电力关键系统继电保护讲义
- 格式:ppt
- 大小:378.00 KB
- 文档页数:58
电工进网作业培训讲义:继电保护及二次回路一、继电保护概述电力系统中,各种设备都有可能出现故障,如线路短路、变压器过载、发电机失速等。
这些故障若不能及时切除,就会导致设备损毁,乃至整个电力系统崩溃。
因此,继电保护的作用就是在电力系统发生故障时,自动切除故障部分,使得系统能够正常运行。
继电保护按照其应用范围,可以分为发电机继电保护、变电站继电保护和线路继电保护等。
根据其工作原理不同,继电保护又可分为电流继电保护、电压继电保护、功率继电保护、频率继电保护等。
二、继电保护工作原理继电保护通常由以下三个部分组成:1.传感器:用于将电力系统中的电量变化转换为电信号;2.测量和比较单元:对传感器输出的电信号进行测量,并将测量结果与设定值进行比较;3.操作单元:用于实现开关设备的操作,切除故障电路。
根据工作原理,继电保护又可分为热继电保护、磁力继电保护、电磁式继电保护、静态式继电保护等。
其中,静态式继电保护由于其灵敏度和可靠性等方面的优点,正在逐渐取代传统的电磁式继电保护。
三、二次回路概述二次回路是指继电保护系统中,从主开关到继电保护之间的电路。
它通常由CT、PT、配电柜、接线柱等组成,连接的部分包括电源、信号源、继电保护等。
在二次回路中,CT用于将高电流变换为相对应的低电流,并输出到继电保护中。
PT则用于将高电压变换为相对应的低电压,并输出到继电保护中。
在二次回路中,必须保证电路的连通性良好,信号的可靠性高,并设有母线隔离开关等。
四、二次回路的特点和应用二次回路具有以下特点:1.相对低电压、相对小电流:与电力系统中的高电流、高电压相比较小。
2.实时性要求高:二次回路的测量结果及时反映电力系统中的变化。
必须在很短的时间内完成测量、计算和保护动作。
3.灵敏度和可靠性要求高:继电保护必须在电力系统中发生故障时能够及时进行保护动作。
二次回路在电力系统中有广泛的应用。
例如,在负载中心的保护中,需要灵敏的保护来切除故障部分。
1. 电力系统的三种状态:正常运行,不正常运行和故障运行。
2. 继电保护的任务和作用:①当电力系统发生故障时,自动,迅速、有选择的将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障元件迅速恢复正常运行。
②反应电气元件的不正常运行状态,并根据不正常运行情况的类型和电气元件的维护条件,发出信号,由运行人员进行处理或自动进行调整。
反应不正常运行状态的继电保护装置允许带有一定个延时动作。
③继电保护装置还可以和电力系统中其他自动装置配合,在条件允许时,采取预定措施,缩短事故停电时间尽快恢复供电,从而提高电力系统运行的可靠性。
3. 动作于跳闸的继电保护,在技术上一般应满足四个基本要求,即可靠性、选择性、速动性和灵敏性。
4. 继电保护装置一般由测量比较元件,逻辑判断元件和输出元件三部分组成。
测量比较元件测量通过被保护的电气元件的物理参量,并与给定的值进行比较,根据比较的结果,给出是非或0或1性质的一组逻辑信号,从而判断保护装置是否应该启动。
逻辑判断元件根据测量比较元件输出逻辑信号的性质、先后顺序、持续时间等,是保护装置按一定的逻辑关系判定故障的类型和范围,最后确定是否应该是断路器跳闸、发出信号或不动作,并将对应的指令传给执行输出部分。
执行输出元件根据逻辑判断部分传来的指令,发出跳开断路器的跳闸脉冲即相应的动作信息,发出警报或不动作。
5. 电流保护的接线方式有三种:①两相一继电器的两相电流差接线②三相三继电器的完全星形接线③;两相两继电器的不完全星形接线。
6. 90°接线方式是指在三相对称的情况下,当cos ψ=1时,加入继电器的电流如ÌA 和电压ÚA 相位相差90°。
7. 90°接线方式的主要优点是:第一,对各种两相短路都没有死区,因为继电器加入的是非故障的相见电压,其值很高;第二,适当地选择继电器的内角α后,对线路上发生的各种故障,都能保证动作的方向性。
vivi电力培训机构继电保护讲义vivi电力培训机构继电保护讲义1. 引言在现代社会中,电力供应已成为人们生活中不可或缺的一部分。
然而,电力系统运行中的各种问题和故障,给人们的生活和生产带来了巨大的损失。
为了保障电力系统的正常运行,实施继电保护是至关重要的。
继电保护是一种专门设计用于检测和定位电力系统中异常情况的技术,它能够及时切除故障部分,从而保护整个系统。
2. 继电保护的概念和原理继电保护是指利用继电器和相关设备,通过对电力系统状态的监测和判断,实现对异常情况的检测、切除和隔离的技术措施。
其基本工作原理是当电力系统中出现故障时,继电器能够在极短的时间内感知到异常情况,并通过传递信号来切除故障部分。
继电保护的主要任务包括:故障检测、定位、切除故障和隔离故障。
3. 继电保护的分类继电保护可以按照应用对象的不同进行分类。
常见的分类方式包括:线路继电保护、变压器继电保护、电动机保护、母线保护和发电机保护等。
每个分类下都包含了特定的保护原理和技术手段,在电力系统的各个环节起到至关重要的作用。
4. 继电保护的工作流程继电保护的工作流程包括:状态监测、信号传递、故障检测、判断和操作执行等几个关键步骤。
从状态监测开始,继电保护设备不断地对电力系统的状态进行监测,一旦检测到异常情况,将产生相应的信号传递给继电器。
继电器通过对信号的判断和分析,确定是否存在故障,并采取相应的操作措施,例如切除故障电路或隔离故障部分。
5. vivi电力培训机构介绍vivi电力培训机构是一家专门致力于电力系统相关知识培训的机构。
通过在继电保护领域的深入研究和丰富的实践经验,vivi电力培训机构已经成为行业内的知名机构。
其培训内容包括继电保护概论、继电保护设备的选型和应用、继电保护的操作和维护等多个方面,旨在帮助学员全面掌握继电保护相关知识和技能。
6. 继电保护的挑战和前景随着电力系统的不断发展和升级,继电保护也面临着新的挑战和前景。
电力系统继电保护教材1. 简介继电保护是电力系统中保护设备的一种重要方式,它通过对电力系统的监测、检测和控制来保护电力设备的安全运行。
本教材将介绍电力系统继电保护的基本概念、原理和常见的保护装置。
2. 电力系统继电保护的基本原理电力系统继电保护的基本原理是通过监测电力系统中的参数变化,如电流、电压、频率等,来判断电力设备是否处于故障状态,并采取相应的措施保护电力设备。
本章将介绍电力系统继电保护的基本工作原理和保护装置的分类。
2.1 电力系统继电保护的基本工作原理电力系统继电保护的基本工作原理是根据电力设备在正常工作状态和故障状态下的参数差异来判断设备是否处于故障状态。
通过对电流、电压、频率等参数进行监测和检测,可以及时发现电力设备的异常情况,并采取相应的保护措施,保证电力设备的安全运行。
2.2 保护装置的分类根据保护装置的功能和工作原理的不同,可以将保护装置分为不同的类型。
常见的保护装置有过电流保护装置、距离保护装置、差动保护装置、过压保护装置等。
本节将对这些保护装置的原理和应用进行介绍。
3. 电力系统继电保护的主要问题和解决方法电力系统继电保护在实际应用过程中可能会遇到一些常见的问题,如误动、误保护、误动等。
本章将介绍这些问题的原因和解决方法,以及如何进行保护装置的测试和维护。
3.1 误动的原因和解决方法误动是指保护装置在正常工作状态下误动的情况。
误动可能会导致电力系统的不稳定运行,甚至引发整个电力系统的故障。
本节将介绍误动的原因和解决方法,以及如何通过调整保护装置的参数来避免误动的发生。
3.2 误保护的原因和解决方法误保护是指保护装置在故障状态下未能正常工作的情况。
误保护可能会导致电力设备受到进一步的损害,甚至引发整个电力系统的崩溃。
本节将介绍误保护的原因和解决方法,以及如何通过调整保护装置的参数来避免误保护的发生。
3.3 保护装置的测试和维护保护装置的测试和维护是保证电力系统继电保护正常工作的关键。
继电保护课教案(№3)授课教师:钱嘉浙西电力教育培训中心课时教案授课时间:2010年1月日第三章RCS-941A(B)输电线路保护第一节RCS-941A线路保护装置一、装置的应用RCS-941A(B)为由微机实现的数字式高压线路成套快速变化装置。
它包括完整的三段相间和接地距离及四段零序方向过流保护。
RCS-941B还包括复合式距离方向元件和零序方向元件为主体的纵联保护,由工频变化量距离元件构成的快速Ⅰ段保护。
RCS-941A用于无特珠要求的110KV高压输电线路。
RCS-941B用于要求全线快速跳闸的110KV高压输电线路。
二、装置的整体结构装置的正面面板布置图。
装置的背面面板布置图。
具体硬件模块图见图各插件原理说明组成装置的插件有:电源插件(DC)、交流插件(AC)、低通滤波器(LPF),CPU插件(CPU)、通信插件(COM)、24V 光耦插件(OPT)、跳闸出口插件(OUT)、操作回路插件(SWI)、电压切换插件(YQ)、显示面板(LCD)。
输入电流电压先经隔离互感器传变至二侧,成为小信号电压,然后一组进入VFC插件,将电压信号经压频变换器转换为频率信号,供CPU1,CPU2作保护测量另一组信号进入MONI(CPU3)插件,由内部数模转换后作装置总起动元件。
1、直流电源模件(DC)作用是将220V(或110V)直流电压变换成能满足各元件要求的弱电电源电压,有±12V、两路+24V、+5V电压。
±12V供运算放大器用,一路+24V供信号、出口继电器用,另一路供光耦用,+5V为CPU使用。
2、交流输入模件(AC)作用是将电压或电流变换成满足模/数变换器量程的电压。
(电力系统的过压对数据采集系统有干扰作用,所以这一环节要采取一定的过电压防护措施和干扰抑制措施)交流电压互感器的变比时15:1共四组,为A,B,C三相母线电压和线路电压。
U A 、U B 、U C 为三相电压输入,额定电压为 100 /√3 V;U X 为重合闸中检无压、检同期元件用的电压输入,额定电压为 100V 或 100 / √3V,当输入电压小于30V 时,检无压条件满足,当输入电压大于40V时,检同期中有压条件满足;如重合闸不投或不检重合,则该输入电压可以不接。
电力系统继电保护讲义1. 引言电力系统的继电保护是保障电力系统安全、稳定运行的重要组成部分。
在电力系统中,继电保护设备通过监测电力系统中的异常情况并采取相应的保护动作来实现对系统的保护。
本讲义将介绍电力系统继电保护的基本原理、常用设备和工作原理。
2. 继电保护基本原理继电保护的基本原理是通过检测电力系统中的异常电流、电压等参数,并与保护设置的阈值进行比较,当参数超过阈值时触发保护动作。
继电保护通过可靠的电气连接和灵敏的保护设备来实现对电力系统的保护。
3.1. 电流继电器电流继电器是一种常用的保护设备,用于检测电力系统中的电流异常情况。
电流继电器通过电流互感器将电流信号转换为电压信号,然后通过电路进行处理并与保护设定值进行比较,当电流超过设定值时触发保护动作。
3.2. 电压继电器电压继电器用于检测电力系统中的电压异常情况。
电压继电器通过电压互感器将电压信号转换为电压信号,然后通过电路进行处理并与保护设定值进行比较,当电压超过设定值时触发保护动作。
频率继电器用于检测电力系统中的频率异常情况。
频率继电器通过频率传感器将频率信号转换为电压信号,然后通过电路进行处理并与保护设定值进行比较,当频率超过设定值时触发保护动作。
3.4. 相位继电器相位继电器用于检测电力系统中的相位异常情况。
相位继电器通过相位传感器将相位信号转换为电压信号,然后通过电路进行处理并与保护设定值进行比较,当相位超过设定值时触发保护动作。
3.5. 故障录波器故障录波器用于记录电力系统中的故障事件,方便后续的故障分析和处理。
故障录波器通过记录电力系统中的电流、电压等参数,并存储为波形数据,可以提供给保护工程师进行分析。
4. 继电保护工作原理继电保护工作原理是继电保护设备按照一定的逻辑关系进行工作。
继电保护设备将电力系统中的参数信号与设定值进行比较,并根据逻辑关系判断是否触发保护动作。
继电保护设备通常采用可编程逻辑控制器(PLC)或微处理器来实现逻辑运算和保护动作。
第一部分电力系统继电保护的基本知识电力系统:由发电电厂中的电气部分,变电站,输配电线路,用电设备等组成的统一体:它包括发电机、变压器、线路、用电设备以及相应的通信,安全自动装置,继电保护,调调自动化设备等。
电力系统运行有如下特点:1、电能的生产,输送和使用必须同时进行。
2、与生产及人们的生活密切相关。
3、暂态进程非常短,一个正常运行的系统可能在几分钟,甚致几秒钟内瓦解。
电力系统继电保护的作用。
电力系统在运行中,可能由于以下原因,发生故障或不正常工作状态。
1、外部原因:雷击,大风,地震造成的倒杆,绝缘子污秽造成污闪,线路覆冰造成冰闪。
2、内部原因:设备绝缘损坏,老化。
3、系统中运行人员误操作。
电力系统故障的类型:1、单相接地故障 D(1)2、两相接地故障 D(1.1)3、两相短路故障 D(2)4、三相短路故障 D(3)5 线路断线故障以上故障单独发生为简单故障。
在不同地点同时发生两个或以上称为复故障。
电力系统短路故障的后果:1、短路电流在短路点引起电弧烧坏电气设备。
2、造成部分地区电压下降。
3、使系统电气设备,通过短路电流造成热效应和电动力。
4、电力系统稳定性被破坏,可能引起振荡,甚至鲜列。
不正常工作状态有:电力系统中电气设备的正常工作遭到破坏,但未发展成故障。
不正常工作状态有:1)电力设备过负荷,如:发电机,变压器线路过负荷。
2)电力系统过电压。
3)电力系统振荡。
4)电力系统低频,低压。
电力系统事故:电力系统中,故障和不正常工作状态均可能引起系统事故,即系统全部或部分设备正常运行遭到破坏,对用户非计划停电、少送电、电能质量达不到标准(频率,电压,波形)、设备损坏等。
继电保护的作用,就检测电力系统中各电气设备的故障和不正常工作状态的信息,并作相应处理。
继电保护的基本任务:1)将故障设备从运行系统中切除,保证系统中非故障设备正常运行。
2)发生告警信号通知运行值班人员,系统不正常工作状态已发生或自动调整使系统恢复正常工作状态。
电力系统继电保护摘要:一种自动的测量和装置,它是指在电力系统中的发电机、线路等部件或电力系统自身出现故障而威胁到电力系统的安全操作时,可以对操作人员发出警报,或直接给受控制的断路器下达跳闸指令,以结束此类事故的发展。
完成此项自动控制的成套设备通常称为继电保护。
编者将对继电保护的基本原理、基本要求、基本任务、分类和设备的继电保护。
关键词:电力系统;继电保护;基本原理一、基本原理继电器应具备正确区分受保护部件是否在正常工作或出现故障、是否在保护区范围或区域以外。
为了达到这种目的,必须从电力系统故障前后的电物量的变化特点出发,建立起保护设备的安全防护功能。
在电力系统故障后,工频电气量的变化表现为:1)增加了电流。
当发生短路时,在断路处与供电端的电力装置及传输线的电流会从负载电流增加到远大于负载电流。
2)电压下降(voltage)。
在相间和接地之间出现短路时,系统中各个点的相位电压或相电压都会降低,并且随着距离短路点的增加而降低。
3)电流和电压的相位角度发生变化。
当三相短路时,电流和电压的相角是负载的功率因数角,通常为20度左右,当三相短路时,电流和电压的相角是60~85度,而当保护反向短路时,电流和电压的相位角度为180°+(60°~85°)。
4)测量阻抗发生变化。
测量电阻,也就是测量点的电压和电流的比率(在保护装置上)。
在正常工作状态下,测得的阻抗是负载阻抗;当金属短路时,测量的阻抗向线路的阻抗转换,当发生故障时,测量的阻抗明显降低,而阻抗角增加。
非对称短路时,会产生相序成分,例如,当两相或单相接地短路时,会产生负序电流和负序电压;在单相接地的情况下,会产生负、零序和电压分量。
这些分量在正常运行时是不出现的。
根据短路故障时的电量变化,可以根据不同的原理,组成继电保护。
另外,除上述的反应工频电气量保护外,还提供了气体保护、继电保护等反应非工频电容量保护。
二、基本要求要实现继电保护装置任务,必须满足四个基本的技术需求:选择性、速度性、灵敏度、可靠性。