第5章 抽样分布与参数估计
- 格式:ppt
- 大小:1.21 MB
- 文档页数:70
抽样分布与参数估计首先,我们来了解什么是抽样分布。
在统计学中,抽样分布是指从总体中多次抽样得到的样本统计量的分布。
假设我们的总体是指所有感兴趣的个体的集合,而样本是从总体中选取的一部分个体。
抽样分布的形状和性质取决于总体的分布和样本的大小。
通过分析抽样分布,可以得到有关总体参数的有用信息。
例如,我们想要知道一些城市成年人的平均年收入。
在实际情况下,我们无法调查每个人的收入情况,因此我们需要从总体中随机抽取一部分个体作为样本,并计算他们的平均年收入。
如果我们多次从总体中抽取样本并计算平均年收入,然后绘制这些平均值的分布图,我们就可以得到平均年收入的抽样分布。
这个抽样分布将给我们提供有关总体平均年收入的估计和推断。
接下来,我们将讨论参数估计。
参数估计是指使用样本数据来估计总体参数的过程。
总体参数是用于描述总体特征的数值,如总体平均值、总体标准差等。
通过从总体中抽取样本,并计算样本统计量,我们可以利用样本统计量来估计总体参数。
常用的参数估计方法有点估计和区间估计。
点估计是指用单个数值来估计总体参数,例如用样本均值来估计总体均值。
点估计给出了一个单一的值,但不能提供关于估计的精度的信息。
因此,我们常常使用区间估计。
区间估计是指给出一个区间,这个区间内有一定的置信水平使得总体参数落在这个区间内的概率最高。
区间估计能够向我们提供关于估计的精确程度的信息。
区间估计依赖于抽样分布的性质。
中心极限定理是制定抽样分布理论的一个重要原则。
根据中心极限定理,当样本容量足够大时,样本均值的抽样分布将近似于正态分布。
这使得我们可以使用正态分布的性质来计算置信区间。
构建置信区间的一种常用方法是使用样本均值的标准误差。
标准误差是样本均值的标准差,它用来衡量样本均值和总体均值之间的误差。
根据正态分布的性质,当样本容量足够大时,样本均值与总体均值之间的误差可以用标准误差来估计。
通过计算标准误差并结合正态分布的性质,我们可以得到样本均值的置信区间。
抽样分布一、抽样分布的理论及定理 (一) 抽样分布抽样分布是统计推断的基础,它是指从总体中随机抽取容量为n 的若干个样本,对每一样本可计算其k 统计量,而k 个统计量构成的分布即为抽样分布,也称统计量分布或随机变量函数分布。
(二) 中心极限定理中心极限定理是用极限的方法所求的随机变量分布的一系列定理,其内容主要反映在三个方面。
1.如果总体呈正态分布,则从总体中抽取容量为n 的一切可能样本时,其样本均数的分布也呈正态分布;无论总体是否服从正态分布,只要样本容量足够大,样本均数的分布也接近正态分布。
2.从总体中抽取容量为n 的一切可能样本时,所有样本均数的均数(X μ)等于总体均数(μ)即μμ=X3.从总体中抽取容量为n 的一切可能样本时,所有样本均数的标准差(X σ)等于总体标准差除以样本容量的算数平方根,即n X σσ=中心极限定理在统计学中是相当重要的。
因为许多问题都使用正态曲线的方法。
这个定理适于无限总体的抽样,同样也适于有限总体的抽样。
中心极限定理不仅给出了样本均数抽样分布的正态性依据,使得大多数数据分布都能运用正态分布的理论进行分析,而且还给出了推断统计中两个重要参数(即样本均数X μ与样本标准差X σ)的计算方法。
(三)抽样分布中的几个重要概念1.随机样本。
统计学是以概率论为其理论和方法的科学,概率又是研究随机现象的,因此进行统计推断所使用的样本必须为随机样本(random sample )。
所谓随机样本是指按照概率的规律抽取的样本,2.抽样误差。
从总体中抽取容量为n 的k 个样本时,样本统计量与总体参数之间总会存在一定的差距,而这种差距是由于抽样的随机性所引起的样本统计量与总体参数之间的不同,称为抽样误差。
3.标准误。
样本统计量分布的标准差或某统计量在抽样分布上的标准差,符号SE 或Xσ表示。
根据中心极限定理其标准差为n X σσ=正如标准差越小,数据分布越集中,平均数的代表性越好。
第四章抽样与参数估计推断统计:利用样本统计量对总体某些性质或数量特征进行推断。
从数据得到对现实世界的结论的过程就叫做统计推断(statistical inference)。
这个调查例子是估计总体参数(某种意见的比例)的一个过程。
估计(estimation) 是统计推断的重要内容之一。
统计推断的另一个主要内容是本章第二节要介绍的假设检验(hypothesis testing) 。
因此本节内容就是由样本数据对总体参数进行估计,即:学习目标:了解抽样和抽样分布的基本概念理解抽样分布与总体分布的关系了解点估计的概念和估计量的优良标准掌握总体均值、总体比例和总体方差的区间估计第一节抽样与抽样分布回顾相关概念:总体、个体和样本抽样推断:从所研究的总体全部元素(单位)中抽取一部分元素(单位)进行调查,并根据样本数据所提供的信息来推断总体的数量特征。
总体(Population):调查研究的事物或现象的全体参数个体(Item unit):组成总体的每个元素样本(Sample):从总体中所抽取的部分个体统计量样本容量(Sample size):样本中所含个体的数量一般将样本单位数不少于三十个的样本称为大样本,样本单位数不到三十个的样本称为小样本。
一、抽样方法及抽样分布1、抽样方法(1)、概率抽样:根据已知的概率选取样本①、简单随机抽样:完全随机地抽选样本,使得每一个样本都有相同的机会(概率)被抽中。
注意:在有限总体的简单随机抽样中,由抽样是否具有可重复性,又可分为重复抽样与不重复抽样。
而且,根据抽样中是否排序,所能抽到的样本个数往往不同。
②、分层抽样:总体分成不同的“层”(类),然后在每一层内进行抽样③、整群抽样:将一组被调查者(群)作为一个抽样单位④、等距抽样:在样本框中每隔一定距离抽选一个被调查者(2)非概率抽样:不是完全按随机原则选取样本①、非随机抽样:由调查人员自由选取被调查者②、判断抽样:通过某些条件过滤来选择被调查者(3)、配额抽样:选择一群特定数目、满足特定条件的被调查者2、抽样分布一般地,样本统计量的所有可能取值及其取值概率所形成的概率分布,统计上称为抽样分布(sampling distribution)。
第五章抽样调查及参数估计5.1 抽样与抽样分布5.2 参数估计的基本方法5.3 总体均值的区间估计5.4 总体比例的区间估计5.5 样本容量的确定一、简答题1.什么是抽样推断?用样本指标估计总体指标应该满足哪三个标准才能被认为是优良的估计?2.什么是抽样误差,影响抽样误差的主要因素有哪些?3.简述概率抽样的五种方式二、填空题1.抽样推断是在随机抽样的基础上,利用样本资料计算样本指标,并据以推算总体数量特征的一种统计分析方法。
2.从全部总体单位中随机抽选样本单位的方法有两种,即重复抽样和不重复抽样。
3.常用的抽样组织形式有简单随机抽样、类型抽样、等距抽样、整群抽样等四种。
4.影响抽样误差大小的因素有总体各单位标志值的差异程度、抽样单位数的多少、抽样方法和抽样调查的组织形式。
5.总体参数区间估计必须具备估计值、概率保证程度或概率度、抽样极限误差等三个要素。
6.从总体单位数为N的总体中抽取容量为n的样本,在重复抽样和不重复抽样条件下,可能的样本个数分别是______________和_____________。
7.简单随机_抽样是最基本的抽样组织方式,也是其他复杂抽样设计的基础。
8.影响样本容量的主要因素包括总体各单位标志变异程度_、__允许的极限误差Δ的大小、_抽样方法_、抽样方式、抽样推断的可靠程度F(t)的大小等。
三、选择题1.抽样调查需要遵守的基本原则是( B )。
A.准确性原则 B.随机性原则 C.代表性原则 D.可靠性原则2.抽样调查的主要目的是( A )。
A.用样本指标推断总体指标 B.用总体指标推断样本指标C.弥补普查资料的不足 D.节约经费开支3.抽样平均误差反映了样本指标与总体指标之间的( B )。
A.实际误差 B.实际误差的平均数C.可能的误差范围 D.实际的误差范围4.对某种连续生产的产品进行质量检验,要求每隔一小时抽出10分钟的产品进行检验,这种抽查方式是( D )。
A.简单随机抽样 B.类型抽样 C.等距抽样 D.整群抽样5.在其他情况一定的情况下,样本单位数与抽样误差之间的关系是( B )。
第5章抽样分布与参数估计在统计学中,抽样分布与参数估计是重要的概念。
抽样分布是指从总体中随机抽取样本,计算样本统计量,然后将这些统计量进行分布的过程。
参数估计是通过样本数据对总体参数进行估计的方法。
首先,我们来了解抽样分布。
在统计学中,我们通常很难直接获得总体数据,因为总体数据往往很大,难以收集。
因此,我们采用抽样的方式来获取样本数据,并通过样本数据来推断总体特征。
抽样分布是指在重复抽取样本的过程中得到的统计量的分布。
抽样分布的中心趋于总体参数,而抽样分布的形状可以通过中心极限定理进行描述。
中心极限定理认为,当样本数量足够大时,样本均值的抽样分布近似服从正态分布,且均值等于总体均值。
这对于统计推断和参数估计具有重要意义。
其次,我们来了解参数估计的概念及其方法。
参数估计是指根据样本数据对总体参数进行估计的统计方法。
常见的参数包括总体均值、总体方差等。
参数估计可以分为点估计和区间估计两种方法。
点估计是指通过样本数据计算得到的单个数值来估计总体参数。
常用的点估计方法包括最大似然估计和矩估计。
最大似然估计是基于样本的观测值选择使得观测值出现的概率最大的参数值作为估计值的方法。
矩估计是通过样本矩与总体矩的对应关系来估计总体参数的方法。
区间估计是指对总体参数给出一个区间估计值,该区间包含了真实参数值的概率。
常用的区间估计方法包括置信区间估计和预测区间估计。
置信区间估计是通过样本数据计算得到的一个区间,可以包含真实参数值的概率。
置信区间的置信水平是指在多次重复抽样中,这个区间包含了真实参数值的概率。
预测区间估计是在给定自变量取值的情况下,通过样本数据对应的因变量的取值的一个区间估计。
总之,抽样分布与参数估计是统计学中重要的概念和方法。
通过抽样分布可以了解样本统计量的分布情况,而参数估计可以通过样本数据对总体参数进行估计。
这些概念和方法对于数据分析和决策具有重要的实际应用价值。