近代物理学的发展共26页文档
- 格式:ppt
- 大小:4.11 MB
- 文档页数:26
近代物理发展史第一章:科学革命与经典力学的确立在16世纪末至17世纪初,科学革命在欧洲兴起,这一时期被广泛认为是近代物理学的起点。
科学革命的核心在于对自然界进行系统的观察和实验,并试图通过数学模型来解释自然现象。
在这一时期,伽利略·伽利莱和艾萨克·牛顿是两位最为重要的物理学家。
伽利略通过实验和观察,提出了自由落体定律和惯性定律,这些定律奠定了动力学的基础。
牛顿则在其著作《自然哲学的数学原理》中,系统地阐述了万有引力定律和三大运动定律,这些定律构成了经典力学的核心。
第二章:电磁学的诞生与发展18世纪末至19世纪初,电磁学开始兴起。
这一时期的代表人物包括汉斯·克里斯蒂安·奥斯特、安德烈玛丽·安培和迈克尔·法拉第。
奥斯特发现了电流能够产生磁场,安培提出了安培定律,而法拉第则发现了电磁感应现象。
这些发现和理论为电磁学的发展奠定了基础,19世纪末,詹姆斯·克拉克·麦克斯韦通过数学方程组将电磁学统一为一个整体,即麦克斯韦方程组。
这些方程组不仅描述了电磁场的传播和相互作用,还预言了电磁波的存在。
第三章:热力学与统计物理的兴起19世纪中叶,热力学开始发展。
热力学研究热能与机械能之间的转换关系,以及热力学系统的宏观性质。
卡诺、克劳修斯和开尔文等科学家提出了热力学定律,这些定律描述了热力学过程的方向性和效率。
同时,统计物理也开始兴起。
统计物理试图通过统计方法来解释热力学现象,将微观粒子的行为与宏观热力学性质联系起来。
玻尔兹曼和吉布斯等科学家在这一领域做出了重要贡献,他们提出了玻尔兹曼方程和吉布斯分布,这些理论为统计物理的发展奠定了基础。
第四章:量子力学的诞生20世纪初,量子力学开始兴起。
量子力学研究微观粒子的行为,试图解释原子和分子的结构和性质。
普朗克、爱因斯坦、玻尔、海森堡、薛定谔和狄拉克等科学家在这一领域做出了重要贡献。
普朗克提出了量子化假设,爱因斯坦解释了光电效应,玻尔提出了玻尔模型,海森堡提出了矩阵力学,薛定谔提出了薛定谔方程,狄拉克则提出了量子电动力学。
近代物理学发展进程简介《20世纪物理学革命》是上海科技教育出版社出版的《诺贝尔奖百年鉴》丛书中的一本。
该书给我们描述了物理学的革命历程。
其中,20世纪是物理学发展史上最富有成就的世纪,物理学在经典物理学的基础上飞速发展,取得了许多辉煌的成果,对人类社会产生了深刻的影响。
在20世纪之前,物理学家对于物质结构的认识还只是观念性的。
20世纪前夕的1897年,人类才发现了第一种基本粒子——电子。
在那以后,物理学家才真正开始了探索微观物质世界的进程。
1900年,普朗克提出量子假说,量子论就此诞生。
其后,爱因斯坦用光量子理论解释了光电效应。
1913年,玻尔提出了原子光谱理论,建立了现代意义上的原子模型。
在20世纪20年代,矩阵力学、薛定谔方程、泡利不相容原理、海森伯不确定原理和狄拉克电子方程相继提出,为量子力学奠定了基础。
这是20世纪物理学史上一场名副其实的革命。
与量子革命几乎同时,爱因斯坦发动了20世纪物理学的另一场革命。
1905年,他提出了狭义相对论,把自牛顿以来一直根深蒂固的绝对时空观从物理学中驱逐出去了。
1915年,他又提出了广义相对论,从而建立起引力的科学理论。
相对论和量子理论一起,成为20世纪物理学的两大基石。
40年代,量子电动力学诞生,它利用相对论和量子理论对电磁力进行了极为深入的阐述。
50年代,发现了弱相互作用的宇称不守恒现象。
60年代,夸克模型成功建立。
60年代末到70年代初,电弱统一理论和量子色动力学相继提出,标准模型正式形成。
标准模型是人类认识微观世界的进程中一个重要的分水岭,堪称20世纪物理学的又一场革命。
然而,标准模型并不意味着人类探索自然的脚步就此停止。
一方面,将引力与电磁力、弱力和强力统一到一个完整的大统一理论一直是物理学家无法割舍的梦想;另一方面,实验和观测所提供的数据也提出了许多新的问题。
20世纪80年代以来,弦论的蓬勃发展,也许同样将是一场给物理学带来巨大影响的革命。
《中国教育报》2001年10月18日第7版(张白)质量物理学的七个基本量之一。
近现代物理学的发展史对学科的发展脉络进行梳理有助于了解其现状,展望其未来。
物理学的历史很长,不能样样都谈到,仅从牛顿开始,牛顿以前的很多先驱性的工作只好从略了。
20世纪前物理学的三大综合17世纪至19世纪,物理学经历了三次大的综合。
牛顿力学体系的建立标志着物理学的首次综合,第二次综合是麦克斯韦的电磁理论的建立,第三次则是以热力学两大定律确立并发展出相应的统计理论为标志。
第一次综合——牛顿力学17世纪,牛顿力学构成了完整的体系。
可以说,这是物理学第一次伟大的综合。
牛顿将天上行星的运动与地球上苹果下坠等现象概括到一个规律里面去了,建立了所谓的经典力学。
至于苹果下坠启发了牛顿的故事究竟有无历史根据,那是另一回事,但它说明了人们对于形象思维的偏爱。
牛顿力学的建立牛顿实际上建立了两个定律,一个是运动定律,一个是万有引力定律。
运动定律描述在力作用下物体是怎么运动的;万有引力定律则描述物体之间的基本相互作用。
牛顿将两个定律结合起来运用,因为行星的运动或者地球上的抛物体运动都受到万有引力的影响。
牛顿从物理上把这两个重要的力学规律总结出来的同时,也发展了数学,成为微积分的发明人。
他用微积分、微分方程来解决力学问题。
由运动定律建立的运动方程,可以用数学方法把它具体解出来,这体现了牛顿力学的威力——能够解决实际问题。
比如,如果要计算行星运行的轨道,可以按照牛顿所给出的物理思想和数学方法,求解运动方程就行了。
根据现在轨道上行星的位置,可以倒推千百年前或预计千百年后的位置。
海王星的发现就充分体现了这一点。
当时,人们发现天王星的轨道偏离了牛顿定律的预期,问题出在哪里呢?后来发现,在天王星轨道外面还有一颗行星,它对天王星产生影响,导致天王星的轨道偏离了预期的轨道。
进而人们用牛顿力学估计出这个行星的位置,并在预计的位置附近发现了这颗行星——海王星。
这表明,牛顿定律是很成功的。
按照牛顿定律写出运动方程,若已知初始条件——物体的位置和速度,就可以求出以后任何时刻物体的位置和速度。