人教版小学五年级数学植树问题.
- 格式:pptx
- 大小:2.19 MB
- 文档页数:15
一、 只载一端(封闭线路植树问题)如图:间隔数=棵树 间隔长×间隔数=全长全长÷间隔长=间隔数 全长÷间隔数=间隔长二、 两端都载:如图:间隔数+1=棵树 间隔长×间隔数=全长全长÷间隔长=间隔数 全长÷间隔数=间隔长全长÷间隔长+1=棵数 全长÷(棵树-1)=间隔长三、 两端都不载如图:间隔数-1=棵树 间隔长×间隔数=全长全长÷间隔长=间隔数 全长÷间隔数=间隔长全长÷间隔长-1=棵数 全长÷(棵树+1)=间隔长一、填空题1.红领巾公园一条长200米的甬道两端各有一株桃树,现在两棵桃树之间等距离栽种了39株月季花,每两株月季花相隔米.2.学校召开运动会前,在100米直跑道外侧每隔10米插一面彩旗,在跑道的一端原有一面彩旗还需备面彩旗?3.在一条长50米的跑道两旁,从头到尾每隔5米插一面彩旗,一共插面彩旗。
4.街心公园一条甬道长200米,在甬道的两旁从头到尾等距离栽种美人蕉,共栽种美人蕉82棵,每两棵美人蕉相距米.5.在一条绿荫大道的一侧从头到尾每隔15米坚一根电线杆,共用电线杆86根,这条绿荫大道全长米.6.红领巾公园内一条林荫大道全长800米,在它的一侧从头到尾等距离地放着41个垃圾桶,每两个垃圾桶之间相距米.二、解答题7.一圆形鱼池全长200米,现在水池周围种上杨树25棵,隔几米种一棵才能都种上?8.明明要爷爷出一道趣味题,爷爷给他念了一个顺口溜:湖边春色分外娇,一株杏树一株桃,平湖周围三千米,六米一株都栽到,漫步湖畔美景色,可知桃杏各多少?9.一个圆形池塘,它的周长是300米,每隔5米栽种一棵柳树,需要树苗多少株?10.一个圆形水池周围每隔2米栽一棵杨树,共栽了40棵,水池的周长是多少米?。
五年级上册数学植树问题公式一、植树问题公式1. 两端都栽:棵数 = 间隔数 + 1 ,间隔数 = 棵数 1 ,距离= 间隔数×间距2. 两端不栽:棵数 = 间隔数 1 ,间隔数 = 棵数 + 1 ,距离= 间隔数×间距3. 一端栽一端不栽:棵数 = 间隔数,距离 = 间隔数×间距二、30 题解析1. 在一条长 200 米的小路一旁植树,每隔 5 米栽一棵,两端都栽,一共要栽多少棵树?间隔数:200÷5 = 40(个)棵数:40 + 1 = 41(棵)2. 一条公路长 300 米,在路的一侧从头到尾每隔 6 米栽一棵柳树,一共要栽多少棵柳树?间隔数:300÷6 = 50(个)棵数:50 + 1 = 51(棵)3. 在一条 480 米长的公路两侧每隔 8 米栽一棵树(两端都栽),一共要栽多少棵树?一侧间隔数:480÷8 = 60(个)一侧棵数:60 + 1 = 61(棵)两侧棵数:61×2 = 122(棵)4. 从一楼到二楼有 20 个台阶,小明从一楼走到三楼,一共要走多少个台阶?从一楼到三楼有:3 1 = 2(层)一共台阶数:20×2 = 40(个)5. 一条走廊长 36 米,每隔 4 米放一盆花,两端都不放,一共要放多少盆花?间隔数:36÷4 = 9(个)盆数:9 1 = 8(盆)6. 一根木头长 10 米,要把它平均分成 5 段。
每锯下一段需要8 分钟,锯完一共要花多少分钟?锯的次数:5 1 = 4(次)总时间:4×8 = 32(分钟)7. 在周长为 400 米的圆形池塘边每隔 10 米栽一棵柳树,一共能栽多少棵柳树?间隔数 = 棵数= 400÷10 = 40(棵)8. 一条长 80 米的道路两旁,每隔 5 米种一棵树(两端都种),一共种多少棵树?一侧间隔数:80÷5 = 16(个)一侧棵数:16 + 1 = 17(棵)两侧棵数:17×2 = 34(棵)9. 时钟 4 点钟敲 4 下,6 秒钟敲完,那么 12 点钟敲 12 下,多少秒钟敲完?敲 4 下,间隔数:4 1 = 3(个)每个间隔时间:6÷3 = 2(秒)敲 12 下,间隔数:12 1 = 11(个)总时间:11×2 = 22(秒)10. 小明从 1 楼走到 5 楼用了 80 秒,照这样计算,他从 1 楼走到 9 楼需要多少秒?从 1 楼到 5 楼走的层数:5 1 = 4(层)走一层用时:80÷4 = 20(秒)从 1 楼到 9 楼走的层数:9 1 = 8(层)总时间:20×8 = 160(秒)11. 一条公路的一旁连两端在内共植树 91 棵,每两棵之间的距离是 5 米,这条公路长多少米?间隔数:91 1 = 90(个)公路长:90×5 = 450(米)12. 在一条长 50 米的跑道两旁,从头到尾每隔 5 米插一面彩旗,一共插多少面彩旗?一侧间隔数:50÷5 = 10(个)一侧彩旗数:10 + 1 = 11(面)两侧彩旗数:11×2 = 22(面)13. 有一个圆形花坛,周长是 30 米,每隔 3 米摆一盆菊花,一共需要多少盆菊花?间隔数 = 盆数= 30÷3 = 10(盆)14. 一条林荫道长 18 米,在路的一旁从一端到另一端每隔 2 米放一盆花,一共安放多少盆花?间隔数:18÷2 = 9(个)盆数:9 + 1 = 10(盆)15. 两栋楼之间相距 30 米,每隔 2 米种一棵树,一共能种多少棵树?棵数:15 1 = 14(棵)16. 一根木料锯成 4 段要 12 分钟,如果每锯一段所用的时间相同,那么锯成 8 段要多少分钟?锯成 4 段锯的次数:4 1 = 3(次)锯一次用时:12÷3 = 4(分钟)锯成 8 段锯的次数:8 1 = 7(次)总时间:7×4 = 28(分钟)17. 在一条 100 米长的小路一边植树,每隔 4 米栽一棵(两端都栽),一共要栽多少棵树?间隔数:100÷4 = 25(个)棵数:25 + 1 = 26(棵)18. 一条路长 25 米,少先队员在路的两旁栽树,起点和终点都栽,一共栽了 12 棵树,每两棵树之间相隔多少米?一侧棵数:12÷2 = 6(棵)间隔数:6 1 = 5(个)间距:25÷5 = 5(米)19. 学校门口摆一排菊花,一共 9 盆。
人教版数学五年级上册:植树问题练习题人教版数学五年级上册植树问题1(两端都栽)1、同学们在全长240米的小路一边栽树,每隔4米栽一棵(两端都栽),一共需要多少棵树苗?2、有一条长1250米的公路,在公路的一侧从头到尾每隔25米栽一棵杨树,园林部门需要运来多少棵杨树?3、一条走廊长24米,每隔3米放一盆花,走廊两端都要放。
一共要放多少盆花?4、社区要在300米的道路两侧安装路灯,每隔10米安装一盏(两端都安),一共需要多少盏路灯?5、学校要在60米跑道两侧插上红旗,每隔5米插一面(两端都插),一共需要准备多少面红旗?6、公园内一条林荫大道全长800米,在它的一侧从头到尾等距离地放着41个垃圾桶,每两个垃圾桶之间相距多少米?7、街心公园一条甬道长200米,在甬道的两旁从头到尾等距离栽种美人蕉,共栽种美人蕉82棵,每两棵美人蕉之间相距多少米?8、一条路的一侧有一端原来种着一株海棠树,现每隔12米栽一棵海棠树,共用树苗25棵,这条路长多少米?❖植树问题2(一端栽一端不栽)1、沿着100米的巷子的一边栽树,每隔5米栽一棵(一端栽一端不栽),应该栽多少棵?2、一条路长1000米,在路的一旁装置路灯,每隔20米装置一盏(一端安另一端不安),一共需求筹办多少盏路灯?3、沿着60米的巷子两边栽树,每隔10米栽一棵(一端栽一端不栽),应该栽多少棵?4、环卫工人要在3千米的公路两旁安放垃圾桶(一端安一端不安),每150米安放一个,一共需要多少个垃圾桶?5、在一条赛道的一旁插上小红旗,每隔4米插一面,一端插一端不插,一共插了25面。
这条赛道多么长?6、一条巷子全长450米,要在这条路的一旁装置路灯(一端安一端不安),一共安了9盏,每隔多少米安一盏?植树问题3(两端都不栽)1、一条路长1000米,在这条路的一旁安路灯,村头村尾都不装,每隔20米安装一盏,一共需要多少盏路灯?2、XXX家到学校的距离是600米,每隔20米有一盏路灯(两端都不安),这条小路需要多少盏路灯?3、植树节到了,少先队员要在相距72米的两个楼房之间种8棵杨树,如果两头都不种,平均每两棵树之间的距离是多少米?4、用一根长18米的绳子剪跳绳,每3米剪一根,一共要剪几次?。
人教版数学五年级上册植树问题说课稿(精选3篇)〖人教版数学五年级上册植树问题说课稿第【1】篇〗说教学内容:人教版五年级上册第七单元第一课植树问题说教学目标:知识与技能:(1)理解植树问题中一条线段两端都植树的特征,并能应用规律解决问题。
(2)通过猜测操作,验证,交流的方式探究两端都不种的植树问题。
(3)从封闭曲线(方阵)中发现植树问题的规律。
过程与方法:培养学生观察能力、操作能力以及与人合作的能力。
情感态度与价值观:学生通过观察、操作、交流等活动探索新知。
说教学重难点:说教学重点:在探究活动中发现规律,抽取数学模型,并能够用发现的规律来解决生活中的一些简单实际问题。
说教学难点:基本规律的提炼和方法的应用。
说教学准备:教具准备:课件学具准备:练习本说教学过程:一、课前谈话。
同学们,学校旁边有一条长100米的小路,老师要在栽几棵树苗,想请你们当回小小***帮忙设计行吗?(行)今天我们来研究研究植树问题中的奥秘。
二、探究规律。
(一)1.出示题目这条小路长100米,每5米栽一棵小树苗(两端要栽),一共可以栽多少棵?可能会有部分学生会马上列出算式:100÷5=20(棵)①理解题意a、指名读题,从题中你了解到了哪些信息?b、理解“两端”是什么意思?指名说一说,然后实物演示。
指一指哪里是小棒的两端?说明:两端要栽就是小路的两头要种。
②学生动手操作。
拿出小棒,同桌间互相说一说,画一画,摆一摆。
③同桌互相讨论后,全班汇报交流a、指名说一说:你一共摆了多少根小棒?上黑板上来摆给大家看一看。
b、数一数你们刚才摆的小棒,它们之间有几个间隔?一共摆了几根小棒?c、间隔与种树的棵数有什么关系?④师说明:开始大家算出的100÷5=20,这个20并不是表示可以栽20棵树,而是指共有20个间隔。
2.改变题目条件变为:在全长20米的小路一边植树,请按照每隔5米栽一棵的要求设计一份植树方案,并说明理由。
(可用线段图表示)1.学生试解答2.用小棒检验3.说一说你的想法间隔数与栽树的棵数又有什么关系呢?学生试说后,教师小结。
人教版小学数学五年级上册《植树问题》教学设计及反思一、教学设计1. 教学目标(1)理解并掌握植树问题的基本概念和解决方法;(2)培养学生的逻辑思维能力和解决问题的能力;(3)激发学生对数学学习的兴趣,培养学生的合作意识和团队精神。
2. 教学重点与难点重点:植树问题的解决方法及应用。
难点:理解植树问题的数量关系,并能灵活运用解决实际问题。
3. 教学方法(1)启发式教学:通过提问、引导学生思考,激发学生的求知欲;(2)案例分析:分析生活中的植树问题,让学生了解植树问题的实际意义;(3)小组合作:分组讨论,共同解决植树问题,培养学生的团队协作能力。
4. 教学过程(1)导入新课通过图片或实物展示,让学生了解植树的意义,引出植树问题。
(2)新课讲解介绍植树问题的基本概念,讲解植树问题的解决方法,如:两端都要栽时,植树棵数=间隔数 1;只栽一端时,植树棵数=间隔数;两端都不栽时,植树棵数=间隔数-1。
(3)案例分析分析生活中的植树问题,如:校园里的树木、公园里的花坛等,让学生了解植树问题的实际应用。
(4)小组合作将学生分成若干小组,每组解决一个植树问题,让学生在实际操作中掌握植树问题的解决方法。
(5)课堂小结对本节课所学内容进行总结,强调植树问题的解决方法和注意事项。
(6)作业布置布置相关的植树问题作业,巩固所学知识。
二、教学反思1. 教学效果通过本节课的教学,学生基本掌握了植树问题的解决方法,并能运用到实际生活中。
在小组合作环节,学生积极参与,互相帮助,培养了团队协作能力。
2. 存在问题(1)部分学生对植树问题的理解不够深入,需要进一步加强引导和讲解;(2)课堂时间有限,小组合作环节时间较短,部分学生未能充分参与。
3. 改进措施(1)针对学生理解不足的问题,可以增加课堂提问和课后辅导,帮助学生深入理解植树问题;(2)在课堂时间安排上,可以适当调整,保证小组合作环节的时间,让更多学生参与到实际操作中。
总之,在教学过程中,要根据学生的实际情况,灵活运用教学方法,注重培养学生的逻辑思维能力和解决问题的能力。
五年级上册数学植树问题1、 只载一端(封闭线路植树问题)如图: 间隔数=棵树 间隔长×间隔数=全长全长÷间隔长=间隔数 全长÷间隔数=间隔长2、 两端都载:如图: 间隔数+1=棵树 间隔长×间隔数=全长 全长÷间隔长=间隔数 全长÷间隔数=间隔长全长÷间隔长+1=棵数 全长÷(棵树-1)=间隔长3、 两端都不载如图:间隔数-1=棵树 间隔长×间隔数=全长 全长÷间隔长=间隔数 全长÷间隔数=间隔长全长÷间隔长-1=棵数 全长÷(棵树+1)=间隔长基础知识为了更直观,我们用图示法来说明。
树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
非封闭线的两端都有“点”时,“点数”=“段数”+1。
例题一 一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯?举一反三1、学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树?2、在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花?3、少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米?4.一次检阅,接受检阅的一列彩车车队共30辆,每辆车长4米,前后每辆车相隔5米。
这列车队共排列了多长?题型二非封闭线只有一端有“点”时,“点数”=“段数”。
例题肖林家门口到公路边有一条小路,长40米。
肖林要在小路一旁每隔2米栽一棵树,一共要栽多少棵树?题型三非封闭线的两端都没有“点”时,“点数”=“段数”-1。
例题两座楼之间相距20米,每隔4米种一棵树,一共能种几棵树?举一反三1、同学们沿着一段公路的一侧栽树,每隔5米栽一棵树,从公路的一端到另一端共栽了155 棵树(两端都不栽),这段公路有多长?封闭线上,“点数”=“段数”。
人教版五年级数学上册第七单元《植树问题》教材分析一、教材内容概述《植树问题》是人教版五年级数学上册中的第七单元。
本单元主要围绕植树这一日常生活中常见的问题展开,通过植树问题的讨论,帮助学生理解并应用所学数学知识。
二、教材内容分析1. 植树问题引入本单元以“植树”为主题,引出学生对于“植树”的理解和认识,引导学生思考为什么要植树,以及植树对环境的重要性。
2. 树的数量与排列问题教材围绕树的数量和排列问题展开,让学生通过各种组合方式,解决关于植树排列的问题,培养学生的逻辑思维能力和数学推理能力。
3. 植树问题的应用通过实际问题的设置,让学生将所学的知识应用到实际情境中,如校园植树、社区植树等,锻炼学生的解决问题的能力,培养学生的团队合作意识。
4. 植树问题的拓展本单元还会对植树问题进行拓展,引导学生思考更多关于植树的问题,如不同树木对环境的影响、树木的生长规律等内容,增强学生对于植树的深层次理解。
三、教学目标1.让学生了解植树的重要性,培养学生热爱大自然的情感。
2.培养学生观察问题、分析问题的能力,提高学生的逻辑思维能力。
3.培养学生团队合作意识,培养学生的综合素质。
四、教学方法本单元可以采用启发式教学法,以问题情境为切入点,引导学生主动探究解决问题的方法。
同时,结合小组合作,让学生通过合作互助的方式,共同解决问题,提高学生的团队协作能力。
五、教学过程安排1.引入:通过展示植树图片或视频,引起学生的兴趣,让学生谈谈植树的重要性。
2.概念讲解:解释植树问题,介绍相关植树数学概念。
3.练习环节:组织学生进行植树问题的练习,让学生通过实际操作加深理解。
4.拓展活动:引导学生拓展相关植树问题,激发学生思考的兴趣。
六、教学效果评估1.课堂表现:观察学生在课堂上的表现,包括参与度、思考能力等。
2.作业评估:布置相关植树问题作业,评估学生对于植树问题的理解和运用能力。
3.小组合作:评估学生在小组合作中的互助与合作能力。
五年级上册数学植树问题1、 只载一端(封闭线路植树问题)如图: 间隔数=棵树 间隔长×间隔数=全长全长÷间隔长=间隔数 全长÷间隔数=间隔长2、 两端都载:如图: 间隔数+1=棵树 间隔长×间隔数=全长 全长÷间隔长=间隔数 全长÷间隔数=间隔长全长÷间隔长+1=棵数 全长÷(棵树-1)=间隔长3、 两端都不载如图:间隔数-1=棵树 间隔长×间隔数=全长 全长÷间隔长=间隔数 全长÷间隔数=间隔长全长÷间隔长-1=棵数 全长÷(棵树+1)=间隔长基础知识为了更直观,我们用图示法来说明。
树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
非封闭线的两端都有“点”时,“点数”=“段数”+1。
例题一 一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯?举一反三1、学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树?或2、在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花?3、少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米?4.一次检阅,接受检阅的一列彩车车队共30辆,每辆车长4米,前后每辆车相隔5米。
这列车队共排列了多长?题型二非封闭线只有一端有“点”时,“点数”=“段数”。
例题肖林家门口到公路边有一条小路,长40米。
肖林要在小路一旁每隔2米栽一棵树,一共要栽多少棵树?题型三非封闭线的两端都没有“点”时,“点数”=“段数”-1。
例题两座楼之间相距20米,每隔4米种一棵树,一共能种几棵树?举一反三1、同学们沿着一段公路的一侧栽树,每隔5米栽一棵树,从公路的一端到另一端共栽了155 棵树(两端都不栽),这段公路有多长?封闭线上,“点数”=“段数”。
人教版五年级上册数学植树问题一、两端都种树的植树问题。
1. 在一条长200米的道路一旁种树,每隔5米种一棵(两端都种),一共要种多少棵树?- 解析:首先计算间隔数,间隔数 = 总长度÷间隔长度,即200÷5 = 40个间隔。
因为两端都种树,所以树的棵数比间隔数多1,即40 + 1=41棵。
2. 有一条长120米的小路,每隔6米种一棵树(两端都种),这条小路上共种多少棵树?- 解析:间隔数为120÷6 = 20个,树的棵数 = 间隔数+1,所以共种20 + 1 = 21棵树。
3. 学校要在一条长80米的走廊一边摆花盆,每隔4米摆一盆(两端都摆),一共要摆多少盆花?- 解析:间隔数是80÷4 = 20个,由于两端都摆,花盆数比间隔数多1,即20+1 = 21盆。
4. 在一条长150米的马路一侧种树,每隔10米种一棵(两端都种),需要多少棵树苗?- 解析:先求出间隔数150÷10 = 15个,因为两端都种,所以树的棵数为15 + 1 = 16棵。
5. 工人叔叔要在一条长300米的公路两旁种树(两端都种),每隔15米种一棵,一共要种多少棵树?- 解析:先算一旁的情况,间隔数为300÷15 = 20个,一旁树的棵数是20 + 1 = 21棵。
因为是在公路两旁种树,所以总共要种21×2 = 42棵树。
二、两端都不种树的植树问题。
1. 在一条长180米的街道一侧安装路灯,每隔6米安装一盏(两端都不安装),一共要安装多少盏路灯?- 解析:间隔数为180÷6 = 30个,因为两端都不安装,所以路灯盏数比间隔数少1,即30 - 1 = 29盏。
2. 要在一条长240米的水渠边种树,每隔8米种一棵(两端都不种),一共能种多少棵树?- 解析:间隔数是240÷8 = 30个,树的棵数 = 间隔数 - 1,所以能种30 - 1 = 29棵树。
人教版数学五年级上册植树问题说课稿(推荐3篇)〖人教版数学五年级上册植树问题说课稿第【1】篇〗五年级数学上册《植树问题》教学设计学校:教师:说教学内容:人教版小学数学五年级上册第106页例1。
说教学目标:1、通过猜测、试验、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。
2、培养学生通过:“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。
说教学重点:通过动手操作、合作交流,探究出植树问题中两端都栽时,间隔数和棵树之间的规律,抽象出植树问题的数学模型。
说教学难点:运用“植树问题”的解题思想解决生活中的实际问题。
说教学过程:(一)创设情境引入新课(谜语导入)(1)、师:同学们,你们喜欢猜谜语吗?今天啊,老师想和同学们一起猜一猜,请看(课件出示):两棵小树十个叉,不长叶子不开花。
能写会算还会画,天天干活不说话。
(谜底:手)谁能很快说出谜底?(生口答)。
师:你思维真敏捷。
我们的手作用可真大,又会写,又会算还会画(2)、师:同学们,伸出你的左手,仔细观察,你能看到数字几?(3)、认识间隔、间隔数。
师:你观察得真认真!师:(课件出示)手的,手指间的空隙,在数学上我们叫做间隔。
(板书:间隔。
)一只手上有四个间隔,我们就说它的间隔数是4。
(板书:“间隔”后加“数”)师:想一想,生活中还有哪些地方有间隔?生充分交流(5)、揭示并板书课题。
师:生活中间隔无处不在。
像这样有间隔现象存在的问题,统称为植树问题。
(板书:植树问题)。
今天我们这节课就一起来探究有关植树中的数学问题。
(二)充分经历探究新知1、大胆猜测,引发冲突同学遇到了这样一个问题路,在全长100米小路一边植树,在它的一边种树(两端都栽),每隔5米栽一棵,一共要栽多少棵?2、理解题意。
(1)、从题目中你得到了哪些数学信息?(2)、理解题意。
师:解决问题时,要善于抓住关键词或句子,分析题意。
五年级数学广角植树问题
一、直线植树
1. 定义:在一条直线上等距离植树。
2. 公式:棵树=段数+1
3. 应用场景:校园绿化、街道绿化等。
二、圆形植树
1. 定义:在圆形区域等距离植树。
2. 公式:棵树=段数
3. 应用场景:公园绿化、广场绿化等。
三、方形植树
1. 定义:在方形区域等距离植树。
2. 公式:棵树=段数+1
3. 应用场景:城市绿化、小区绿化等。
四、密植问题
1. 定义:在有限的空间内尽可能多地植树。
2. 方法:采用较小间距,增加棵树。
3. 应用场景:园林设计、室内绿化等。
五、动态规划植树
1. 定义:根据不同条件和需求,动态调整植树方案。
2. 方法:采用递归或迭代算法,求解最优解。
3. 应用场景:复杂绿化规划、城市园林设计等。
五年级上册数学植树问题1、 只载一端(封闭线路植树问题)如图: 间隔数=棵树 间隔长×间隔数=全长全长÷间隔长=间隔数 全长÷间隔数=间隔长2、 两端都载:如图: 间隔数+1=棵树 间隔长×间隔数=全长 全长÷间隔长=间隔数 全长÷间隔数=间隔长全长÷间隔长+1=棵数 全长÷(棵树-1)=间隔长3、 两端都不载如图:间隔数-1=棵树 间隔长×间隔数=全长 全长÷间隔长=间隔数 全长÷间隔数=间隔长全长÷间隔长-1=棵数 全长÷(棵树+1)=间隔长基础知识为了更直观,我们用图示法来说明。
树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
非封闭线的两端都有“点”时,“点数”=“段数”+1。
例题一 一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯?举一反三1、学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树?或2、在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花?3、少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米?4.一次检阅,接受检阅的一列彩车车队共30辆,每辆车长4米,前后每辆车相隔5米。
这列车队共排列了多长?题型二非封闭线只有一端有“点”时,“点数”=“段数”。
例题肖林家门口到公路边有一条小路,长40米。
肖林要在小路一旁每隔2米栽一棵树,一共要栽多少棵树?题型三非封闭线的两端都没有“点”时,“点数”=“段数”-1。
例题两座楼之间相距20米,每隔4米种一棵树,一共能种几棵树?举一反三1、同学们沿着一段公路的一侧栽树,每隔5米栽一棵树,从公路的一端到另一端共栽了155 棵树(两端都不栽),这段公路有多长?封闭线上,“点数”=“段数”。
植树问题知识点回顾1、两端植树(1)已知总路程和株距,求棵数公式:总路程÷株距=间隔数,间隔数+1=棵数(2)已知株数和棵数,求总路程公式:棵数-1=间隔数,株距×间隔数=总路程(3)已知总路程和棵数,求株距公式:棵数-1=间隔数总路程÷间隔数=株距(4)已知总路程和株距或者棵数,求间隔数公式:总路程÷株距=间隔数或棵数-1=间隔数2、两端不植树(1)已知总路程和株距,求棵数公式:总路程÷株距=间隔数间隔数-1=棵数(2)已知株距和棵树,求总路程公式:棵数+1=间隔数株距×间隔数=总路程(3)已知总路程和棵数,求株距公式:棵数+1=间隔数总路程÷间隔数=株距(4)已知总路程和株距或棵数,求间隔数公式:总路程÷株距=间隔数或棵数+1=间隔数3、一端植树,一端不植树(1)已知总路程和株距,求棵数公式:总路程÷株距=间隔数=棵数(2)已知株距和棵数,求总路程公式:棵数=间隔数棵数或间隔数×株距=总路程(3)已知总路程和棵数,求株距公式:棵数=间隔数总路程÷棵数或间隔数=株距(4)已知总路程和株距,求间隔数公式:总路程÷株距=间隔数4、沿周长植树注意:一边植树多少棵的问题,要分析顶点植不植树(1)顶点植树:公式:总路程÷株距+1=一边上棵数(2)顶点不植树:公式:总路程÷株距=一边上的棵数典型例题1、在一条大道的一侧从头到尾每隔15米竖一根电线杆,共用电线杆86根,这条大道全长是米。
2、一块菜地的一边长是800米,要沿边做一道栅栏,需从头到尾等距离栽41个木杆,每两个木杆之间相距米。
3、在一条长2500米的公路两侧架设电线杆,每隔50米架设一根,若公路两头不架,共需根电线杆。
4、在相距50米的两楼之间栽一排树,每隔5米栽一棵树,共可栽棵树。
5、计划在长600米的一条堤上,从头到尾每隔5米栽一棵树,那么需要准备棵树苗。