向量坐标表示练习题及标准答案
- 格式:doc
- 大小:287.50 KB
- 文档页数:5
6.3 平面向量的基本定理及坐标表示(精练)【题组一 向量基底的选择】1.(2021·全国·高一课时练习)下列说法错误的是( )A .一条直线上的所有向量均可以用与其共线的某个非零向量表示B .平面内的所有向量均可以用此平面内的任意两个向量表示C .平面上向量的基底不唯一D .平面内的任意向量在给定基底下的分解式唯一【答案】B【解析】由共线向量的性质可知选项A 正确;根据平面向量基本定理可知:平面内的所有向量均可以用此平面内的任意两个不共线的向量表示,所以选项B 不正确;根据平面向量基本定理可知中:选项C 、D 都正确,故选:B2.(2021·浙江·宁波咸祥中学高一期中)(多选)下列两个向量,不能作为基底向量的是( )A .12(0,0),(1,2)e e ==B .12(2,1),(1,2)e e =-=C .12(1,2),(1,2)e e =--=D .12(1,1),(1,2)e e ==【答案】AC【解析】A 选项,零向量和任意向量平行,所以12,e e 不能作为基底.B 选项,12,e e 不平行,可以作为基底.C 选项,12e e =-,所以12,e e 平行,不能作为基底.D 选项,12,e e 不平行,可以作为基底.故选:AC3.(2021·福建省德化第一中学高一月考)(多选)下列各组向量中,可以作为基底的是( )A .12(0,0),(1,2)e e ==-B .12(1,2),(5,7)e e =-=C .12(3,5),(6,10)e e ==D .1213(2,3),,24e e ⎛⎫==- ⎪⎝⎭ 【答案】BD【解析】A .由于10e =,因为零向量与任意向量共线,因此12,e e 共线,不能作基底,B .因为1725-⨯≠⨯,所以两向量不共线,可以作基底,C .因为212e e =,所以两向量共线,不能作基底,D .因为312342⎛⎫⨯≠⨯- ⎪⎝⎭,所以两向量不共线,可以作基底, 故选:BD.4.(2021·湖北孝感·高一期中)(多选)在下列各组向量中,不能作为基底的是( )A .()1e 0,0→=,()2e 1,2→=-B .()1e 1,2→=-,()2e 5,7→=C .()1e 3,5→=,()2e 6,10→=D .()1e 2,3→=-,()2e 3,2→= 【答案】AC【解析】对A ,1e →∥2e →,不能作为基底;对B ,17250-⨯-⨯≠,1e →与2e →不平行,可以作为基底;对C ,21e 2e →→=,1e →∥2e →,不能作为基底;对D ,22+330⨯⨯≠,1e →与2e →不平行,可以作为基底.故选:AC.5.(2021·全国·高一课时练习)已知1e 与2e 不共线,12122,a e e b e e λ=+=+,且a 与b 是一组基,则实数λ的取值范围是___________. 【答案】11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭ 【解析】因为1e 与2e 不共线,12122,a e e b e e λ=+=+,若a 与b 共线,则a b μ=,即()12122a e e e e μλ=+=+, 所以12λμμ=⎧⎨=⎩,解得122λμ⎧=⎪⎨⎪=⎩, 因为a 与b 是一组基底,所以若a 与b 不共线,所以实数λ的取值范围是11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故答案为:11,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭【题组二 向量的基本定理】1.(2021·广东·汕头市潮南区陈店实验学校高一月考)已知△ABC 的边BC 上有一点D 满足3BD DC =,则AD 可表示为( )A .1344AD AB AC =+ B .3144AD AB AC =+ C .2133AD AB AC =+ D .1233AD AB AC =+ 【答案】A【解析】由3BD DC =,可得3()AD AB AC AD -=-,整理可得43AD AB AC =+, 所以1344AD AB AC =+, 故选:A2.(2021·四川·成都外国语学校高一月考(文))我国东汉末数学家赵夾在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示.在“赵爽弦图”中,若BC a =,BA b =,3BE EF =,则BF =( )A .1292525a b +B .16122525a b + C .4355a b + D .3455a b + 【答案】B【解析】因为此图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,且BC a =,BA b =,3BE EF =, 所以34BF BC CF BC EA =+=+3()4BC EB BA =++ 33()44BC BF BA =+-+ 93164BC BF BA =-+, 解得16122525BF BC BA =+,即16122525BF a b =+, 故选:B3.(2021·陕西·西安电子科技大学附中高一月考)平面内有三个向量,,OA OB OC ,其中OAOB ,的夹角为120,,OA OC 的夹角为30,且32,,2OA OB ==23OC =,(R)OC OA OB λμλμ=+∈,则( ) A .42λμ==,B .322λμ==,C .423λμ==, D .3423λμ==, 【答案】C 【解析】如图所示:过点C 作//CD OB ,交直线OA 于点D ,因为OAOB ,的夹角为120,,OA OC 的夹角为30,所以90OCD =∠,在Rt OCD △中,tan 30232DC OC ===,24sin 30OD ==, 由OC OA OB OD DC λμ=+=+, 可得OD OA λ=,DC OB μ= 所以OD OA λ=,DC OB μ=,所以42λ=,322μ=,所以42,3λμ==. 故选:C.4.(2021·全国·高一课时练习)若1(3,0)e =,2(0,1)e =-,12a e e =-,(1,)b x y =-,且a b =,则实数x ,y 的值分别是( )A .1x =,4y =B .2x =,1y =-C .4x =,1y =D .1x =-,2y =【答案】C 【解析】由题意,12(3,1)a e e =-=,又a b =13411x x y y -==⎧⎧∴⎨⎨==⎩⎩故选:C5.(2021·江苏南京·高一期末)在Rt ABC 中,90BAC ∠=︒,1AB =,2AC =,D 是ABC 内一点,且45DAB ∠=︒设(,)AD AB AC R λμλμ=+∈,则( )A .20λμ+=B .20λμ-=C .2λμ=D .2μλ= 【答案】B【解析】如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系则B 点的坐标为(1,0),C 点的坐标为(0,2)∵∠DAB =45°,所以设D 点的坐标为(m , m )(m ≠0)(,)(1,0)(0,2)(,2)AD m m AB AC λμλμλμ==+=+=则λ=m ,且μ=12m , ∴2λμ=,即20λμ-= 故选:B6.(2021·山西临汾·高一期末)在ABC 中,已知AB AC ⊥,2AB =,3AC =,D 是ABC 内一点,且45DAB ∠=,若(),AD AB AC λμλμ=+∈R ,则λμ=( ) A .32B .23C .34D .43 【答案】A 【解析】以A 为原点,以AB 所在的直线为x 轴,AC 所在的直线为y 轴建立平面直角坐标系,则()2,0B 、()0,3C ,由于45DAB ∠=,可设(),D m m ,因为AD AB AC λμ=+,所以()()(),2,00,3m m λμ=+,所以23m λμ==, 因此,32λμ=. 故选:A.7.(2021·安徽宣城·高一期中)如图,在长方形ABCD 中,2AB AD =,点M 在线段BD 上运动,若AM x AB y AC =+,则2x y +=( )A .1B .32C .2D .43【答案】A 【解析】解:由题可得,设22AB AD ==,因为ABCD 是长方形,所以以点A 为坐标原点,AB 方向为x 轴正方向,AD 方向为y 轴正方向建立平面直角坐标系,则()2,0B 、()0,1D ,则()()2,0,2,1AB AC ==,()2,1BD =-,因为AM x AB y AC =+,所以()22,AM x y y =+,所以()()()222,222,,0y B A x y y x y M B AM =+==-+++-,因为点M 在BD 上运动,所以有//BM BD ,所以()12222x y y ⨯+-=-,整理得21x y +=,故选:A.8(2021·上海·高一课时练习)已知点G 为△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且AM =x AB ,AN =y AC ,求11x y+的值为________. 【答案】3 【解析】根据条件:11,==AC AN AB AM y x,如图设D 为BC 的中点,则1122AD AB AC =+ 因为G 是ABC ∆的重心,211333AG AD AB AC ==+, 1133AG AM AN x y∴=+, 又M ,G ,N 三点共线,11=133x y ∴+,即113x y+=. 故答案为:3.9.(2021·黑龙江·大庆中学高一月考)如图,经过OAB 的重心G 的直线与,OA OB 分别交于点P ,Q ,设,OP mOA OQ nOB →→→→==,,m n R ∈,则11n m+的值为________.【答案】3【解析】设,OA a OB b →→→→==,由题意知211()()323OG OA OB a b →→→→→=⨯+=+, 11,33PQ OQ OP n b m a PG OG OP m a b →→→→→→→→→→⎛⎫=-=-=-=-+ ⎪⎝⎭, 由P ,G ,Q 三点共线,得存在实数λ使得PQ PG λ→→=, 即1133n b m a m a b λλ→→→→⎛⎫-=-+ ⎪⎝⎭, 从而1,31,3m m n λλ⎧⎛⎫-=- ⎪⎪⎪⎝⎭⎨⎪=⎪⎩消去λ,得113n m +=. 故答案为:310.(2021·河北大名·高一期中)已知平面内三个向量()7,5a =,()3,4b =-,()1,2c =.(1)求23a b c -+; (2)求满足a mb nc =-的实数m ,n ;(3)若()()//ka c b c -+,求实数k .【答案】(2)943,1010m n =-=-;(3)526k =. 【解析】(1)∵()()()()237,523,431,216,3a b c -+=--+=,∴22316a b c -+=+=(2)由a mb nc =-得()()7,53,42m n m n =---,∴3,42 5.7m m n n ⎧⎨-=--=⎩解得9,1043.10m n ⎧=-⎪⎪⎨⎪=-⎪⎩(3)()71,52ka c k k -=--,()2,6b c +=-.∵()()//ka c b c -+,∴()()6712520k k -+-=,解得526k =. 11.(2021·福建·莆田第七中学高一期中)已知两向量()2,0a =,()3,2b =.(1)当k 为何值时,ka b -与2a b +共线?(2)若23AB a b =+,BC a mb =+且A ,B ,C 三点共线,求m 的值.【答案】(1)12k =-;(2)32m =. 【解析】(1)()()()2,03,223,2ka b k k -=-=--,()()()22,06,48,4a b +=+=.当ka b -与2a b +共线时,()()423280k ---⨯=, 解得12k =-. (2)由已知可得()()()234,09,613,6AB a b =+=+=,()()()2,03,232,2BC a mb m m m m =+=+=+. 因为A ,B ,C 三点共线,所以//AB BC ,所以()266320m m -+=.解得32m =. 12.(2021·安徽宿州·高一期中)已知(1,0)a =-,(2,1)b =--.(1)当k 为何值时,ka b -与2a b +平行.(2)若23AB a b =+,BC a mb =+且A ,B ,C 三点共线,求m 的值.【答案】(1)12k =-;(2)32m =. 【解析】(1)(1,0)(2,1)(2,1)ka b k k -=----=-,2(1,0)2(2,1)(5,2)a b +=-+--=--.因为ka b -与2a b +共线,所以2(2)(5)10k ----⨯=,解得12k =-. (2)因为A ,B ,C 三点共线,所以()AB BC R λλ=∈,即23()a b a mb λ+=+,又因为a 与b 不共线,a 与b 可作为平面内所有向量的一组基底,所以23m λλ=⎧⎨=⎩, 解得32m =.【题组三 线性运算的坐标表示】1.(2021·天津红桥·高一学业考试)若向量(1,2),(1,1)a b ==-,则a b +的坐标为( )A .(2,3)B .(0,3)C .(0,1)D .(3,5)【答案】B【解析】解:因为(1,2),(1,1)a b ==-,所以()()()1,21,10,3a b +=+-=故选:B2.(2021·山东邹城·高一期中)已知向量()1,0a =,()2,4b =,则a b +=( )A B .5 C .7 D .25【答案】B【解析】根据题意,向量()1,0a =,()2,4b =,则()3,4a b +=,故9165a b +=+.故选:B .3.(2021·全国·高一专题练习)已知向量(1,1)a =,()2,2b x x =+,若a ,b 共线,则实数x 的值为( )A .-1B .2C .1或-2D .-1或2【答案】D【解析】因为向量(1,1)a =,()2,2b x x =+,且a ,b 共线,所以22x x =+,解得1x =-或2x =,故选:D4.(2021·全国·高一单元测试)已知(2,1cos )a θ=--,11cos ,4b θ⎛⎫=+- ⎪⎝⎭,且//a b ,则锐角θ等于( )A .45°B .30°C .60°D .30°或60°【答案】A【解析】因为//a b ,所以()()()121cos 1cos 04θθ⎛⎫-⨯---+= ⎪⎝⎭,得211cos 02θ-+=,即21cos 2θ=,因为θ为锐角,所以cos θ=45θ=.故选:A5.(2021·云南省永善县第一中学高一月考)已知点()2,2,1A ,()1,4,3B ,()4,,C x y 三点共线,则x y -=( )A .0B .1C .1-D .2-【答案】B【解析】因为A ,B ,C 三点共线,所以可设AB AC λ=,因为(1,2,2)AB =-,()2,2,1AC x y =--,所以()()122221x y λλλ⎧-=⎪=-⎨⎪=-⎩,解得1223x y λ⎧=-⎪⎪=-⎨⎪=-⎪⎩, 所以1x y -=.故选:B.6.(2021·广东·佛山市超盈实验中学高一月考)(多选)已知()1,3a =,()2,1b =-,下列计算正确的是( )A .()1,4a b +=-B .()3,2a b -=C .()1,2b a -=D .()1,2a b --=【答案】AB【解析】因为()1,3a =,()2,1b =-,所以()1,4a b +=-,故A 正确; ()3,2a b -=,故B 正确;()3,2b a -=--,故C 错误;()1,4a b --=-,故D 错误.故选:AB.7.(2021·湖南·永州市第一中学高一期中)(多选)已知向量()1,2a =-,()1,b m =-,则( )A .若a 与b 垂直,则1m =-B .若//a b ,则2m =C .若1m =,则13a b -=D .若2m =-,则a 与b 的夹角为60︒ 【答案】BC【解析】A :a 与b 垂直,则120m --=,可得12m =-,故错误; B ://a b ,则20m -=,可得2m =,故正确;C :1m =有()1,1b =-,则(2,3)a b -=-,可得13a b -=,故正确;D :2m =-时,有()1,2b =--,所以33cos ,5||||5a b a b a b ⋅<>===⨯,即a 与b 的夹角不为60︒,故错误. 故选:BC8.(2021·全国·高一课时练习)(多选)已知(4,2),(,2)AB AC k ==-,若ABC 为直角三角形,则k 可取的值是( )A .1B .2C .4D .6 【答案】AD【解析】因为()()4,2,,2AB AC k ==-,所以()4,4BC k =--,当A ∠为直角时,0AB AC ⋅=,所以440k -=,所以1k =,当B 为直角时,0AB BC ⋅=,所以4240k -=,所以6k =,当C ∠为直角时,0AC BC ⋅=,所以2480k k -+=,此时无解,故选:AD.9.(2021·河北·正定中学高一月考)(多选)已知向量(2,1)a =,(3,1)b =-,则( )A .()a b a +⊥B .|2|6a b +=C .向量a 在向量b 上的投影向量是62(,)55-D .是向量a 的单位向量 【答案】AD【解析】对于A ,()1,2a b +=-,则()220a b a +⋅=-+=,所以()a b a +⊥,故A 正确;对于B ,()24,3a b +=-,则|2|5a b +=,故B 错误;对于C ,向量a 在向量b 上的投影向量为531cos ,,1022b a b b b a a b b b b ⋅-⎛⎫⋅⋅=⋅==- ⎪⎝⎭, 故C 错误;对于D ,因为向量的模等于1,120-=,所以向量与向量a 共线,故是向量a 的单位向量,故D 正确. 故选:AD. 10.(2021·全国·高一课时练习)已知平面向量a =(2,1),b =(m ,2),且a ∥b ,则3a +2b =_______.【答案】(14,7)【解析】因为向量a =(2,1),b =(m ,2),且//a b ,所以1·m-2×2=0,解得m=4.所以b =(4,2).故3a +2b =(6,3)+(8,4)=(14,7).故答案为:(14,7)11.(2021·全国·高一课时练习)已知向量a =(m ,3),b =(2,﹣1),若向量//a b ,则实数m 为____.【答案】6-【解析】∵//a b ,∴﹣m ﹣6=0,∴6m =-.故答案为:6-.12.(2021·全国·高一课时练习)已知(2,4)A -,(2,3)B -,(3,)C y ,若A ,B ,C 三点共线,则y =___________. 【答案】234- 【解析】解:(2,4)A -,(2,3)B -,(3,)C y ,则()4,7AB =-,()5,3BC y =-,若A ,B ,C 三点共线,则向量AB 与向量BC 共线,则有()4335y --=,解得:234y =-. 故答案为:234-. 13.(2021·全国·高一课时练习)已知向量(2,4)a =-,(1,3)b =-,若2a b +与a kb -+平行,则k =___________. 【答案】-2【解析】因为向量(2,4)a =-,(1,3)b =-,所以()202a b +=-,,()2,43a kb k k -+=+--, 又因为2a b +与a kb -+平行,所以()220k -+=,解得2k =-,故答案为:-2【题组四 数量积的坐标表示】1.(2021·全国·高一单元测试)已知矩形ABCD 中,AB =3,AD =4,E 为AB 上的点,且BE =2EA ,F 为BC 的中点,则AF DE ⋅=( )A .﹣2B .﹣5C .﹣6D .﹣8【答案】B【解析】以点B 为坐标原点,BC 所在直线为x 轴,BA 所在直线为y 轴,距离如图所示的直角坐标系, 则()0,0B ,()0,3A ,()4,3D ,()0,2E ,()2,0F , ()2,3AF =-,()4,1DE =--,则()()()24315AF DE ⋅=⨯-+-⨯-=-.故选:B .2.(2021·吉林·延边二中高一期中)在ABC 中, AB AC AB AC +=-, 4, 2AB AC ==,, E F 为线段BC 的三等分点,则AE AF ⋅=( )A .109 B .4 C .409D .569 【答案】C【解析】ABC 中,|AB AC +|=|AB AC -|,∴2AB +2AB ⋅22AC AC AB +=-2AB ⋅2AC AC +, ∴AB ⋅AC =0,∴AB ⊥AC ,建立如图所示的平面直角坐标系,由E ,F 为BC 边的三等分点,则A (0,0),B (0,4),C (2,0),E (23,83),F (43,43), ∴AE =(23,83),AF =(43,43), ∴AE 2433AF ⋅=⨯+3398440⨯=.故选:C3.(2021·福建省宁化第一中学高一月考)在菱形ABCD 中,120ABC ∠=︒,AC =102BM CB →→→+=,DC DN λ→→=,若29AM AN →→⋅=,则λ=( )A .18B .17C .16D .15【答案】D 【解析】作出图形,建立如图所示的平面直角坐标系,设(,)N x y ,因为120,1,AC ABC BO =∠=∴= 因为102BM CB →→→+=,所以12BM BC →→=,即M 是BC 的中点,所以1(),(0,1),2A M D C -所以1),(,1)2AM DC DN x y λλ→→→====+,由题知0λ≠.故1511),429,.5N AM AN λλλ→→-∴⋅=+=∴= 故选:D4.(2021·广东·东莞市新世纪英才学校高一月考)(多选)已知向量 (2,1)a =,(cos ,sin )(0)b θθθπ=,则下列命题正确的是( )A .若a b ⊥,则tan θ=B .若b 在a 上的投影向量为,则向量a 与b 的夹角为23πC .存在θ,使得a b a b +=+D .a b ⋅【答案】BCD【解析】对A ,若a b ⊥,则2cos sin 0a b θθ⋅+==,则tan θ=A 错误;对B ,若b 在a 上的投影向量为,3a =,且||1b =, ,co 3s 6a b a b a a ∴>⋅=-⋅<,则1cos 2a b 〈〉=-,,2π,3a b ∴〈〉=,故B 正确; 对C ,若2()2a b a b a b =+⋅22++,222(||||)||||2||||a b a b a b +=++,若|||||a b a b =+|+,则||||cos ||||a b a b a b a b ⋅⋅〈〉=,=,即cos ,1a b 〈〉=,故0a,b <>=︒,|||||a b a b =+|+,故C 正确;对D ,2cos sin a b θθ⋅+==)θϕ+,因为0πθ≤≤,π02ϕ<<,则当π2θϕ+=时,a b ⋅故D 正确.故选:BCD.5.(2021·上海·高一课时练习)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB 在CD 方向上的投影为___________.【解析】()()2,1,5,5AB CD ==,所以向量AB 在CD 方向上的投影为2AB CDCD ⋅==.6(2021·上海·高一课时练习)设a =(2,x ),b =(-4,5),若a 与b 的夹角θ为钝角,则x 的取值范围是___________.【答案】85x <且 【解析】∵θ为钝角,∴0a b ⋅<且两向量不共线,即850a b x ⋅=-+<,解得85x <, 当//a b 时,1040x +=,解得52x =-, 又因,a b 不共线,所以52x ≠-, 所以x 的取值范围是85x <且52x ≠-.故答案为:85x <且52x ≠-.7.(2021·北京·大峪中学高一期中)如图,在矩形ABCD 中,2AB =,BC E 为BC 的中点,点F 在边CD 上,若1AB AF ⋅=,则AE AF ⋅的值是___________.【答案】2【解析】如图,以A 为坐标原点建立平面直角坐标系,则(0,0)A ,(2,0)B ,(C ,2,2E ⎛ ⎝⎭,(F x ;∴(2,0)AB =,(,AF x =,AE ⎛= ⎝⎭; ∴1212AB AF x x ⋅==⇒=, ∴21112AE AF x ⋅=+=+=.故答案为:2.8.(2021·河北张家口·高一期末)在ABC 中,1AC =,2BC =,60ACB ∠=︒,点P 是线段BC 上一动点,则PA PC ⋅的最小值是______.【答案】116- 【解析】在ABC 中,由余弦定理得AB =ABC 是直角三角形,以点A 为坐标原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,设点P 坐标为(,)a b ,B ,(0,1)C ,(,)PA a b =--,(,1)PC a b =--,直线BC 对应一次函数为1y =,所以1b =,)a b =-,222222(1))]473PA PC a b b a b b b b b b b ⋅=--=-+=--+=-+,[0,1]b ∈,对称轴7[0,1]8b =∈,当78b =时, PA PC ⋅取得最小值116-. 故答案为:116- 9.(2021·山西·平遥县第二中学校高一月考)向量()1,3a =-,()4,2b =-且a b λ+与a 垂直,则λ=___________.【答案】1-【解析】由题意,向量()1,3a =-,()4,2b =-,可得10,10a a b =⋅=,因为a b λ+与a 垂直,可得2()10100a b a a a b λλλ+⋅=+⋅=⨯+=,解得1λ=-.故答案为:1-.10.(2021·上海·高一课时练习)已知a =(1,2),b =(1,λ),分别确定实数λ的取值范围,使得:(1)a 与b 的夹角为直角;(2)a 与b 的夹角为钝角;(3)a 与b 的夹角为锐角. 【答案】(1)λ=-12;(2)1(,)2-∞-;(3)(,)122-∪(2,+∞). 【解析】设a 与b 的夹角为θ,则a b ⋅=(1,2)·(1,λ)=1+2λ.(1)因为a 与b 的夹角为直角,所以cos 0θ=,所以0a b ⋅=,所以1+2λ=0,所以λ=-12.(2)因为a 与b 的夹角为钝角,所以cos 0θ<且cos 1θ≠-,所以0a b ⋅<且a 与b 不反向.由0a b ⋅<得1+2λ<0,故λ<-12,由a 与b 共线得λ=2,故a 与b 不可能反向.所以λ的取值范围为1(,)2-∞-.(3)因为a 与b 的夹角为锐角,所以cos 0θ>,且cos 1θ≠,所以a b ⋅>0且a 与b 不同向. 由a b ⋅>0,得λ>-12,由a 与b 同向得λ=2.所以λ的取值范围为(,)122-∪(2,+∞). 11.(2021·江西·九江一中高一期中)在ABC 中,底边BC 上的中线2AD =,若动点P 满足()22sin cos BP BA BD R θθθ=⋅+⋅∈.(1)求()PB PC AP +⋅的最大值;(2)若=AB AC =PB PC ⋅的范围.【答案】(1)2;(2)[1,3]-.【解析】∵()22sin cos BP BA BD R θθθ=⋅+⋅∈,22sin cos 1θθ+= ∴A 、P 、D 三点共线又∵[]22sin ,cos 0,1θθ∈,∴P 在线段AD 上.∵D 为BC 中点,设PD x =,则2AP x =-,[]0,2x ∈,∴()PB PC AP +⋅=2PD AP ⋅=()22x x -=224x x -+=()2212x --+, ∴()PB PC AP +⋅的最大值为2(2)如图,以D 为原点,BC 为x 轴,AD 为y 轴,建立坐标系,∵=AB AC =,2AD =,∴()()1,0,1,0B C -,设()0,P y 02y ,则()()1,,1,PB y PC y =--=-∴PB PC ⋅=21y -+,∵02y ≤≤,∴[]1,3PB PC ⋅∈-12.(2021·江苏省丹阳高级中学高一月考)已知()1,1a =--,()0,1b =.在①()()//ta b a tb ++;②()()ta b a tb +⊥+;③ta b a tb +=+这三个条件中任选一个,补充在下面问题中,并解答问题.(1)若________,求实数t 的值;(2)若向量(),c x y =,且()1c ya x b =-+-,求c .【答案】(1)选①:1t =±,选②:t =1t =±;【解析】因为()()1,1,0,1a b =--=,所以()()()1,10,1,1ta b t t t +=--+=--,()()()1,10,11,1a tb t t +=--+=--,选①:(1)因为()()//ta b a tb ++,所以()()11t t t --=--;即21t =,解得1t =±;(2)()()()()()10,1,,1,c ya x y y b x y x y x y +=-+-=-=-+=,所以1x y y x y =⎧⎨=-+⎩,可得11x y =⎧⎨=⎩,所以()1,1c =,所以2211c =+= 选②:(1)因为()()ta b a tb +⊥+,所以()()110t t t +--=;即2310t t -+=,解得:t = (2)()()()()()10,1,,1,c ya x y y b x y x y x y +=-+-=-=-+=,所以1x y y x y =⎧⎨=-+⎩,可得11x y =⎧⎨=⎩,所以()1,1c =,所以2211c =+= 选③:(1)因为ta b a tb +=+,=即21t =,解得:1t =±;(2)()()()()()10,1,,1,c ya x y y b x y x y x y +=-+-=-=-+=,所以1x y y x y =⎧⎨=-+⎩,可得11x y =⎧⎨=⎩,所以()1,1c =,所以2211c =+=13.(2021·河南·高一期末)已知向量()2,1a =.(1)若向量()11b =-,,且ma b -与2a b -垂直,求实数m 的值; (2)若向量()2,c λ=-,且c 与a 的夹角为钝角,求2c a -的取值范围.【答案】(1)57-;(2)(3)5,⎡⎣+∞.【解析】(1)因为()21,1ma b m m -=+-,()24,1a b -=-,结合ma b -与2a b -垂直,得到()()42110m m +--=,解得57m =-,所以实数m 的值为57-. (2)因为c 与a 的夹角为钝角,所以()2240a c λλ⋅=⨯-+=-<,4λ<. 又当1λ=-时,//c a ,所以4λ<且1λ≠-. 因为()26,2c a λ-=--,所以()226c a -=-由于当4λ<且1λ≠-时,[)223636,45()(45,)λ-+∈+∞.所以2c a -的取值范围为(3)5,⎡⎣+∞.【题组五 向量与三角函数的综合运用】1.(2021·全国·高三专题练习)已知向量ππ2sin ,sin 44a x x ⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎭,πsin ,sin 4b x m x ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.(1)若0m =,试研究函数()π3π,84f x a b x ⎛⎫⎡⎤=⋅∈ ⎪⎢⎥⎣⎦⎝⎭在区间上的单调性;(2)若tan 2x =,且//a b ,试求m 的值.【答案】(1)π3π,88x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递增,3π3π,84x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递减;(2) 2m =.【解析】(1)当0m =时,()()2πsin sin sin cos sin sin cos 4f x x x x x x x x x ⎛⎫=+=+=+ ⎪⎝⎭1cos 2sin 2π122242x x x -⎛⎫=+=-+ ⎪⎝⎭,由π3π,84x ⎡⎤∈⎢⎥⎣⎦,得π5π20,44x ⎡⎤-∈⎢⎥⎣⎦.当ππ20,42x ⎡⎤-∈⎢⎥⎣⎦,即π3π,88x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递增;当ππ5π2,424x ⎡⎤-∈⎢⎥⎣⎦,即3π3π,84x ⎡⎤∈⎢⎥⎣⎦时,函数()f x 单调递减.(2)由//a b πππsin sin sin sin 444x x x x ⎛⎫⎛⎫⎛⎫+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由tan 2x =,可得πsin 04x ⎛⎫+≠ ⎪⎝⎭(若πsin 04x ⎛⎫+= ⎪⎝⎭,则ππ4x k =-(k Z ∈),此时tan 1x =-,与条件矛盾).πsin sin 4x x ⎛⎫-= ⎪⎝⎭,即()sin cos sin m x x x -=,两边同除以cos x ,可得()tan 1tan 2m x x -==,∴2m =.2.(2021·江苏·金陵中学高一期中)设向量(3cos ,sin ),(sin ,3cos ),(cos ,3sin )a b c ααββββ===-. (1)若a 与b c -垂直,求tan()αβ+的值; (2)求||b c -的最小值.【答案】(1)tan()1αβ+=;.【解析】(1)因为a 与b c -垂直,所以()0a b c ⋅-=,即0a b a c ⋅-⋅=, 所以()()3cos sin cos sin 3cos cos sin sin 0αββααββα+--=, 所以()()3sin 3cos 0βααβ+-+=,所以tan()1αβ+=; (2)因为()sin cos ,3cos 3sin b c ββββ-=-+ ()()()2222||sin cos 3cos 3sin b c b cββββ-=-=-++1016sin cos 108sin 2βββ=+=+, 所以当222k k Z πβπ=-+∈,,即4k k Z πβπ=-+∈,时2||b c -取最小值2,所以||b c -.3.(2021·江苏铜山·高一期中)已知向量(2sin ,sin cos )a θθθ+=,(cos ,2)m b θ-=,函数()f a b θ=⋅, (1)当0m =时,求函数π6f ⎛⎫⎪⎝⎭的值;(2)若不等式4()23sin cos f m θθθ+>-+对所有π02 ,θ⎡⎤∈⎢⎥⎣⎦恒成立.求实数m 的范围.【答案】(1)1+;(2)(,-∞ 【解析】(1)因为向量(2sin ,sin cos )a θθθ+=,(cos ,2)m b θ-=, ()()()()()2sin cos 2sin cos sin 22sin cos f a b m m θθθθθθθθ=⋅=+-+=+-+,当0m =时, ()()()2sin cos 2sin cos sin 22sin cos f a b θθθθθθθθ=⋅=++=++,ππππ1sin 2sin cos 2163662f ⎛⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭; (2)不等式4()23sin cos f m θθθ+>-+对所有π02 ,θ⎡⎤∈⎢⎥⎣⎦恒成立, 即()()4sin 22sin cos 230sin cos m m θθθθθ+-++-+>+对所有π02 ,θ⎡⎤∈⎢⎥⎣⎦恒成立,令πsin cos 4t θθθ⎛⎫=+=+ ⎪⎝⎭,可得21sin 2t θ=+,所以2sin 21t θ=-,因为π02 ,θ⎡⎤∈⎢⎥⎣⎦,所以ππ3π444,θ⎡⎤+∈⎢⎥⎣⎦,()πsin 14,θ⎤+∈⎥⎣⎦,所以π4t θ⎛⎫⎡=+∈ ⎪⎣⎝⎭所以()2412230t m t m t -+-+-+>对于t ⎡∈⎣恒成立, 即()24222t t m t t+++>+对于t ⎡∈⎣恒成立, 因为20t +>,所以24222t t t m t +++<+对于t ⎡∈⎣恒成立, 令()24222t t t g t t +++=+,t ⎡∈⎣,只需()min m g t <, 因为()()2422222222t t t t t t t t t t t ++++++==+≥++当且仅当2t t=即t ()g t取得最小值所以m <所以实数m的范围为(,-∞.4.(2021·江苏宜兴·高一期中)已知向量a =(2cos α,2sin α),b =(6cos β,6sin β),且()a b a ⋅-=2. (1)求向量a 与b 的夹角;(2)若33ta b -=,求实数t 的值. 【答案】(1)3π;(2)32. 【解析】(1)由a =(2cos α,2sin α),b =(6cos β,6sin β),得24cos 2a =,36cos 6b ==,又()2a b a ⋅-=,∴22a b a ⋅-=,则2226a b ⋅=+=, 设向量a 与b 的夹角为θ,则cos θ=61262a b a b⋅==⨯, 又θ∈[0,π],∴3πθ=;(2)由33ta b -=,得2()27ta b -=, 即222227t a ta b b -⋅+=, ∴4t 2﹣12t +36=27, ∴4t 2﹣12t +9=0,解得t =32. 5.(2021·河北安平中学高一期末)在①255a b -=,②8()5+⋅=a b b ,③a b ⊥,三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.已知向量(cos ,sin )a αα=,(cos ,sin )b ββ=, ,若02πα<<,02πβ-<<,且5sin 13β=-,求sin α. 【答案】答案见解析.【解析】因为(cos ,sin )a αα=,(cos ,sin )b ββ=,所以||||1a b ==, 选择方案①:因为255a b -=,所以24()5-=a b ,即22425+-⋅=b a b a , 所以35a b ⋅=,因为(cos ,sin )a αα=,(cos ,sin )b ββ=,所以3cos cos sin sin 5αβαβ⋅=+=a b ,即3cos()5αβ-=, 因为02πα<<,02πβ-<<,所以0αβπ<-<.所以4sin()5αβ-=,因为02πβ-<<,5sin 13β=-,所以12cos 13β==,所以4123533sin sin[()]sin()cos cos()sin =51351365ααββαββαββ⎛⎫=-+=-+-=⨯+⨯- ⎪⎝⎭.选择方案②: 因为8()5+⋅=a b b ,所以285⋅+=a b b ,所以35a b ⋅=, 因为(cos ,sin )a αα=,(cos ,sin )b ββ=, 所以3cos cos sin sin 5αβαβ⋅=+=a b ,即3cos()5αβ-=, 因为02πα<<,02πβ-<<,所以0αβπ<-<,所以4sin()5αβ-=,因为02πβ-<<,5sin 13β=-,所以12cos 13β==,所以4123533sin sin[()]sin()cos cos()sin =51351365ααββαββαββ⎛⎫=-+=-+-=⨯+⨯- ⎪⎝⎭.选择方案③:因为(cos ,sin )a αα=,(cos ,sin )b ββ=,且a b ⊥, 所以cos cos sin sin 0αβαβ⋅=+=a b ,即cos()0αβ-=, 因为02πα<<,02πβ-<<,所以0αβπ<-<,所以2παβ-=,因为02πβ-<<,5sin 13β=-,所以12cos 13β==,所以12sin sin cos 213παββ⎛⎫=+== ⎪⎝⎭.6.(2021·重庆复旦中学高一期中)在ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且tan 21tan A cB b+=. (1)求角A ;(2)若()0,1m =-,()2cos ,2cos 2Cn B =,试求m n +的取值范围.【答案】(1)3π;(2)54⎫⎪⎪⎝⎭. 【解析】(1)tan 2sin cos 2sin 11tan sin cos sin A c A B CB b B A B+=⇒+=, 即sin cos sin cos 2sin sin cos sin B A A B CB A B +=,()sin 2sin sin cos sin A BC B A B +∴=,1cos 2A ∴=.0πA <<,3A π∴=. (2)()2cos ,2cos1cos ,cos 2C m n B B C ⎛⎫+=-= ⎪⎝⎭, 2222221cos cos cos cos 1sin 2326m n B C B B B ππ⎛⎫⎛⎫∴+=+=+-=-- ⎪ ⎪⎝⎭⎝⎭,3A π=,23π∴+=B C , 20,3B π⎛⎫∴∈ ⎪⎝⎭,从而72666B πππ-<-<,∴当sin 216B π⎛⎫-= ⎪⎝⎭,即3B π=时,m n +取得最小值,1sin 262B π⎛⎫-=- ⎪⎝⎭,时,m n +取得最大值54,故2524m n ⎛⎫+∈ ⎪ ⎪⎝⎭.。
高一数学平面向量坐标运算试题答案及解析1.已知,且∥,则()A.-3B.C.0D.【答案】B【解析】由已知,且∥得:,故选B.【考点】向量平行的充要条件.2.设向量,,若向量与向量共线,则= .【答案】-3【解析】由题知=(,),由向量与向量共线得,()(-3)-( )(-1)=0,解得,=-3.考点:向量的坐标运算;向量共线的充要条件3.已知点,,向量,若,则实数的值为.【答案】4【解析】由题知,=(2,3),由向量共线的充要条件及得,,解得=4考点:点坐标与向量坐标关系;向量平行的条件4.已知平面向量=(2,-1),=(1,1),=(-5,1),若∥,则实数k的值为()A.2B.C.D.【答案】B【解析】∵=(2,-1),=(1,1),∴=(2,−1)+k(1,1)=(2+k,k−1),又=(-5,1),且∥,,∴1×(2+k)-(-5)×(k-1)=0,解得:k=.故选:B.【考点】平面向量共线(平行)的坐标表示.5.已知向量,若向量则( ).A.B.2C.8D.【答案】B【解析】.【考点】平面向量平行的坐标表示.6.已知向量.(1)求的值;(2)若,且,求的值.【答案】(1);(2).【解析】(1)由向量的坐标运算及向量模的定义易表示出,,再由求得的值;(2)首先由同角的三角函数关系求出,再由得的值,最后合理的拆分角及和角公式得即可求得结果.试题解析:(1)(2)【考点】向量的坐标运算及向量模的定义;同角的三角函数关系;三角函数的和、差角公式.7.已知向量,且,则.【答案】.【解析】∵,∴,,又∵,∴.【考点】1.平面向量的坐标运算;2.平面向量共线的坐标表示.8.已知,且∥,则()A.-3B.C.0D.【答案】【解析】根据∥有,可知,得.【考点】向量共线.9.已知向量,,,且、、三点共线,则=_________.【答案】【解析】∵A,B,C三点共线,∴,又∵,,∴,解得.【考点】向量共线的坐标表示.10.已知三点A(1,1)、B(-1,0)、C(3,-1),则等于()A.-2B.-6C.2D.3【答案】A【解析】解:∵A(1,1)、B(-1,0)、C(3,-1),∴=(-2,-1),=(2,-2)∴=(-2)•2+(-1)•(-2)=-2,故选A.【考点】数量积的坐标表达式.11.若,点的坐标为,则点的坐标为.【答案】【解析】设,则有,所以,解得,所以.【考点】平面向量的坐标运算.12.已知,,则.【答案】【解析】根据向量的减法等于横坐标、纵坐标分别对应相减,得到.向量的加减及数乘类似实数运算,一般不会出错,只需注意对应即可.【考点】向量的减法运算13.已知向量()A.(8,1)B.C.D.【答案】B【解析】【考点】向量的坐标运算点评:若,14.设向量满足及,(Ⅰ)求夹角的大小;(Ⅱ)求的值.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)设与夹角为,,而,∴,即又,∴所成与夹角为.(Ⅱ)∵所以.【考点】向量的夹角向量的模点评:本题是一个考查数量积的应用问题,在解题时注意启发学生在理解数量积的运算特点的基础上,把握向量的几何表示,注意数量积性质的相关问题15.设,向量且,则( )A.B.C.2D.10【答案】B【解析】【考点】向量的坐标运算及向量位置关系点评:若则,16.已知点和向量,若,则点的坐标为________.【答案】【解析】设【考点】向量的坐标运算点评:若则,两向量相等,则其横纵坐标对应相等17.已知=(1,2),=(-2,k),若∥(+),则实数的值为.【答案】-4【解析】因为=(1,2),=(-2,k),所以+=(-1,2+k),因为∥(+),所以1×(2+k)+2=0,解得,k=-4.【考点】平面向量的加法运算;平面向量平行的条件。
高三数学平面向量基本定理及坐标表示试题答案及解析1.已知向量_________.【答案】10【解析】所以答案应填:10.【考点】1、平面向量的坐标运算;2、向量的模;3、向量的数量积.2.如图,在直角梯形ABCD中,AB//CD,AB=2,AD=DC=1,P是线段BC上一动点,Q是线段DC上一动点,,则的取值范围是.【答案】【解析】解:建立平面直角坐标系如图所示,则因为,所以所以,,所以,故答案应填.【考点】1、平面向量基本定理;2、向量的坐标表示;3、向量的数量积;4、一元二次函数的最值.3.在△ABC中,D为边BC上任意一点,=λ+μ,则λμ的最大值为( )A.1B.C.D.【答案】D【解析】依题意得,λ+μ=1,λμ=λ(1-λ)≤2=,当且仅当λ=1-λ,即λ=时取等号,因此λμ的最大值是,选D.4.在下列条件中,使M与A,B,C一定共面的是()A.=2--B.=++C.++=0D.+++=0【答案】C【解析】++=0,即=-(+),所以M与A,B,C共面.5.已知A(2,-2),B(4,3),向量p的坐标为(2k-1,7)且p∥,则k的值为()A.-B.C.-D.【答案】D【解析】=(2,5),由p∥得5(2k-1)-2×7=0,所以k=.6.已知向量a=(cosα,-2),b=(sinα,1)且a∥b,则tan(α-)等于()A.3B.-3C.D.-【答案】B【解析】选B.∵a=(cosα,-2), b=(sinα,1)且a∥b,∴=(经分析知cosα≠0),∴tanα=-.∴tan(α-)===-3,故选B.【方法技巧】解决向量与三角函数的综合题的方法向量与三角函数的结合是近几年高考中出现较多的题目,解答此类题目的关键是根据条件将所给的向量问题转化为三角问题,然后借助三角恒等变换再根据三角求值、三角函数的性质、解三角形的问题来解决.7.平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1),回答下列问题:(1)求3a+b-2c.(2)求满足a=mb+nc的实数m,n.(3)若(a+kc)∥(2b-a),求实数k.【答案】(1) (0,6 (2) (3)k=-.【解析】(1)3a+b-2c=3(3,2)+(-1,2)-2(4,1)=(9,6)+(-1,2)-(8,2)=(0,6).(2)∵a=mb+nc,∴(3,2)=m(-1,2)+n(4,1)=(-m+4n,2m+n).∴解得(3)∵(a+kc)∥(2b-a),又a+kc=(3+4k,2+k),2b-a=(-5,2).∴2×(3+4k)-(-5)×(2+k)=0,∴k=-.8.已知向量a=(3,1),b=,若a+λb与a垂直,则λ等于________.【答案】4【解析】根据向量线性运算、数量积运算建立方程求解.由条件可得a+λb=,所以(a+λb)⊥a⇒3(3-λ)+1+λ=0⇒λ=4.9.设向量,若,则实数的值为 .【答案】【解析】根据向量平行的坐标表示,由得,,解得.【考点】向量平行的坐标表示.10.定义平面向量之间的一种运算“”如下,对任意的,,令,下面说法错误的是()A.若与共线,则B.C.对任意的,有D.【答案】B【解析】根据题意可知,对于任意的,,令,则可知对于A.若与共线,则成立,对于 B.显然不相等,故错误,对于C.对任意的,有,验证成立,对于D. 同样满足向量的数量积运算,故选B.【考点】新定义点评:主要是考查了向量的计算,属于基础题。
专题6.2 平面向量的基本定理及坐标表示1.(2021·全国高一课时练习)已知向量()1,2a =- ,()3,1b =- ,(),2c m = ,(2)c a b ⊥- ,则m 的值为( )ABC .2D .10【答案】C 【解析】先求出2a b -的坐标,再借助向量垂直的坐标表示即可得解.【详解】因()1,2a =- ,()3,1b =- ,则()25,5a b -=- ,而(),2c m = ,(2)c a b ⊥-,于是得(2)0c a b ⋅-=,即5520m -+⋅=,解得2m =,所以m 的值为2.故选:C2.(2021·全国高三其他模拟(文))已知()24,4,3a b a b ==-=- ,,记a 与b 夹角为θ,则cos θ的值为( )A .1320B .516-C .34D .57-【答案】B 【解析】利用平面向量数量积的定义以及模长公式求解即可.【详解】因为()4,3a b -=- ,所以5a b -=,因为a b -== 所以25416=+-16cos θ,所以5cos 16θ=-.故选:B .练基础3.(2021·天津和平区·高一期末)已知正方形ABCD 的边长为2,E 是BC 的中点,F 是线段AE 上的点,则AF CF ⋅的最小值为( )A .95B .95-C .1D .1-【答案】B 【解析】根据题意,建立适当的平面直角坐标系,转化为坐标运算即可.【详解】如图所示,建立平面直角坐标系,由题意知,()0,0A ,()2,1E ,()2,2C ,由F 是线段AE 上的点,设,2x F x ⎛⎫⎪⎝⎭,且02x ≤≤,因此,2x AF x ⎛⎫= ⎪⎝⎭ ,2,22x CF x ⎛⎫=-- ⎪⎝⎭,故()25223224x x xAF x x x CF ⋅⎛⎫=-+-=- ⎪⎝⎭,因02x ≤≤,所以当65x =时,AF CF ⋅ 取最小值95-.故选:B.4.(2021·全国高三其他模拟(文))如图,平行四边形ABCD 中,E 是AD 的中点,F 在线段BE 上,且3BF FE =,记a BA = ,b BC = ,则CF =()A .2133a b+ B .2133a b-C .1348a b-+D .3548a b-【答案】D 【解析】取a BA = ,b BC = 作为基底,把BE 、BF用基底表示出来,利用向量的减法即可表示出CF .【详解】取a BA = ,b BC =作为基底,则12BE a b =+ .因为3BF FE =,所以3313344248BF BE a b a b ⎛⎫==+=+ ⎪⎝⎭ ,所以33354848CF BF BC a b b a b =-=+-=-.故选:D.5.(2021·全国高一专题练习)已知A B P ,,三点共线,O 为直线外任意一点,若OP xOA y OB →→→=+,则x y += ________.【答案】1【解析】由共线可设AB BP λ→→=,进而得OB OA OP OB λ→→→→⎛⎫= ⎪⎝-⎭-,化简对应的,x y 即可得解.【详解】∵,,A B P 三点共线,∴存在非零实数λ,使得AB BP λ→→=,∴OB OA OP OB λ→→→→⎛⎫= ⎪⎝-⎭-∴11OP OB OAλλλ→→→+=-∵OP xOA y OB →→→=+,∴111x y λλλ+⎛⎫+=-= ⎪⎭+⎝.故答案为:16.(辽宁高考真题)在平面直角坐标系中,四边形的边,,已知点,,则D 点的坐标为___________.【答案】【解析】平行四边形中,,∴,即点坐标为,故答案为.7.(2021·中牟县教育体育局教学研究室高一期中)设已知向量()1,1a =,向量()3,2b =- .(1)求向量2a b -的坐标;(2)当k 为何值时,向量ka b +与向量2a b -垂直.【答案】(1)()7,3-;(2)274k =.【解析】(1)进行向量坐标的减法和数乘运算即可得出2(7,3)a b -=-;(2)可求出(3,2)ka b k k +=-+ ,然后根据ka b + 与2a b - 垂直即可得出7(3)3(2)0k k --+=,解出k 即可.【详解】(1)∵()1,1a =,()3,2b =- ,∴()27,3a b -=-r r.(2)∵()3,2ka b k k +=-+r r ,且ka b + 与2a b - 垂直,∴()()73320k k --+=,解得274k =.8.(2021·江西新余市·高一期末(文))已知||4a =,(b =-xoy ABCD //AB DC //AD BC ()20A -,()68B ,()8,6C ()0,2-ABCD OB OD OA OC +=+()()()()2,08,66,80,2OD OA OC OB =+=+----=D ()0,2-()0,2-(1)若//a b ,求a的坐标;(2)若a 与b的夹角为120°,求a b -r r .【答案】(1)(2,-或(2,-;(2).【解析】(1)先求与向量b 共线的单位向量,结合//a b ,即可得出a的坐标;(2)先根据夹角求出a b ⋅,根据模的运算律22a a = ,即可得到a b -r r .【详解】解:(1)(b =- Q ,||2b ∴=∴与b共线的单位向量为12b c b ⎛=±=±- ⎝.||4a = Q ,//a b,(||2,a a c ∴==-或(2,-.(2)||4a = Q ,||2b =,,120a b <>=︒ ,||||cos ,4a b a b a b ∴⋅==-,222()228a b a a b b ∴-=-⋅+=,||a b ∴-=9.(2021·全国高一专题练习)如图,在△ABC 中,D ,E 分别为AC ,AB 边上的点,12CD AE DA EB ==,记BC a →= ,CA b →= .试用向量a →,b →表示DE .【答案】1()3DE b a →→=- 【解析】根据向量的减法及向量的数乘,化简即可求解.【详解】因为111()()333AE AB CB CA a b →→==-=-- ,2233AD AC b →==- ,所以121()()()333DE AE AD a b b b a →→→→→=-=----=- .即1()3DE b a →→=- 10.(2021·江西省万载中学高一期末(理))已知向量(1,3),(1,)a b t →→=-=,若(2)a b a →→→+⊥,(1)求向量a →与b →的夹角;(2)求3a b →→-的值.【答案】(1)34π;(2).【解析】(1)根据(2)a b a →→→+⊥得到2t =,再求出=5a b →→⋅-,a →=,b →=,即得解;(2)直接利用向量的模的坐标公式求解.【详解】(1)Q (1,-3),(1,)a b t →→==,()23,32a b t →→∴+=-+,Q (2)a b a →→→+⊥,()(2)=3132-30a b a t →→→+⋅⨯+-+⨯=∴(),解得2t =,11-325a b →→∴⋅=⨯+⨯=-(),a →=,b →=,cos ,a ba b a b→→→→→→⋅∴<>===⋅,所以向量a →与b →的夹角为34π.(2)Q 2223969106-55125a b a a b b →→→→→→-=-⋅+=⨯-⨯+=(),3a b →→∴-=.练提升1.【多选题】(2021·浙江高一期末)任意两个非零向量和m ,n ,定义:m n m n n n⋅⊗=⋅,若平面向量,a b满足||2||0a b ≥> ,a 与b 的夹角πθ0,3æöç÷Îç÷èø,且a b ⊗ 和b a ⊗ 都在集合4n n Z ⎧⎫∈⎨⎬⎩⎭中,则a b ⊗ 的值可能为( )A .5B .4C .3D .2【答案】CD 【解析】由已知得集合{|}4nn Z ∈的元素特征,再分析a b ⊗ 和b a ⊗ 的范围,再由定义计算后,可得答案.【详解】首先观察集合311113{|},1,,,,0,,,,1,4424424n n Z ⎧⎫∈=⋅⋅⋅----⋅⋅⋅⎨⎬⎩⎭,从而分析a b ⊗ 和b a ⊗ 的范围如下:因为(0,3πθ∈,∴1cos 12θ<<,而cos b b a b a a a a θ⋅⊗==⋅,且||2||0a b ≥> ,可得10cos 2b a θ<< ,又∵b a ⊗∈ {|}4n n Z ∈中,∴1cos 4b a θ= ,从而14cos b a θ= ,∴2cos 4cos a a b a b b b b θθ===⋅⋅⊗ ,又21cos 14θ<<,所以214cos 4a b θ⊗<=< .且a b ⊗ 也在集合{|}4n n Z ∈中,故有2a b ⊗= 或3.故选:CD.2.(2021·江西新余市·高一期末(文))如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC mOA nOB =+,则m n +的取值范围是___________.【答案】(1,0)-【解析】如图所示,由A ,B ,D 三点共线,利用向量共线定理可得:存在实数λ满足(1)OD OA OB λλ=+-,OD tOC = ,1t<-,(1)tOC OA OB λλ=+- ,即1OC OA OB t tλλ-=+,与OC mOA nOB =+两比较,即可得出.【详解】解:如图所示,A Q ,B ,D 三点共线,∴存在实数λ满足(1)OD OA OB λλ=+-,又OD tOC =,1t <-,(1)tOC OA OB λλ∴=+-,即1OC OA OB t tλλ-=+,与OC mOA nOB =+两比较,可得m tλ=,1n tλ-=,则1(1,0)m n t+=∈-.m n ∴+的取值范围是(1,0)-.故答案为:(1,0)-.3.(2021·宁夏银川市·高三其他模拟(理))已知A (1,1),B (0,1),C (1,0),M 为线段BC 上一点,且CM CB λ= ,若MA BC MB MC ⋅>⋅,则实数λ的取值范围是___________.【答案】1⎡⎤⎢⎥⎣⎦【解析】根据CM CB λ=可得1x y λλ=-⎧⎨=⎩,再表示出MA MB MC BC ,,,坐标,由条件可得2220x y y +-≤,再将1x y λλ=-⎧⎨=⎩代入可得关于λ的不等式,从而可得答案.【详解】解析:设点(),M x y ,由CM CB λ=,得()()1,1,1x y λ-=-,所以1x y λλ=-⎧⎨=⎩.因为MA BC MB MC ⋅>⋅,所以()()()()1,11,1,11,x y x y x y --⋅-≥----,即2211x y x x y y --+≥-+-+,化简得2220x y y +-≤将1x y λλ=-⎧⎨=⎩代入2220x y y +-≤,得()22120λλλ-+-≤,即22410λλ-+≤,解得11λ≤≤+因为M 为线段BC 上一点,且CM CB λ=,所以01λ≤≤.综上,可知11λ≤≤.故实数λ的取值范围是1⎡⎤⎢⎥⎣⎦.4.(江苏高考真题)在同一个平面内,向量OA ,OB ,OC 的模分别为与OC 的夹角为α,且tan α=7,OB 与OC 的夹角为45∘,若OC =mOA +nOB (m,n ∈R ),则m +n =_________.【答案】3【解析】以OA 为x 轴,建立直角坐标系,则A (1,0),由OC 的模为2与OA 与OC 的夹角为α,且tan α=7知,cos α=210,sinα=210 ,可得B (cos(α+45∘),sin (α+45∘)),∴B ―35,,由OC =mOA +nOB可得=m ―35n,45n=m ―35n75=45nm =54,n =74,∴m +n =3,故答案为3.5.(2021·福建漳州市·高一期末)在平面直角坐标系xOy中,已知向量m =,()sin ,cos n x x = ,()0,x π∈.若//m n u r r,则x =______;若存在两个不同的x 值,使得n m t n += 恒成立,则实数t 的取值范围为______.【答案】34π)2.【解析】根据向量平行的坐标表示可求34x π=;用坐标表示出n m t n += ,结合三角函数的图象可得实数t 的取值范围.【详解】x x =,则tan 1x =-,又()0,x π∈,则34x π=;计算得sin ,cos m n x x +=+ ,则m n +== ,又存在两个不同的x 值,使得n m t n +=恒成立,则t =()0,π上有两个不同的解,令()22sin ,0,4y x x ππ⎛⎫=+-∈ ⎪⎝⎭,由()0,x π∈,得3,444x πππ⎛⎫-∈- ⎪⎝⎭,2t <<.故答案为:34π;)2.6.(2021·天津滨海新区·高一期末)已知四边形ABCD ,0AB BC ⋅= ,AD BC λ=u u u r u u u r,1AB AD ==,且||||CB CD CB CD ⋅= ,(i )λ=___________;(ii )若2DE EC = ,动点F 在线段BE 上,则DF FC ⋅ 的最大值为___________.【答案】12 613 【解析】利用向量的数量积可得4BCD π∠=,过点D 作BC 的垂线,垂足为O ,可得1DO OC ==,进而可得2BC AD =,求出λ;以B 为坐标原点,,BC BD 为,x y 建立平面直角坐标系,首先求出点E 坐标,设(),F x y ,利用向量共线求出5x y =,再由向量数量积的坐标运算即可求解.【详解】由||||CB CD CB CD ⋅= 1212cos e e e e BCD ⋅=∠= 因为[]0,BCD π∠∈,所以4BCD π∠=,过点D 作BC 的垂线,垂足为O ,可得1DO OC ==,因为1AB AD ==,所以2BC AD =,由AD BC λ=u u u r u u u r ,所以12λ=.以B 为坐标原点,,BC BD 为,x y 建立平面直角坐标系,如图:则()1,1D ,()2,0C ,设(),E m n由2DE EC =,即()()1,122,0m n m n --=--,解得51,33m n ==,即51,33E ⎛⎫ ⎪⎝⎭,设(),F x y ,503x ≤≤,103y ≤≤, 则51,33BE ⎛⎫= ⎪⎝⎭,(),BF x y = ,因为,,B F E 三点共线,所以5133y x =,即5x y =,()1,1DF x y =-- ,()2,FC x y =-- ,所以()()()()()21215125DF FC x x y y y y y y⋅=--+-=--+- 224626162261313y y y ⎛⎫=-+-=--+ ⎪⎝⎭,当413y =时,DF FC ⋅ 取得最大值为613.故答案为:12;6137.(2021·全国高一专题练习)已知A (-2,4),B (3,-1),C (-3,-4).设,,AB a BC b CA c === ,且3,2CM c CN b ==- .(1)求33a b c +-;(2)求满足a mb nc =+ 的实数m ,n ;(3)求M ,N 的坐标及向量MN 的坐标.【答案】(1)(6,-42);(2)11m n =-⎧⎨=-⎩;(3)M (0,20),N (9,2),(9,18)MN =- .【解析】(1)利用向量加、减、数乘的坐标运算即可求解.(2)利用向量加法的坐标运算以及向量相等即可求解.(3)利用向量减法的坐标运算即可求解.【详解】由已知得a =(5,-5),b =(-6,-3),c=(1,8).(1)33a b c +-=3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵mb nc + =(-6m +n ,-3m +8n ),∴65385m n m n -+=⎧⎨-+=-⎩,解得11m n =-⎧⎨=-⎩.(3)设O 为坐标原点,∵3CM OM OC c =-=,∴3OM c OC =+ =(3,24)+(-3,-4)=(0,20).∴M (0,20).又∵2CN ON OC b =-=- ,∴2ON b OC =-+=(12,6)+(-3,-4)=(9,2),∴N (9,2),∴MN =(9,-18).8.(2021·全国高一课时练习)已知△ABC 的面积为S 23S ≤≤,且AB ·BC =3,AB 与BC 的夹角为θ.求AB 与BC 夹角的取值范围.【答案】,64ππ⎡⎤⎢⎥⎣⎦.【解析】可设AB 与BC 夹角为θ,则据题意得出θ为锐角,且3||||cos AB BC θ= ,从而根据ABC V 的面积32S ∈tan 1θ…,这样根据正切函数在(0,2π的单调性即可求出θ的范围.【详解】解:Q 3AB BC ⋅= ,∴,AB BC 的夹角为锐角,设,AB BC 的夹角为θ,则:||||cos 3AB BC θ= ,∴3||||cos AB BC θ=,又3]2S ∈;∴()13||||sin 22AB BC πθ- …,∴13||||sin 22AB BC θ …,∴33tan 22θ…,∴tan 1θ…,∴64ππθ……,∴AB 与BC 夹角的取值范围为[,]64ππ.9.(2021·全国高一专题练习)已知O ,A ,B 是不共线的三点,且(,)OP mOA nOB m n R =+∈ (1)若m +n =1,求证:A ,P ,B 三点共线;(2)若A ,P ,B 三点共线,求证:m +n =1.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由1m n +=原式可代换为()1OP mOA m OB =+- ,再由()1OP m m OP =+-⎡⎤⎣⎦ ,两式联立变形即可求证;(2)由A ,P ,B 三点共线,可得AP PB λ= ,变形得()OP OA OB OP λ-=- ,整理成OP 关于,OA OB 的表达式,再结合OP mOA nOB =+ ,由对应关系即可求证【详解】(1)证明:若m +n =1,则()1OP mOA m OB =+- ,()1OP m m OP =+-⎡⎤⎣⎦ ,故()()11mOP m OP mOA m OB +-=+- ,即()()()1m OP OA m OB OP -=-- ,()1mAP m PB =- ,即,AP BP 共线,又,AP BP 有公共点,则A ,P ,B 三点共线;(2)证明:若A ,P ,B 三点共线,则存在实数λ,使得AP PB λ= ,变形得()OP OA OB OP λ-=- ,即()1OP OB OA λλ+=+ ,111OB OA OB OA OP λλλλλ+==++++ ,又OP mOA nOB =+ ,1111λλλ+=++,故1m n +=10.(2021·北京首都师大二附高一期末)在△ABC 中.∠BAC =120°,AB =AC =1(1)求AB BC ⋅ 的值;(2)如图所示,在直角坐标系中,点A 与原点重合,边AB 在x 轴上,设动点P 在以A 为圆心,AB 为半径的劣弧BC 上运动.求⋅ BP CP 的最小值.【答案】(1)32-;(2)12-.【解析】(1)由()10B ,,12C ⎛- ⎝,利用坐标公式求得数量积即可.(2)设点P 坐标为()2cos ,sin 03πθθθ⎛⎫≤≤⎪⎝⎭,求得⋅ BP CP 1sin 26πθ⎛⎫=-+ ⎪⎝⎭,利用三角函数的最值求得数量积的最值.【详解】解:(1)()10B ,,12C ⎛- ⎝,AB BC ⋅ ()331,022⎛=⋅-=- ⎝.(2)点P 在以A 为圆心,AB 为半径的劣弧BC 上运动,设点P 坐标为()2cos ,sin 03πθθθ⎛⎫≤≤ ⎪⎝⎭,又()10B ,,12C ⎛- ⎝,⋅ BP CP ()1cos 1,sin cos ,sin 2θθθθ⎛=-⋅+ ⎝2211cos cos cos sin 22θθθθθ=-+-+1sin 26πθ⎛⎫=-+ ⎪⎝⎭,又203πθ≤≤,则5666πππθ≤+≤1sin 126πθ⎛⎫≤+≤ ⎪⎝⎭,故当sin 16πθ⎛⎫+= ⎪⎝⎭时,⋅ BP CP 有最小值12-.1.(2019·全国高考真题(理))已知=(2,3),=(3,t ),=1,则=( )A .-3B .-2C .2D .3【答案】C【解析】由,,得,则,.故选C .2.(2021·全国高考真题(理))已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥ ,则k =________.【答案】103-.【解析】利用向量的坐标运算法则求得向量c的坐标,利用向量的数量积为零求得k 的值【详解】()()()3,1,1,0,3,1a b c a kb k ==∴=+=+ Q ,(),33110a c a c k ⊥∴=++⨯=Q n ,解得103k =-,故答案为:103-.3.(2021·全国高考真题(理))已知向量()()1,3,3,4a b == ,若()a b b λ-⊥ ,则λ=__________.【答案】35AB AC ||BC AB BC ⋅(1,3)BC AC AB t =-=- 1BC == 3t =(1,0)BC = (2,3)(1,0)21302AB BC ⋅=⋅=⨯+⨯=u u u r u u u r 练真题【解析】根据平面向量数量积的坐标表示以及向量的线性运算列出方程,即可解出.【详解】因为()()()1,33,413,34a b λλλλ-=-=-- ,所以由()a b b λ-⊥ 可得,()()3134340λλ-+-=,解得35λ=.故答案为:35.4.(2021·全国高考真题(文))已知向量()()2,5,,4a b λ== ,若//a b r r ,则λ=_________.【答案】85【解析】利用向量平行的充分必要条件得到关于λ的方程,解方程即可求得实数λ的值.【详解】由题意结合向量平行的充分必要条件可得:2450λ⨯-⨯=,解方程可得:85λ=.故答案为:85.5.(2018·北京高考真题(文))(2018年文北京卷)设向量a=(1,0),b=(−1,m ),若a ⊥(ma ―b ),则m =_________.【答案】-1.【解析】∵a =(1,0),b =(―1,m ),∴ma ―b =(m ,0)―(―1,m )=(m +1,―m ),由a ⊥(ma ―b )得:a ⋅(ma ―b )=0,∴a ⋅(ma ―b )=m +1=0,即m =―1.6.(2020·北京高考真题)已知正方形ABCD 的边长为2,点P 满足1()2AP AB AC =+ ,则||PD = _________;PB PD ⋅= _________.1-【解析】以点A 为坐标原点,AB 、AD 所在直线分别为x 、y 轴建立如下图所示的平面直角坐标系,则点()0,0A 、()2,0B 、()2,2C 、()0,2D ,()()()()1112,02,22,1222AP AB AC =+=+= ,则点()2,1P ,()2,1PD ∴=- ,()0,1PB =- ,因此,PD == ,()021(1)1PB PD ⋅=⨯-+⨯-=- .1-.。
高三数学平面向量基本定理及坐标表示试题答案及解析1.设平面向量,,若,则等于()A.B.C.D.【答案】A【解析】由,得,故,则,故=.【考点】1、向量共线;2、向量的模和坐标运算.2.如图,在正方形ABCD中,E为AB的中点,P为以A为圆心,AB为半径的圆弧上的任意一点,设向量.【答案】【解析】以为原点,以所在直线为轴,建立平面直角坐标系.设正方形的边长为,则设 .又向量所以,∴,∴,∴.由题意得∴当时,同时,时,取最小值为.【考点】平面向量的坐标运算,三角函数的性质.3.已知向量,则向量的坐标为()A.B.C.D.【答案】D【解析】因为,则根据向量加法的坐标运算可得,故选D.【考点】向量的坐标运算4.在下列条件中,使M与A,B,C一定共面的是()A.=2--B.=++C.++=0D.+++=0【答案】C【解析】++=0,即=-(+),所以M与A,B,C共面.5.已知平面向量,,,则下列说法中错误的是( )A.∥B.C.对同一平面内的任意向量,都存在一对实数,使得D.向量与向量的夹角为【答案】C【解析】选项A正确,因为,所以;选项B正确,因为,所以;选项C 错误,因为,所以向量与向量是共线向量,由平面向量的基本定理可知,它们的线性组合不能表示出同一平面内的任意向量;选项D正确,,所以,,,所以,所以向量与向量的夹角为.【考点】1.平面向量的基本定理;2.平面向量的坐标运算;3.平面向量的夹角6.如图,在等腰三角形中,底边, , , 若, 则= .【答案】【解析】以BC为x轴,BC的中点为原点建立直角坐标系,则设,可得,,故=,解得(负值舍去),故,,则 .【考点】1.平面向量的数量积;2.坐标法在向量中的运用.7.如图,在中,已知为线段上的一点,(1)若,求,的值;(2)若,,,且与的夹角为60°时,求的值。
【答案】(1),;(2).【解析】(1)本题的背景是三点共线向量定理,我们都熟悉当为的中点时,,本题重在考查证明过程,切不可直接应用结论,证明思路就是把向量拆成向量表示,结论自然得证;(2)由于已知向量的模和夹角,很自然得联想到平面向量基本定理,将其它向量用基底表示,将所有向量的运算转化为基底的运算,问题不难解决.试题解析:(1)∵,∴,即, 3分∴,即, 5分(2)∵,∴,即 7分∴ 8分∴, 9分10分12分14分【考点】向量的线性运算、平面向量基本定理、向量的数量积.8.在中,点在上,且,点是的中点,若,,则( )A.B.C.D.【答案】D【解析】设 .因为是的中点,所以,即,解得,.【考点】1.平面向量的基本定理;2.向量运算的坐标表示.9.如图所示,是圆上的三点,线段的延长线于线段的延长线交于圆外的一点,若,则的取值范围是()A.B.C.D.【答案】D【解析】线段的延长线与线段的延长线的交点为,则,在圆外,,又、、共线,故存在,使得,且,又,.,.选D.【考点】圆的性质,平面向量基本定理.10.已知向量在x轴上一点P使有最小值,则P的坐标为(). A.(-3,0)B.(2,0)C.(3,0)D.(4,0)【答案】C【解析】设P的坐标为,则,,当时,值最小,此时P的坐标为,选C.【考点】1.向量的坐标运算;2.向量的数量积.11.已知向量,若与垂直,则______.【答案】【解析】,,.【考点】1.向量的模;2.向量垂直.12.已知向量,向量,则的最大值为.【答案】4【解析】因为向量,向量,所以=4+4-4()=8-8sin(),其最大值为16,所以的最大值为4.【考点】本题主要考查平面向量的坐标运算,向量模的计算,向量的数量积,三角函数的性质。
向量测试题及答案一、选择题1. 在平面直角坐标系中,向量\( \overrightarrow{AB} \)的坐标表示为\( (3, 4) \),向量\( \overrightarrow{BC} \)的坐标表示为\( (-1, 2) \),则向量\( \overrightarrow{AC} \)的坐标表示为:A. \( (2, 6) \)B. \( (4, 6) \)C. \( (2, 2) \)D. \( (4, 2) \)2. 若向量\( \overrightarrow{a} \)与向量\( \overrightarrow{b} \)共线,则下列哪个说法是正确的?A. \( \overrightarrow{a} \)与\( \overrightarrow{b} \)的模长相等B. \( \overrightarrow{a} \)与\( \overrightarrow{b} \)的方向相反C. \( \overrightarrow{a} \)与\( \overrightarrow{b} \)的点积为零D. \( \overrightarrow{a} \)是\( \overrightarrow{b} \)的标量倍二、填空题3. 若向量\( \overrightarrow{v} \)的模长为5,向量\( \overrightarrow{v} \)与向量\( \overrightarrow{u} \)的夹角为60°,则向量\( \overrightarrow{v} \)与向量\( \overrightarrow{u} \)的点积为________。
4. 已知向量\( \overrightarrow{a} = (1, 2) \),向量\( \overrightarrow{b} = (3, 4) \),求向量\( \overrightarrow{a} \)与向量\( \overrightarrow{b} \)的叉积的模长。
高三数学平面向量坐标运算试题答案及解析1.已知m,n,则“a=2”是“m n”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件【答案】B【解析】由已知m n,故知“a=2”是“m n”的充分而不必要条件,故选B.【考点】1.向量平行的条件;2.充要条件.2.已知曲线C:,直线l:x=6.若对于点A(m,0),存在C上的点P和l上的点Q使得,则m的取值范围为 .【答案】【解析】由知是的中点,设,则,由题意,,解得.【考点】向量的坐标运算.3.已知曲线C:,直线l:x=6.若对于点A(m,0),存在C上的点P和l上的点Q使得,则m的取值范围为 .【答案】【解析】由知是的中点,设,则,由题意,,解得.【考点】向量的坐标运算.4.已知△ABC的顶点分别为A(2,1),B(3,2),C(-3,-1),BC边上的高为AD,则点D的坐标为()A.(-,)B.(,-)C.(,)D.(-,-)【答案】C【解析】设点D的坐标为(x,y),∵AD是边BC上的高,∴AD⊥BC,∴⊥,又C,B,D三点共线,∴∥.又=(x-2,y-1),=(-6,-3),=(x-3,y-2),∴,解方程组得x=,y=,∴点D的坐标为(,).5. [2014·北京东城区综合练习]已知向量a=(2,3),b=(-1,2),若ma+nb与a-2b共线,则=()A.-2B.2C.-D.【答案】C【解析】由向量a=(2,3),b=(-1,2)得ma+nb=(2m-n,3m+2n),a-2b=(4,-1),因为ma+nb与a-2b共线,所以(2m-n)×(-1)-(3m+2n)×4=0,整理得=-.6.已知,,如果∥,则实数的值等于()A.B.C.D.【答案】D【解析】由题意,即.【考点】向量平行的充要条件.7.(2013•重庆)OA为边,OB为对角线的矩形中,,,则实数k= _________.【答案】4【解析】由于OA为边,OB为对角线的矩形中,OA⊥AB,∴=0,即==(﹣3,1)•(﹣2,k)﹣10=6+k﹣10=0,解得k=4,故答案为 48.(2012•广东)若向量,向量,则=()A.(﹣2,﹣4)B.(3,4)C.(6,10)D.(﹣6,﹣10)【答案】A【解析】∵向量,向量,∴,∴=(﹣4,﹣7)﹣(﹣2,﹣3)=(﹣2,﹣4).故选A.9.向量a=(-1,1)在向量b=(3,4)方向上的投影为________.【答案】【解析】设向量a=(-1,1)与b=(3,4)的夹角为θ,则向量a在向量b方向上的投影为|a|·cos θ===.10.若向量,满足条件,则x=()A.6B.5C.4D.3【答案】A【解析】∵,,∴8=(8,8)﹣(2,5)=(6,3)∵∴12+3x=30∴x=6故选A11.在平面上,⊥,||=||=1,=+.若||<,则||的取值范围是()A.(0,]B.(,]C.(,]D.(,]【答案】D【解析】因为⊥,所以可如图建立直角坐标系,设O(x,y),||=a,||=b,因为=+,所以P(a,b)因为||=||=1,所以由知,点O在以点(a,0)为圆心,1为半径的圆上,所以同理由得,.所以.又由得,而由可得,,即,所以.综上所述,即.12.已知平面向量,,. 若,则实数的值为()A.B.C.D.【答案】B【解析】由题意知,,由于,则,解得,故选B.【考点】1.平面向量的坐标运算;2.共线向量13.已知A(-2,4)、B(3,-1)、C(-3,-4)且=3,=2,求点M、N及的坐标.【答案】(9,-18).【解析】∵ A(-2,4)、B(3,-1)、C(-3,-4),∴=(1,8),=(6,3),∴=3=(3,24),=2=(12,6).设M(x,y),则有=(x+3,y+4),∴ M点的坐标为(0,20).同理可求得N点的坐标为(9,2),因此=(9,-18).故所求点M、N的坐标分别为(0,20)、(9,2),的坐标为(9,-18).14.已知点点是线段的等分点,则等于.【答案】【解析】由题设,,,,……,,…… , .所以,,,,……,,…… , ,= = ,=所以答案是:【考点】1、等差数列的前项和;2、向量的坐标运算;3、向量的模.15.在平面直角坐标系中,若点,,,则________.【答案】【解析】.【考点】向量的坐标运算及向量的模.16.在平面直角坐标系中,△的顶点坐标分别为,,点在直线上运动,为坐标原点,为△的重心,则的最小值为__________.【答案】9【解析】把数量积用坐标表示出来,应该能求出其最小值了.设,由点坐标为,因此,所以当时,取得最小值9.【考点】数量积的坐标运算.17.已知向量,则向量的夹角为 .【答案】【解析】,所以,=,故答案为.【考点】平面向量的坐标运算、数量积、夹角.18.已知平面向量,,则向量()A.B.C.D.【答案】B【解析】,故选B.【考点】平面向量的坐标运算19.已知平面向量,,且,则向量()A.B.C.D.【答案】A【解析】,,,则,所以,故选A.【考点】平面向量的坐标运算20.在中,,,,则的大小为()A.B.C.D.【答案】B【解析】,,即,而,,解得,,,,,,故选B.【考点】1.平面向量的坐标运算;2.平面向量的数量积21.已知两点,向量,若,则实数的值为( )A.-2B.﹣l C.1D.2【答案】B【解析】由已知得,所以由得,,解得.【考点】向量垂直的坐标表示22.已知向量,,如果向量与垂直,则的值为()A.B.C.D.【答案】C【解析】,,,由于向量与垂直,所以,故选C.【考点】1.平面向量垂直;2.平面向量的坐标运算23.已知是正三角形,若与向量的夹角大于,则实数的取值范围是__________.【答案】【解析】建立如图所示坐标系,不妨设,则,所以,,由与向量的夹角大于,得,即,故答案为.【考点】平面向量的坐标运算,平面向量的数量积、夹角、模.24.设,,若,则实数________.【答案】【解析】因为,又,所以,答案,.【考点】平面向量坐标运算、平面向量数量积.25.已知双曲线:,若存在过右焦点的直线与双曲线相交于两点且,则双曲线离心率的最小值为()A.B.C.D.【答案】C【解析】因为过右焦点的直线与双曲线相交于两点且,故直线与双曲线相交只能如图所示的情况,即A点在双曲线的左支,B点在右支,设,右焦点,因为,所以,由图可知,,所以故,即,即,选C.【考点】平面向量的坐标运算、双曲线性质、双曲线离心率、不等式的性质.26.平行四边形中,=(1,0),=(2,2),则等于()A.4B.-4C.2D.-2【答案】A【解析】由,所以.故选A.【考点】1.向量的加减运算;2.向量的数量积27.若,则 .【答案】(3,4)【解析】.【考点】向量的坐标运算.28.若向量,则向量与的夹角的余弦值为 .【答案】【解析】,,两向量的夹角的余弦为.【考点】向量的加、减、数量积运算.29.已知向量a=(1,2),b=(x,1),u=a+2b,v=2a-b,且 u//v,则实数x的值是______.【答案】【解析】由,,又,所以,即.【考点】向量的坐标运算.30.在ΔABC中,=600,O为ΔABC的外心,P为劣弧AC上一动点,且(x,y∈R),则x+y的取值范围为_____.【答案】[1,2]【解析】如图建立直角坐标系,O为坐标原点,设C(1,0),,,则,,,即,,解得,,又,,.【考点】向量坐标运算、三角函数.31.如图,在扇形中,,为弧上且与不重合的一个动点,且,若存在最大值,则的取值范围为()A.B.C.D.【答案】D【解析】设扇形所在的圆的半径为1,以所在的直线为轴,为原点建立平面直角坐标系,,则,由题意可得,令,则在不是单调函数,从而在一定有解,即在时有解,可得,即,经检验此时此时正好有极大值点.【考点】1.向量的坐标运算;2.函数的性质.32.如图,AB是圆O的直径,C、D是圆O上的点,∠CBA=60°,∠ABD=45°,则()A. B. C. D.【答案】A【解析】设圆的半径为1,以作为坐标原点建立坐标系,则,,,,,,,,因为,所以,所以,,所以.【考点】向量运算点评:本题关键是建立坐标系,求出向量坐标,利用向量相等解题是关键,属中档题.33.若向量,且的夹角为钝角,则的取值范围是【答案】【解析】因为的夹角为钝角,所以,所以的取值范围是。
平面向量的基本定理及坐标表示1.设是平面内所有向量的一组基底,则下面四组向量中,不能作为基底的是( ) A BC D2.已知向量a,b ,且AB =a+2b 5BC ,=-a +6b 7CD ,=a-2b,则一定共线的三点是( )A.A 、B 、DB.A 、B 、CC.B 、C 、DD.A 、C 、D3.已知平行四边形ABCD 中DA ,=a DC ,=b ,其对角线交点为O,则OB 等于( ) A.12a +bB.a 12+bC.12(a +b )D.a +b4.已知OA =a OB ,=b ,C 为AB 上距A 较近的一个三等分点,D 为CB 上距C 较近的一个三等分点,则用a ,b 表示OD 的表达式为( ) A.4+59a b B +7169a b . C. +32a b D. +43a b5.已知P 是△ABC 所在平面内的一点,若CB PA PB λ=+,其中λ∈R ,则点P 一定在( )A.△ABC 的内部B.AC 边所在的直线上C.AB 边所在的直线上D.BC 边所在的直线上 6.在△ABC 中AB ,=c AC ,=b ,若点D 满足2BD DC =,则AD 等于( ) A.23b 13+ c B.53c 23-b C.23b 13- c D.13b 23+c7.在△ABC 中,设AB =m AC ,=n ,D 、E 是边BC 上的三等分点,即BD=DE=EC,则AD = AE ,= .8.设为内一点,且满足,则为的( )A 外心B 内心C 重心D 垂心9.已知△ABC 中,点D 在BC 边上,且CD =4DB ,CD =r AB +s AC ,则3r+s 的值为 .12,e e 1212e e e e +-和1221326e e e e --和4122122e e e e ++和212e e e +和O ABC ∆0AO BO CO ++=O ABC ∆10.计算下列各题:(1)3(3a -b )+4(b -2a );14(2)[(a +2b )+3a 13(6-a -12b )];(3)()(λμ+a +b )()(λμ--a -b ).11.已知M 是△ABC 的重心,设MA =a MB ,=b ,用a 、b 表示AC 、BC .12.已知a ,b 是两个不共线的非零向量,若a 与b 起点相同,则实数t 为何值时,a ,t b 13(,a +b )三向量的终点共线?13.(1)在△ABC 中,D 为BC 边上的中点. 求证:12()AD AB AC =+. (2)求证:G 为△ABC 重心,O 为平面内不同于G 的任意一点,则13()OG OA OB OC =++.平面向量的基本定理及坐标表示1.B 2. A 3. C 4.A 5.B 6. A 7. 23m n AD += 23n m AE += 8. C 9. 8510. (1) a +b (2)32a b +(3) 22b a λμ+ 11. 2AC a b =-- 82C a b =--12. 解:由已知,存在唯一实数λ,使a -t b [λ=a 13(-a +b )],化简得23(1)λ-a =3()t λ-b .由于a ,b 不共线,故 233100t λλ-=,⎧⎨-=,⎩ 解得 3212t λ=,⎧⎨=,⎩ 即12t =时,三向量的终点共线. 13.(1)证法一:AD AB BD AD AC CD =+,=+, 又D 为中点,∴BD CD +=0.∴2AD AB AC =+,即12()AD AB AC =+. 证法二:延长AD 至E,使DE=AD.∵BD=DC,∴四边形ABEC 为平行四边形.∴AE AB AC =+.又AE AD DE AD DE =+,=, ∴12()AD AB AC =+. (2)证明:∵OG OB BG =+,OG OA AG OG OC CG =+,=+,又∵G为△ABC的重心,∴AG CG++=0.∴OG OG OG OA OB OC ++=++,即13()OG OA OB OC=++.。
高一数学平面向量基本定理及坐标表示试题答案及解析1.已知向量,.(1)若,求实数的值;(2)若△为直角三角形,求实数的值.【答案】(1);(2)实数的值为或.【解析】(1)由两向量平行时,坐标可得关于m的方程,解得m;(2)直角三角形中两直角边平行,由两向量垂直时,坐标之间的关系可得关于m的方程,解得m,题目中并没指出直角,所以要对直角边进行讨论方可.解:(1)因为向量,所以,因为,且,所以,所以. 4分(2)由(1)可知,,,,因为△为直角三角形,所以,或,当时,有,解得;当时,有,解得;当时,有,解得.所以实数的值为或. 9分【考点】平面向量的坐标运算.2.已知.(1)若,求的值;(2)若,求的值.【答案】(1);(2).【解析】(1)先根据的坐标条件得到,进而将的分子与分母同时除以得到,代入数据即可得到答案;(2)由的坐标条件得到,进而结合同角三角函数的基本关系式得出,结合及确定的符号,从而开方即可得到的值.试题解析:(1)(2)且.【考点】1.同角三角函数的基本关系式;2.平面向量的坐标运算;3.两向量平行的条件与性质;4.两向量垂直的条件与性质.3.设R,向量,且,则 ( )A.B.C.D.10【答案】B【解析】因为,所以因此所以选B.【考点】向量平行与垂直的坐标表示4.设两个非零向量a与b不共线,(1)若a b,2a8b,3(a- b)。
求证:A、B、D三点共线;(2)试确定实数,使a b和a b共线。
【答案】(1)证明三点共线,只要证明任意三点中任取两点得到的两个向量共线即可。
(2)【解析】解(1)证明:a b,2a8b,3(a- b)。
2a8b3(a- b)=5(a b)=5。
共线,又它们有公共点B,所以A、B、D三点共线(2)a b与a b共线所以存在实数,使a b=(a b),即a=ba、b是不共线的两个非零向量,所以即【考点】向量共线点评:主要是考查了向量的共线的运用,属于基础题。
6.3.4 平面向量数乘运算的坐标表示一、选择题1.(2019·全国高一课时练习)已知平面向量(,4)a m =,(1,2)=-b ,且a ∥b ,则m = A .8- B .2- C .2 D .8【答案】B 【解析】由题意结合平面向量平行的充要条件可得:4,212mm =∴=--.本题选择B 选项.2.(2019·全国高一课时练习)已知平面向量()1,2a =,()2,b m =-且//a b ,则23a b +=( ) A .()2,4-- B .()3,6-- C .()4,8-- D .()5,10--【答案】C【解析】()1,2a =,()2,b m =-且//a b ,()122m ∴⨯=⨯-,4m =-∴,则()2,4b =--,因此,()()()2321,232,44,8a b +=+--=--,故选C.3.已知向量()2cos ,2sin a θθ=,(b =,且a 与b 共线,[)0,2πθ∈,则θ= A .π3 B .π6 C .π3或2π3 D .π6或7π6【答案】D【解析】因为a 与b 共线,所以2230cos sin θθ⨯=,cos θθ=,所以3sin tan cos θθθ==又因为[)0,2θπ∈,所以6πθ=或76π.本题选择D 选项4.已知向量则下列向量中与向量平行且同向的是( )A .B .C .D .【答案】A 【解析】,故选A .5.(多选题)若三点A (4,3),B (5,m ),C (6,n )在一条直线上,则下列式子正确的是( ) A .2m -n =3B .n -m =1C .m =3,n =3D .m -2n =3 【答案】AC【解析】∵三点(4,3)A ,(5,)B m ,(6,)C n 在一条直线上∴AB AC λ=∴(1,3)(2,3)m n λ-=-∴12λ=∴13(3)2m n -=-,即23m n -=.当m =3时,n =3。
一、主要知识: 1.基本单位向量
2. 位置向量 :起点是 的向量叫做位置向量。
已知(),A x y ,则位置向量OA xi y j =+。
把有序实数对(),x y 叫做位置向量OA 的坐标,记作(),OA x y =。
注意:位置向量的坐标就是 。
3.已知任意两点()()1122,,,P x y Q x y ,则向量PQ = 。
注意:一个向量的坐标就是 。
4.向量的运算的坐标表示形式
设λ是一个实数,()()1122,,,a x y b x y ==
则a b += 说明向量相加等于 ;
a b -= 说明向量相减等于 ;
a λ= 数乘向量等于 ;
a = 向量的模等于 ;
1212a b x x y y =⇔==且 向量相等的充要条件是 。
5.非零向量()()1122,,,a x y b x y ==平行的充要条件是 。
6.已知P 是直线12P P 上一点,且()1
2,1PP PP R λλλ=∈≠- ()()()111222,,,,,P x y P x y P x y ,则
x = ,y = 这个公式叫做点P 分线段12P P 的定比分点公式,其中λ叫做定比,点P 叫做分点。
特别地,当1λ=时,P 是12P P 的中点,此时 x = ,y = 叫做中点公式。
二、例题分析:
考点一、向量的坐标表示及其运算
例1、已知平行四边形ABCD 中,()()()2,1,3,2,2,4A B C ---,O 为坐标原点。
(1)写出,OB AC 的坐标;(2)求点D 的坐标。
巩固练习:
已知()()4,1,5,2a b =-=,(1)求23a b +的坐标;(2)求2a b -。
提高练习:
已知()()24,3,23,4a b a b +=--=,求,a b 的坐标。
例2、 已知点()2,3A -,点B 在x 轴上,且5AB =,求AB 的坐标。
巩固练习:
(1)已知()2,5AB =,点()3,1B -,则点A 的坐标为 。
(2)已知()()3,2,2,1a b =-=--,则2a b +的坐标为 ,
2a b += 。
(3)2,2AB i j AC i j =-=+,则BC = 考点二、向量平行的判断应用
例3、设()()22,4,8,1a k b k =+=+,已知//a b ,求实数k 的值。
巩固练习:
已知()()4,5,3,6a b ==,求实数k ,使ka b +与3a b -平行。
迁移练习:
已知()()()3,6,5,2,6,A B C y -三点共线,求实数y 的值。
考点三、定比分点公式和中点公式 例4、已知4
7
PA AB =-,设BP PA λ=,求λ的值。
巩固练习:
已知()()2,1,8,8A B -,求线段AB 的三等分点,C D 的坐标。
提高练习:
已知()()122,1,0,5P P -,若点P 在12P P 的延长线上且122PP
PP =,求点P 的坐标。
课堂测试:
1.已知平面内两点()()2,4,2,1P Q -,则PQ 的单位向量0_______a =。
2.已知()()2,3,1,5a b =-=-,则3_________
a b -=。
3.若向量()0,2a =、(),3b k l =--,且a 与b 是模相等的平行向量,则___,___k l ==。
4.若平面内,A B 两点的坐标分别是()()2,5,3,0,P 是直线AB 上的一点,2
3
AP PB =-,则点P 的坐标是________。
5.在ABC ∆中,有命题
①BC AC AB =-;②0=++CA BC AB ;③若0)()(=-⋅+AC AB AC AB ,则ABC ∆为等腰三角形;④若0>⋅AB AC ,则ABC ∆为锐角三角形.上述命题正确的是 ( ) A .①② B .①④ C .②③ D .②③④
6.如图,在平面四边形ABCD 中,下列结论中错误的是 ( ) A .DC AB = B .AC AB AD =+ C .BD AD AB =- D .0=+CB AD
7.在直角坐标系xOy 中,,i j 分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC 中,
2AB i j =+,3AC i k j =+,则k 的可能值有 ( )
A .1个
B .2个
C .3个
D .4个
8.若平面内,,A B C 三点的坐标分别是()()()112233,,,,,x y x y x y ,G 是ABC ∆的重心,求点G 的坐标。
当堂巩固
1.若三点A(2,2),B(a,0),C(0,b)(ab ≠0)共线,则1a +1
b
的值为________.
2.已知向量OA →=(3,-4),OB →=(0,-3),OC →
=(5-m ,-3-m),若点A ,B ,C 能构成三角形,则实数m 满足的条件是________.
3.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =2
3BC.若DE →=λ1 AB →+λ2
AC →
(λ1,λ2为实数),则λ1+λ2的值为________.
4.已知a =(1,2),b =(-3,2),当k 为何值时,ka +b 与a -3b 平行?平行时它们是同向还是反向?
5.已知点O 为坐标原点,A(0,2),B(4,6),OM →=t 1 OA →+t 2 AB →
.
(1)求点M 在第二或第三象限的充要条件;
(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点都共线.
课后作业
1.已知()()1,3,4,a k b k =-=,若//a b ,则实数k = 。
2.已知()()2,4,3,6A B -,若1
2
AC CB =
,则点C 的坐标为 。
3.若()()()1,2,5,4,9,A B C t -三点不能构成三角形,则t = 。
4.平行四边形ABCD 中,()()4,2,2,6AC BD =-=-,则AB = 。
5.ABC 中,()()4,1,3,4A B ,ABC 的重心()2,3G ,则顶点C 坐标为 。
6.设2AB =,P 为AB 延长线上一点,且4BP =,设AP PB λ=,则λ= 。
7.()()()1,1,2,1,4,2AB CB CD ==-=,则AD = 。
8.已知()1,5A -,向量()2,3a =,若3AB a =,则点B 位于第 象限。
9.已知()()1,2,2,2a b =-=-,则a b -的单位向量的坐标为 。
10.已知()()3,5,5,6A B -且()
23,44a x x x =-+-,若a AB =,则x = 。
11.已知()()3,1,1,1,A B O ---为坐标原点,(1)求2OA AB OB +-; (2)若2xOA yOB AB +=,求实数,x y 的值。
12.已知()()()1,3,,2a b t t t R =-=∈,求a b +的最小值。
13.已知()2,1a =-,点()4,4A ,且//AB a ,若25AB =OB 的坐标。
14.已知ABC 中,()()()4,1,2,1,0,5A B C -,点D 在AB 上,2AD DB =,点E 在AC 边上,且DE 恰将ABC 的面积平分,求点E 的坐标。
答案
例1:(1)()()3,2,4,3---;(2)()3,7
巩固练习:(1)
()23,4;
(2)61
提高练习:()()1,2,2,1---
例2:()4,3-或()4,3 巩固练习:(1)()1,6-;(2)()1,4--,17;(3)3i j + 例3:3或5- 巩固练习:1
3
k =- 迁移练习:6
例4:3
4
λ= 巩固练习:()()4,2,6,5C D 提高练习:()2,11- 课堂测试:
1. 43,55⎛⎫
-
⎪⎝
⎭; 2. 75; 3. 0,15k l ==--或; 4. ()0,15; 5. C ; 6. C ; 7. B 8.
12312
3
,33x x x y y y x y ++++==
当堂巩固
1. 12 2. m ≠54 4.当k =-1
3
时,k a +b 与a -3b 平行,
并且反向.
5. (1) t 2<0且t 1+2t 2≠0,(2)证明 当t 1=1时,由(1)知OM →
=(4t 2,4t 2+2). ∵AB →
=OB →
-OA →
=(4,4),
AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2 AB →,∴AM →与AB →
共线,又它们有公共点A ,
∴A ,B ,M 三点共线.
课后作业:
1.4或3-;
2.114,
33⎛⎫
- ⎪
⎝⎭; 3.10-; 4.()3,4-; 5.()1,4-; 6.32-; 53 8.一; 9. 34,5
5⎛⎫
- ⎪⎝⎭
; 10.5-; 11.(1)4;
(2)2,2-; 5; 13.()8,2或()0,6 14.()1,4。