工程流体力学第二版答案
- 格式:pdf
- 大小:4.48 MB
- 文档页数:27
【最新整理,下载后即可编辑】《工程流体力学》习题答案(杜广生主编)第一章 习题1. 解:依据相对密度的定义:1360013.61000f w d ρρ===。
式中,w ρ 表示4摄氏度时水的密度。
2. 解:查表可知,标准状态下:231.976/CO kg m ρ=,232.927/SO kg m ρ=,231.429/O kg m ρ=,231.251/N kg m ρ=,230.804/H O kg m ρ= ,因此烟气在标准状态下的密度为:112231.9760.1352.9270.003 1.4290.052 1.2510.760.8040.051.341/n nkg m ρραραρα=++=⨯+⨯+⨯+⨯+⨯=3. 解:(1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为4atm 的空气的等温体积模量:34101325405.310T K Pa =⨯=⨯ ;(2)气体等熵压缩时,其体积弹性模量等于等熵指数和压强的乘积,因此,绝对压强为4atm 的空气的等熵体积模量:31.44101325567.410S K p Pa κ==⨯⨯=⨯式中,对于空气,其等熵指数为1.4。
4. 解:根据流体膨胀系数表达式可知:30.0058502V dV V dT m α=⋅⋅=⨯⨯= 因此,膨胀水箱至少应有的体积为2立方米。
5. 解:由流体压缩系数计算公式可知:392511050.5110/(4.90.98)10dV V k m N dp -⨯÷=-=-=⨯-⨯6. 解:根据动力粘度计算关系式:74678 4.2810 2.910Pa S μρν--==⨯⨯=⨯⋅7. 解:根据运动粘度计算公式:3621.310 1.310/999.4m s μνρ--⨯===⨯ 8. 解:查表可知,15摄氏度时空气的动力粘度617.8310Pa s μ-=⨯⋅,因此,由牛顿内摩擦定律可知:630.317.83100.2 3.36100.001U F AN h μπ--==⨯⨯⨯⨯=⨯9. 解:如图所示,高度为h 处的圆锥半径:tan r h α=,则在微元高度dh 范围内的圆锥表面积:2=2=tan cos cos dh h dA rdh παπαα由于间隙很小,所以间隙内润滑油的流速分布可看作线性分布,则有:===tan d r h υυωωαυδδδ则在微元dh 高度内的力矩为:332===2tan tan tan tan cos cos h h dM dA r dh h h dh ωαπαωατμαπμδαδα⋅⋅因此,圆锥旋转所需的总力矩为:33430==2=24tan tan cos cos H H M dM h dh ωαωαπμπμδαδα⎰⎰10. 解:润滑油与轴承接触处的速度为0,与轴接触处的速度为轴的旋转周速度,即:=60n Dπυ由于间隙很小,所以油层在间隙中沿着径向的速度分布可看作线性分布,即:=d dy υυδ则轴与轴承之间的总切应力为:==T A Db υτμπδ克服轴承摩擦所消耗的功率为:2==P T Db υυμπδ因此,轴的转速可以计算得到:3-360606050.7100.810====2832.16r/min 3.140.20.245 3.140.20.3P n D D Db υδππμπ⨯⨯⨯⨯⨯⨯⨯11.解:根据转速n 可以求得圆盘的旋转角速度:2290===36060n ππωπ⨯如图所示,圆盘上半径为r 处的速度:=r υω,由于间隙很小,所以油层在间隙中沿着轴向的速度分布可看作线性分布,即:=d dy υυδ则微元宽度dr 上的微元力矩:3233==2=2=6r dM dA r rdr r r dr r dr ωπμτμππμπδδδ⋅⋅ 因此,转动圆盘所需力矩为:4422322-30(2)0.40.23==6=6=6 3.14=71.98N m 40.23104DD M dM r dr μμππδδ⨯⨯⨯⋅⨯⎰⎰12. 解:摩擦应力即为单位面积上的牛顿内摩擦力。
第一章 绪论1-1.20℃的水2。
5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1—2.当空气温度从0℃增加至20℃时,运动粘度增加15%,重度减少10%,问此时动力粘度增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中、分别为水的密度和动力粘度,为水深。
试求m h 5.0=时渠底(y =0)处的切应力. [解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当=0。
5m,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s,油层厚1cm ,斜坡角22。
620(见图示),求油的粘度.[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1—5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
第一章 绪论1-1.20℃的水2。
5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1—2.当空气温度从0℃增加至20℃时,运动粘度增加15%,重度减少10%,问此时动力粘度增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度增加了3。
5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中、分别为水的密度和动力粘度,为水深.试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当=0。
5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22。
620(见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
工程流体力学课后习题答案(第二版)(总22页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 绪论1-1.20℃的水,当温度升至80℃时,其体积增加多少 [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)[解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
第一章 绪论1-1.20℃的水2。
5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3。
5%1—3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力. [解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1—4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm,斜坡角22。
620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1—5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1—6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==Θ原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμΘ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=Θ)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
工程流体力学课后习题参考答案《工程流体力学》(第二版)中国电力出版社周云龙洪文鹏合编一、绪论1-1 kg/m31-2 kg/m31-3m3/h1-41/Pa1-5 Pa·s1-6 m2/s1-7 (1)m/s1/s(2)Pa·s(3) Pa1-8 (1)(Pa)(2)(Pa)1-9 (1) (N)(2) (Pa)(3)1-10Pa·s Pa·s1-11( N·m) 1-12 m/sm2NkW1-13 Pa·sm2NkW1-141-15 m2N1-16 m2m/sr/min1-17Pa·sN1-18 由1-14的结果得N·m 1-191-20 mm1-21 mm二、流体静力学2-1kPa2-2PaPa2-3 且m(a) PaPa(b) PaPa(c) PaPa2-4 设A点到下水银面的距离为h1,B点到上水银面的距离为h2即m2-5kg/m3Pa2-6 Pa 2-7(1)kPa(2)PakPa2-8设cm m mkPa2-9 (1)Pa (2)cm2-10Pa m2-11整理得m2-12Pa2-13cm 2-142-15整理:kPa2-16设差压计中的工作液体密度为Pam2-17Pa2-18kPa2-19 (1) N (2) N 2-21 设油的密度为NNN对A点取矩m(距A点)2-22 设梯形坝矩形部分重量为,三角形部分重量为(1)(kN)(kN)m(2)kN·m<kN·m 稳固2-23总压力F的作用点到A点的距离由2-24 m m2-25 Nm(距液面)2-26Nm (距液面)或m(距C点)2-27第一种计算方法:设水面高为m,油面高为m;水的密度为,油的密度为左侧闸门以下水的压力:N右侧油的压力:N左侧闸门上方折算液面相对压强:(Pa)则:N由力矩平衡方程(对A点取矩):解得:(N)第二种计算方法是将左侧液面上气体的计示压强折算成液柱高(水柱高),加到水的高度中去,然后用新的水位高来进行计算,步骤都按液面为大气压强时计算。