油水井防砂工艺
- 格式:doc
- 大小:23.50 KB
- 文档页数:2
油井开采工艺离不开信息化、智能化、机械化技术的应用。
受机械使用寿命、生产时间的影响,可能会加剧套管破损现象,进而为防砂工艺技术提供了更多的难度。
由此可见,需解决油井开采技术中气井出砂、细粉砂井的问题,有利于避免油井出砂而造成的负面影响。
另外,需采用该工艺改善油井的渗透率,这对于提高油井工艺开采效率是有利的。
一、压裂防砂工艺技术原理1.工艺技术概况。
压裂防砂工艺技术是使用树脂涂层涂抹石英砂,使材料表面有一层保护膜,有利于提高油井的导流功能。
工艺进行中,需及时注入高性能的树脂砂,确保井口裂缝处或亏空段有支撑剂作用,能改善该部位的核心功能。
当支撑剂注入需要管控的裂缝部位时,需提高中央部位的温度参数,致使树脂层发生作用。
通过让保护层实现软化,引导其发生固化聚合反应,确保砂砾可以和保护层更紧实的粘合在一起,有利于防治井口出砂的现象,也能实践油层的改造作用。
通过该方式的优化,能提高油田井口的使用年限,且效果比之前更好。
2.压裂防砂工艺应用原理。
该工艺的出砂原理是基于拉伸、剪切、粘结的过程,实现压裂防砂的目标,也能防治孔隙坍塌的情况。
首先,剪切破坏会导致地层岩石的输送效率,需利用拖曳作用引导岩石颗粒落至指定区域,使指定区域能够在压裂防砂的作用中实现造缝控制,确保流入该区域的液体由单一的方向变成双线性。
其次,单一方向流向大多为径向流状,而此时石油会渗透至井底处,会导致井口、井底部分的压力不断提升,以此形成一个陡峭的压力带,当石油越靠近井壁时,压力也会随之提升。
导致这一情况的原因是由于压力的分布,使压力区域底部的和底边边缘的压差始终在一定范围内,也能控制压差在集中区域地带。
当低端压力不稳定时,可能会引发砂块性能不稳定,导致流体会呈现双线性流状态。
此时需使用这一情况改变压力梯度,控制其压力梯度会随着应力而发货所能改变,使油泄流至地层底部,增大了地底的阻力。
若产生较大部分的裂缝时,会提升井底原油的渗流面积,引发锈蚀情况,降低了流体对地层颗粒的冲击速度。
圆园20年第11期某采油厂管理着50多个开发断块,采用注水开发方式进行原油开采,因工艺流程及生产条件的限制,同时为了提高注水系统效率,多个断块采用同一个注水站集中供水,一套注水系统同时给2~5个断块供水,由配水间分压后,通过注水井注入地层。
近年来,因注水井储层出砂,造成储层内的支撑结构损坏,导致储层坍塌,挤压套管变形。
套变的井占该厂注水井总数的60%上,有10%的井造成套管断裂而报废,导致注水指标完不成,影响了油田开发生产。
2019年该厂组织专业技术人员及技师成立了难题攻关小组,经过调研和分析,查找出水井出砂原因,针对不同原因,提出了针对性治理方案。
一、水井出砂的原因该厂共有359口注水井,出砂、套变的井达到224口,占总井数的63%。
其中,常关的161口注水井中,因套变、出砂井而造成关停的井105口,占总关井数的65%。
表1各断块出砂、套变情况统计表通过以上分析,该厂出砂较为严重的断块有6个,分别是:泉241、京11、京9、中岔口、泉46-58,出砂率都在70%以上。
查找完钻资料得知,易出砂区块储层泥质含量高,均在12%以上,平均达到23.7%,而几个出砂一般的区块泥质含量均在7%以下,平均为4.3%。
(一)储层胶结物对出砂的影响1.弱胶结砂岩:出砂多发生在地层生产初期,出砂主要原因是地层剪切和洗井时拉伸破坏。
2.中等、较好胶结强度砂岩:生产初期不出砂,当注水压差达到一定强度,或注水压力波动,当岩石所受有效应力超过了岩石本身的抗压强度,地层发生剪切破坏,造成出砂。
(二)注水井临界压力差对出砂的影响通过对该厂的注水断块的临界压力差计算,注水断块的出砂临界压差在0.94~2.68MPa 之间,如表2所示。
表2部分断块出砂的临界压差统计表(三)储层水敏对出砂的影响该厂的储层土矿物平均含量在11%左右,高岭石、蒙脱石含量相对较高,水敏指数在0.50~0.70之间,矿物质颗粒的脱落和膨胀,造成了油层出砂。
油水井防砂工艺一、油水井出砂原因油水井出砂是由近井地带岩层结构破坏引起的,与地层应力和地层强度有关。
地层应力包括地层结构应力(如弹性、塑性应力)、地层孔隙压力、上覆岩层压力流体流动时拖拽力和生产压差。
地层被钻穿后,井壁岩石的原始应力平衡状态被破坏,并且在整个采油过程中保持最大应力。
因此在一定的外部条件下井壁的岩石首先发生变形和破坏。
根据出砂内外因素分为地质因素和开发因素:地质因素(一)地层胶结疏松地层流体在生产压差条件下向井眼方向发生渗流,致使岩石颗粒之间的胶结物发生运移,地层结构破坏,引起地层出砂,当其它条件相同,地层渗透率越高,岩石强度越低,地层越容易出砂。
(二)地层构造变化地层在构造上发生急剧变化的区域,例如在断层多、裂缝发育、地层倾角大及边水活跃的地区,由于地层岩石原始应力状态被复杂化,容易引起地层出砂。
开发因素(一)在地层流体渗流过程中,大部分有效压头消耗在井壁附近,因此,井壁岩石渗流冲刷作用最大,也容易变形和破坏。
(二)不恰当的开发速度及采油速度的突然变化、注水井急剧放压等原因造成地层压力梯度发生急剧变化,致使岩层结构破坏引起出砂。
(三)频繁的增产措施会破坏地层岩石的结构,引起地层出砂。
(四)油井出水时,泥质胶结物水化膨胀并分散成细小颗粒,在地层压差作用下随着油水流线向井眼方向运移,造成油水井出砂、出泥。
(五)在油水井生产过程中,油气层孔隙压力总体上是不断下降的,而上覆岩层对地层颗粒即其胶结物的有效应力则是不断增加的,致使颗粒之间的应力平衡被破坏,胶结力下降引起地层出砂。
(六)在注水开发油田时,当油田含水量上升,为维持原油产量必须提高采液速度,加大地层流体对岩石颗粒的拖拽力。
引起油层出砂。
(七)当井壁附近的岩石结构破坏到一定程度,就会出现流砂现象,这时即使压差很小,大批沙子也会无控制流出。
二、油水井出砂的危害1. 原油产量、注水量下降甚至停产停注油水井出砂极易造成油层砂埋、油管砂堵、砂卡,致使原油产量、注水量不断下降甚至停产停注。
浅析油井防砂工艺摘要:防砂工艺技术是提高油井产能和油田开发效益的关键技术。
我国疏松砂岩油藏分布范围广、储量大,油气井出砂是这类油藏开采的主要矛盾。
出砂往往会导致砂埋油层或井筒砂堵或油气井停产作业、使地面或井下的设备严重磨蚀、砂卡及频繁的冲砂检泵、地面清罐等维修,使工作量巨增,既提高了原油生产成本,又增加了油田管理难度。
防砂是开发易出砂油气藏必不可少的工艺措施之一,对原油稳定生产及提高开发效益起着重要作用。
关键词:油田防砂工艺一、引言保证疏松砂岩油藏开发过程中防砂措施的成功是十分重要的。
钻井过程中大多采用割缝衬管和预充填砾石来对付地层出砂,由于其使用寿命短,砂子易堵塞缝口,液流阻力大等缺点,而且下井时操作困难,不能填充射孔孔眼,因此新的有效的防砂方法的研究与应用仍是世界石油钻采中亟待解决的难题。
通过防砂可以使地层砂最大限度的保持其在地层中的原始位置而不随地层流体进入井筒,阻止地层砂在地层中的运移,使地层原始渗透率的破坏降低到最低程度,保护生产井和注水井的生产设备,最大限度的维持生产井的原始产液能力及注水井的注排能力,这是油气田防砂的目的。
现阶段常用的防砂方法有机械防砂、化学防砂及砂拱防砂。
近年来,砾石充填防砂技术已取得了显著的可靠施工效果,除井斜角较高的斜井之外,砾石充填防砂技术已成为应用最广泛的防砂技术方法。
化学固砂方法是将化学胶结液挤入天然松散的地层,固结井眼周围出砂层段中地层砂的一种防砂方法。
所形成的胶结地层具有一定的抗压强度和渗透性能。
二、油气井出砂的原因地层是否出砂取决于颗粒的胶结程度即地层强度。
一般情况下,地层应力超过地层强度就可能出砂。
油气井出砂的原因对于防砂及防砂剂的配方的选择有很大的影响,总的说来,油气井出砂的原因可以归结为地质和开采两种原因。
地质因素指疏松砂岩地层的地质条件,如胶结物含量及分布、胶结类型、成岩压实作用和地质年代等。
通常而言,地质年代越晚,地层胶结矿物越少,砂粒胶结程度越差,分布越不均匀的地层在开采时出砂越严重;地层的类型不同,地层胶结物的胶结力,圈闭内流体的粘着力,地层颗粒物之间的摩擦力以及地层颗粒本身的重力所决定的地层胶结强度就不同,地层胶结强度越小,地层出砂越严重。
(3)不能避免渗漏、喷涂、翻修、喷砂对竖杆耐久性的不利影响;(4)在竖井进入中流水切割开发期后,由于水泥溶解和侵蚀,竖杆强度下降;(5)地层降低引起的地层压力上升,垂直负荷增加,砂粒间的应力平衡崩溃,产生沙子。
3 防砂技术3.1 机械防砂技术现在机械沙的控制分为两个类别。
一种是在这个领域广泛使用的防砂管柱防砂技术。
这个主要用于悬挂在采油泵下挂接如绕丝筛管、割缝衬管、双层或多层筛管、各种防砂器。
原理是使用上述的防砂管柱阻断地层砂,防止其进入采油泵。
这种方法的优点是简单易用,是由中等粗大的砂岩存油层生产的大粒径砂。
缺点是,因为生成细砂的油井容易堵塞,所以油采油泵不能供给液体,其寿命比较短。
第二种机械防砂是第一种类型的开发和进步。
机械防砂的控制方法,采用多级滤砂屏障,达到防砂目的的对策。
目前,这种方法适用于各种砂层。
机械防砂技术通过各种各样的方法,可以细分为裸眼井砾石充填和套管井内砾石充填防砂方法。
技术原理是将筛管或割缝衬管引导到井内防砂层段,将适当的粒子大小的砂石供给流体。
在筛管和油层或套管之间填充,形成特定厚度的砂石层,使用它,防止地层砂流入井中。
一个大的沙子池。
油层的砂粒在砂石层的外侧被阻挡,根据自然的选择在砂石层的外侧被积蓄。
它具有良好的流通能力,可以有效防止油层出砂。
为了提高成功率,管内砾石充填施工通常与大直径的高孔密射孔相结合。
一般来说,充填防砂有可靠的结构、高成功率以及适度的成本等优点。
也就是说,机械防砂有很强的适应性,无论产层薄厚、0 引言油井出砂是由于很多原因造成的,这对油井的正常开发非常不利。
油井出砂的话,油井的开发就会变得困难。
严重的情况下,油井甚至可能停止生产。
目前,需要注意改进和参考,因此在开发石油生产时,必须注意应用有效的防砂技术。
在防砂技术方面,持续改善相关技术,避免出砂对生产影响,为了减少石油生产的阻碍,需要强化分析和研究相关技术,不断进行技术革新。
1 油田化学防砂技术概述分析中国油田可知,中国疏松砂岩油藏储量大,石油产量大,分布较大。
第八章油井防砂、防蜡与堵水工艺技术油井出砂、结蜡和出水是油田开采过程中经常遇到的问题,它直接影响油井的正常生产。
因此,必须采取各种有效的工艺技术措施来解决所遇到的这些问题,以确保油田高产稳产和较高的采收率。
本章简要介绍了油井防砂、防蜡、清蜡方法以及注水井调剖与油井堵水方法。
第一节防砂我国疏松砂岩油藏分布范围较大、储量大、产量占有重要的地位。
在一般开采条件下(除稠油采用排砂冷采新技术外),油井出砂其危害极大,主要表现为:使地面和井下设备严重磨蚀,甚至造成砂卡;冲砂检泵、地面清罐等维修工作量剧增;砂埋油层或井筒砂堵会造成油井停产;出砂严重时还会引起井壁甚至油层坍塌而损坏套管甚至造成油井报废。
这些危害既提高了原油的生产成本,又加大了油田的开采难度。
为了防止油井出砂,一方面要针对油层及油井条件,正确选择固井、完井方式,制定合理的开采措施,控制生产压差,限制渗流速度,加强出砂层油井的管理,尽量避免强烈抽汲的诱流措施;另一方面,根据油层和开采工艺要求,采用相应的防砂(sand control)工艺技术,确保油井的正常生产。
本节主要介绍影响油井出砂的主要因素、出砂层的特征和三类防砂方法(机械、化学、复合及其它防砂)的技术原理。
一、出砂因素及出砂层的特征1. 影响出砂因素油层是否出砂取决于岩石颗粒的胶结程度——地层强度。
一般说来,地层应力超过地层强度就可能出砂。
出砂的影响因素很多,可以归结为油井本身地质因素(内因)和开采因素(外因)两方面。
1)地质因素地层应力是决定岩石原始应力状态及其变形破坏的主要因素。
钻开油层后,井壁附近的岩石的原始应力平衡状态被破坏,造成近井岩石应力集中。
在其它条件相同情况下,油层埋藏越深,岩石的垂向应力就越大,井壁的水平应力相应增大,近井岩石就容易变形和破坏,从而引起油层出砂,甚至井壁坍塌。
岩石的胶结强度主要取决于胶结物的种类、数量和胶结类型。
通常砂岩的胶结物主要有粘土、碳酸盐和硅质、铁质,以硅质和铁质的胶结强度最大,碳酸盐次之,粘土最差。
稠油水平井防砂工艺【摘要】由于稠油油层一般有胶结较疏松,油层易出砂的特点,所以须进行防砂工艺设计。
本文针对稠油油藏的地质以及开采因素等方面。
简要对稠油井的完井方式、防砂工艺进行了优选。
结合传统的防砂技术以及完井方式,优选出了以精密滤砂筛管砾石充填防砂技术为主要防砂工艺。
该工艺在油田的现场生产实践中得到了验证与推广,对于稠油水平井的防砂工艺设计具有指导意义。
【关键词】稠油防砂工艺完井方式精密滤砂管分段完井1 防砂技术分类根据防砂原理及工艺特点,目前主要防砂方法主要有以下几种方法。
1.1 机械防砂机械防砂方法可以分为两类,第一类是仅下入机械管柱的防砂方法,如绕丝筛管、割缝筛衬管、各种滤砂管等。
这种方法简单易行,施工成本低。
缺点是防砂管柱容易被地层砂堵塞,只能阻止地层砂产出到地面而不能阻止地层砂进入井筒,有效期短,只能适用于中、粗砂岩地层。
第二类机械防砂方法为管柱砾石充填,即在井筒内下入精密滤砂筛管、绕丝筛管或割缝衬管等机械管柱后,再用砾石或其他类似材料充填在机械管拄与套管的环形空间内,并挤入井筒周围地层,形成多级滤砂屏障,达到挡砂目的。
这类方法设计及施工复杂,成本较高;但挡砂效果好,有效期长,成功率高,适用性广,可用于细、中、粗砂岩地层,垂直井,定向井,热采井等复杂条件。
1.2 化学防砂化学防砂是向地层中挤入一定数量的化学剂或化学剂与砂浆的混合物,达到充填、固结地层、提高地层强度的目的。
化学防砂主要分为人工胶结地层和人工井壁两种方法。
人工胶结地层是向地层注入树脂或其他化学固砂剂,直接将地层砂固结;人工井壁是将树脂砂浆液、预涂层砾石、水带干灰砂、水泥砂浆、乳化水泥等挤入井筒周围地层中,固结后形成具有一定强度和渗透性的人工井壁。
2 防砂完井方式考虑到稠油粘度大和开采后期气驱阶段防汽窜措施的实施,完井方式共考虑了以下三种:(1)全井段固井射孔-管内冲填防砂完井的优点在于能有效进行井段分离,避免层段之间的窜通。
机械防砂工艺油水井机械防砂是在井内下入各种类型的防砂管柱,如割缝衬管、绕丝筛管、滤砂管、双层或多层筛管等,将地层砂砾阻挡在防砂管柱外。
为防止地层泥砂堵塞防砂管柱,可在防砂管柱外充填砾石,使地层结构保持相对稳定,以提高防砂效果、延长防砂有效期。
1管内绕丝筛管砾石充填防砂工艺1.1原理管内绕丝筛管砾石充填防砂工艺,是先将地面预制好的绕丝筛管和井下配套工具依次下入井内,使绕丝筛管对准出砂层位,然后用携砂液携带一定粒度的砾石向地层、炮眼及筛管与套管环空填充,如图1所示。
或先对地层和炮眼填砂,再下充填管柱对环形空间充填砾石。
充填砾石对地层砂形成挡砂屏障,绕丝筛管则使充填的砾石始终保持在防砂井段,确保挡砂屏障的形成,因此砾石粒度与地层砂粒度、绕丝筛管缝隙应有一定的对应关系,即选择的砾石必须能完全挡住地层砂。
图1套管内砾石充填图2金属绕丝筛管1.2砾石充填设计1.2.1砾石设计砾石设计主要是确定砾石的大小、几何形状及化学成分。
砾石粒径大小根据冲砂作业时采集的地层砂样来确定,通过砂样筛析,绘出S型筛析曲线,求出地层砂粒度中值d50,并根据砾石尺寸计算方法求得砾石粒度中值D50,然后圆整得标准工业砾石直径。
目前现场普遍应用sauder计算方法,即D50=(5~6)d50,这样的砾石不仅能阻止地层砂的流动,还能在生产过程中保持最大的有效渗透率。
为满足防砂作业需要,除控制砾石尺寸外,充填砾石还应满足以下要求:强度大,不易被压碎;颗粒均匀,圆度好;杂质含量少,不易堵塞地层。
目前,国内防砂用砾石仍以石英砂为主,材料来源较广,而且无需经过复杂的加工处理即可使用。
1.2.2筛管设计绕丝筛管是将不锈钢丝或窄铜条缠绕在中心管上,然后焊接而成,其腐蚀和磨损小、强度高、产能系数大。
中心管可用打孔管,也可用割缝衬管,如图2所示。
筛管绕丝缝隙宽度的大小,可根据地层砂粒径大小而定,原则上要求筛缝尺寸为充填砾石粒度中值的。
1/2~2/3,即δ=(1/2~2/3)D50筛管直径设计主要考虑两方面的因素:过流面积与充填层径向厚度。
水泥浆防砂工艺对于地层胶结物泥质含量较高,中、后期出砂的油水井,采用树脂防治有一定难度。
根据该类地层出砂特点,可以采用水泥隔板、泡沫水泥浆、乳化水泥浆及氯化钙稀水泥浆防砂工艺技术,控制地层出砂。
水泥浆防砂是以油井水泥为胶结剂、以地层砂砾为支撑剂,将地面混配好的水泥浆注入出砂层段后与地层砂砾自然胶结,形成具有一定强度和渗透率的人工井壁,从而可以起到阻止地层砂砾流入井内的作用。
1水泥隔板防砂1.1原理水泥隔板防砂是利用水泥遇水硬化的特点,将水泥与水按一定比例混配后挤入出砂层段及油层上下泥岩隔层内,水泥浆凝固时与地层砂、砾自然胶结,在套管外形成具有一定强度和渗透性的人工井壁,同时还可防止泥质隔层破坏造成地层出水、出泥,致使出砂量越来越大。
1.2材料配方采用标准油井水泥,按水灰比0.46~0.68配制防砂水泥浆,并根据井深、井温及地层特性选用合适的水泥浆添加剂。
水泥浆密度与挤水泥方式根据试挤吸收能力来确定,单车试挤压力在15Mpa以上,而地层吸收量在150L/min以下时,采用替挤方式挤水泥;单车试挤压力在10~12Mpa以下,地层吸收量在100L/min以上时,水泥浆密度控制在1.85~1.90g/cm3之间;单车试挤压力在10~12Mpa以上,地层吸收量在100L/min以下时,水泥浆密度控制在1.70~1.80g/cm3之间。
2泡沫水泥浆防砂2.1原理泡沫水泥浆是在水泥浆中按比例加入一定量的发泡剂--铝粉及碱性物质--氢氧化钠。
由于铝在空气中极易与氧化合,在铝粉表面生成一层致密的氧化铝薄膜(简称氧化膜),这样就可以阻止铝粉内部金属的继续氧化。
因此,铝粉与水泥浆中的游离水不发生化学反应,但氧化铝可溶于酸或碱。
在防砂施工中,由于水泥浆中加有铝粉与氢氧化钠,当水泥浆被挤入出砂地层时,氧化铝在碱性环境下逐渐溶解,铝粉与氢氧化钠溶液及水作用,产生大量的氢气。
由于氢氧化钠的加入致使水泥浆凝结失常,出现假凝甚至闪凝现象,并将产生的氢气包容,生成大量细小的气泡。
浅谈对油水井防砂技术的几点认识摘要:油井防砂工艺技术的研究对疏松砂岩油藏的顺利开发至关重要。
文章针对油气井出砂的原因,分析了目前常用的几种防砂技术和防砂新方法。
关键词:疏松砂岩;出砂;防砂在油气开采中,油气井出砂能引起砂埋油气层或井筒砂堵造成油气井停产;注水井出砂会造成注水层位的堵塞而降低水效益。
通过防砂,可使地层砂最大限度地保持其在地层中的原始位置,而不随地层流体进入井筒,阻止地层砂在地层中的运移,使地层原始渗透率降到最低程度。
1 油水井出砂原因分析影响地层出砂的因素大体分为3大类,即地质因素、开采因素和完井因素。
第一类因素由地层和油藏性质决定(包括构造应力、沉积相、岩石颗粒大小、形状、岩矿组成,胶结物及胶结程度,流体类型及性质等),这是先天形成的,当然在开发过程中,由于生产条件的改变会对岩石和流体产生不同程度的影响,从而改善或恶化出砂程度;第二、三类因素主要是指生产条件改变对出砂的直接影响,很多是可以由人控制的,包括油层压力及生产压差,液流速度,多相流动及相对渗透率,毛细管作用,弹孔及地层损害,含水变化,生产作业及射孔工艺条件等。
通过寻找这些因素与出砂之间的内在关系,可以有目的地创造良好的生产条件来避免或减缓出砂。
2 主要防砂技术简介2.1 机械防砂技术目前,机械防砂分为两类:第一类是现场应用比较普遍的防砂管柱防砂技术,主要是采取在采油泵下挂接如绕丝筛管、割缝衬管、双层或多层筛管、各种防砂器等,原理是利用上述防砂管柱阻挡住地层砂,防止进入采油泵内。
优点是简便易行,可以有效地防止中粗砂岩油层所出的大粒径砂;不足以对出细砂的井造成堵塞,使采油泵不进液,而且寿命相对短暂。
第二类机械防砂是第一类机械防砂方法的发展进步,它采取先下入防砂管柱再进行充填,或一次性压裂充填,形成多级滤砂屏障,达到挡砂目的,充填物常用砾石、陶粒和果壳等。
由于该类防砂方法应用较早,技术逐步完善,被认为是目前防砂效果最好的防砂方法之一,可用于细、中、粗砂岩地层,垂直井、定向井、热采井等的复杂条件中。
油气井出砂是石油开采遇到的重要问题之一。
一般而言,地层出砂没有深度限定,地层应力超过地层强度就有可能引起出砂。
地层应力包括地层结构应力、上覆压力、流体流动时对地层颗粒施加的推拽力,还有地层压力空隙压力和生产压差形成的作用力。
地层强度决定于地层胶结物的胶结力、圈闭流体的粘着力、地层颗粒物之间的摩擦力以及地层颗粒本身的重力。
疏松砂岩油藏在我国分布很广,产量储量都占很大比例,因此搞好防砂工作非常重要。
油水井出砂带来的危害很大:出砂可能导致砂埋油层或井筒砂堵造成油水井不能正常生产或停产,还可能造成油层部位亏空、井壁坍塌、套变加剧乃至使油水井报废。
一、油层井出砂原因油水井出砂原因可分为先天和人为两种因素造成的。
先天因素主要是由于油藏埋藏浅,形成地质年代较晚,并且胶结矿物数量少、分布不均,因而油层胶结强度差,在地应力大于地层强度时,在流体冲刷之下油层即出砂。
人为因素主要有:①钻井过程及开采前后,油层部位受破坏而应力失衡;②不合理的开采速度和油井工作制度突变或生产压差过大;③射孔、压裂、修井冲砂和酸化等措施不可避免造成对油层强度的负面影响;④油层进人中高含水开发期后,由于胶结物的被溶解和冲刷,油层强度降低;⑤地层压力下降,使油层受垂向应力增加,使砂粒间的应力平衡被破坏,造成出砂;二、防砂技术的发展历程和目前主要防砂方法1.防砂技术的发展历程防砂就是采取一定措施禁止或减少油层砂产出并阻止其进入井筒,对于防砂人们经历了从不自觉到自觉的发展过程,按照其发展过程可分四个阶段。
(1)早期的试验摸索阶段:主要通过控制油井产量来稳定流体产出速度,在射孔炮眼处通过自然过滤堆积形成稳定的砂桥,进而阻止砂粒迸入井筒,这种方法一般也称为自然砂桥控砂技术。
(2)防砂技术发展阶段:20世纪70年代开始,经过研究探索形成了一套以化学防砂为主的固砂方法。
(3)防砂技术成熟阶段:20世纪70年代,形成了一套以机械防砂为主导、机械一化学复合防砂技术。
树脂胶结防砂工艺树脂胶结防砂工艺是向地层内注入一定数量的树脂溶液,依靠地层温度及固化剂的作用,将近井地带疏松地层胶结成具有一定强度和渗透率的人工井壁,从而阻止地层出砂的一种化学防砂方法。
1酚醛树脂防砂1.1原理酚醛树脂防砂是以苯酚、甲醛为主料,用烧碱作催化剂,经高温聚合反应生成棕褐色高分子酚醛树脂溶液,将此溶液与一定浓度的盐酸(固化剂)按比例混合后挤入地层,即变成热固性的酚醛树脂。
固化后的酚醛树脂具有一定的强度和渗透性,并具有良好的粘结性能,在井壁周围形成一道既能出油、出气、注水,又能阻挡地层砂砾的人工井壁,防止油水井出砂。
1.2材料配方1.2.1树脂溶液配方与合成方法苯酚:苯酚:烧碱=100:150:1.5(质量比)苯酚浓度:98%~100%,甲醛浓度:40%,烧碱纯度:98%~100%将一定量的苯酚、苯酚按比例混合于反应金中,缓慢间接加热并反复搅拌至沸腾(切忌用火直接加热,可用水或蒸汽作传热介质)。
再按比例加入烧碱反应1小时左右(温度保持在95~100℃之间),即可得到合格的酚醛树脂溶液。
1.2.2树脂胶结剂配方酚醛树脂溶液(12%~14%):盐酸=1:1(体积比)1.3主要技术指标1.3.1酚醛树脂溶液(1)深褐色粘性透明液体;(2)密度1.15~1.17g/cm3,粘度60~150mpa.s;(3)游离水含量不大于5%,游离盼含量应小于2.5%;(4)在25℃左右存放2~3个月,无脱水、胶凝、分层现象。
1.3.2酚醛树脂胶结剂酚醛树脂溶液与浓度为12%盐酸溶液混合后形成的固化树脂,技术指标如表1所示:表1酚醛树脂胶结剂主要技术指标稠化时间min 固化时间min抗压强度Mpa抗折强度Mpa抗拉强度Mpa孔隙度%渗透率μm2常温常压30~606020~258~102~430~40500~800压力10Mpa30~3520~2510~150不同浓度盐酸对酚醛树脂促凝作用如图1所示。
图1盐酸浓度对树脂固化时间的影响1.4用法与用量酚醛树脂溶液与浓度为12%的盐酸溶液按1:1的体积比配料,在地面混合均匀后挤入地层,挤封半径一般为0.6~0.7m。
油水井防砂工艺
一、油水井出砂原因
油水井出砂是由近井地带岩层结构破坏引起的,与地层应力和地层强度有关。
地层应力包括地层结构应力(如弹性、塑性应力)、地层孔隙压力、上覆岩层压力流体流动时拖拽力和生产压差。
地层被钻穿后,井壁岩石的原始应力平衡状态被破坏,并且在整个采油过程中保持最大应力。
因此在一定的外部条件下井壁的岩石首先发生变形和破坏。
根据出砂内外因素分为地质因素和开发因素:
地质因素
(一)地层胶结疏松
地层流体在生产压差条件下向井眼方向发生渗流,致使岩石颗粒之间的胶结物发生运移,地层结构破坏,引起地层出砂,当其它条件相同,地层渗透率越高,岩石强度越低,地层越容易出砂。
(二)地层构造变化
地层在构造上发生急剧变化的区域,例如在断层多、裂缝发育、地层倾角大及边水活跃的地区,由于地层岩石原始应力状态被复杂化,容易引起地层出砂。
开发因素
(一)在地层流体渗流过程中,大部分有效压头消耗在井壁附近,因此,井壁岩石渗流冲刷作用最大,也容易变形和破坏。
(二)不恰当的开发速度及采油速度的突然变化、注水井急剧放压等原因造成地层压力梯度发生急剧变化,致使岩层结构破坏引起出砂。
(三)频繁的增产措施会破坏地层岩石的结构,引起地层出砂。
(四)油井出水时,泥质胶结物水化膨胀并分散成细小颗粒,在地层压差作用下随着油水流线向井眼方向运移,造成油水井出砂、出泥。
(五)在油水井生产过程中,油气层孔隙压力总体上是不断下降的,而上覆岩层对地层颗粒即其胶结物的有效应力则是不断增加的,致使颗粒之间的应力平衡被破坏,胶结力下降引起地层出砂。
(六)在注水开发油田时,当油田含水量上升,为维持原油产量必须提高采液速度,加大地层流体对岩石颗粒的拖拽力。
引起油层出砂。
(七)当井壁附近的岩石结构破坏到一定程度,就会出现流砂现象,这时即使压差很小,大批沙子也会无控制流出。
二、油水井出砂的危害
1. 原油产量、注水量下降甚至停产停注
油水井出砂极易造成油层砂埋、油管砂堵、砂卡,致使原油产量、注水量不断下降甚至停产停注。
2. 地面和井下设备磨损
砂子从地层产出后,一部分较小的颗粒随油产出,造成输油设备磨损,还有许多砂子沉在井底,造成井下工具磨损,砂卡、砂堵。
3. 套管损坏、油水井报废
4. 修井工作量增加〕
由于油水井出砂,每隔一次就要进行冲砂和检泵作业,有时要进行打捞修套,側钻等大修作业。
三、油水井防砂
1.选择正确的完井方法,并制定合理的工作制度
2.结合油水井的具体情况,选择正确的防砂方法,并确定防砂工艺
3.目前防砂方法有机械防砂和化学防砂两种
化学防砂有树脂胶结防砂工艺和水泥浆防砂工艺
机械防砂工艺。