和递归步骤。
初始条件是一个或一组已知的数值,用于开始递归过程。
递归步骤则描述了如何从已知的值推导出后续的值。
递归过程在每一步都会使用之前的值来计算新的值,直到得到所需的结果为止。
举一个简单的例子来说明递归关系。
考虑斐波那契数列,它定义如下:第一个数字为0,第二个数字为1,从第三个数字开始,每个数字都是前两个数字的和。
用递归关系来定义斐波那契数列可以写成:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2)。
我们可以看出,这个递归关系将问题分解为计算前面两个数字的和,这样就可以得到后续的数字。
递归关系的另一个重要应用是在数学归纳法的证明中。
数学归纳法是一种证明思想,用于证明一般情况下的命题。
它主要分为两个步骤:基础步骤和归纳步骤。
基础步骤是证明命题在某个特定情况下成立,而归纳步骤则是假设命题在某个情况下成立,然后通过递归关系证明在下一个情况下也成立。
递归关系在归纳步骤中起到了至关重要的作用,它提供了从一个情况到下一个情况的连接。
与递归关系相对应的是递推公式。
递推公式是一种通过前面的值计算出后续的值的公式。
它不需要进行递归的计算,而是直接使用已知的值进行计算。
递推公式在解决一些数学问题时具有很大的便利性,因为它们可以快速得到所需的结果。
递推公式与递归关系有着密切的联系。
事实上,递推公式可以从递归关系中推导出来,而递归关系也可以通过递推公式来表示。
它们在描述数学对象之间的关系时起到了互补的作用。
最后,我们来看一些常见的应用。
递归关系和递推公式广泛应用于数列、函数、动态规划等数学问题的解决中。
递归关系式引言递归关系式是数学中一个重要的概念,它在各个领域都有广泛的应用。
递归关系式是描述一个数列或函数的定义式中,通过引用其自身来定义的。
它能够将一个问题分解为更小的子问题,从而简化复杂的计算过程。
本文将深入探讨递归关系式的概念、性质以及在数学和计算机科学中的应用。
什么是递归关系式递归关系式是一种特殊的数学关系式,它通过引用自身来定义。
递归关系式通常用于定义数列或函数,其中每一项或每一个值都依赖于前面的项或值。
递归关系式的定义可以分为两部分:基础情况和递推关系。
基础情况是递归关系式中的边界条件,它指定了递归的终止条件。
在递归计算中,当满足基础情况时,递归将停止。
递推关系是递归关系式中的递推公式,它描述了如何通过已知的项或值计算下一个项或值。
递推关系将问题分解为更小的子问题,并利用已知的解来计算新的解。
递归关系式的性质递归关系式具有以下几个重要的性质:1.递归性:递归关系式是通过引用自身来定义的,因此它具有递归性质。
递归性使得递归关系式能够将一个问题分解为更小的子问题,从而简化计算过程。
2.重叠性:递归关系式中的子问题通常会出现重叠。
这意味着在计算过程中,同一个子问题可能会被多次计算。
为了避免重复计算,可以使用记忆化技术或动态规划来提高计算效率。
3.结构性:递归关系式通常具有明显的结构性质。
通过观察递归关系式的结构,可以找到问题的规律,进而设计出高效的计算方法。
递归关系式的应用递归关系式在数学和计算机科学中有广泛的应用。
以下是一些常见的应用领域:斐波那契数列斐波那契数列是一个经典的递归关系式。
它的定义如下:F(0) = 0F(1) = 1F(n) = F(n-1) + F(n-2) (n > 1)斐波那契数列中的每一项都是前两项的和。
通过递归关系式,可以计算出任意项的值。
斐波那契数列在数学、计算机科学和自然科学中都有广泛的应用,如金融分析、生物学建模等。
阶乘函数阶乘函数是另一个常见的递归关系式。