叠层铅芯橡胶隔震支座剪切破坏模式研究
- 格式:pdf
- 大小:339.10 KB
- 文档页数:4
铅芯橡胶隔震支座参数计算铅芯橡胶隔震支座是一种广泛应用于建筑隔震的装置,其核心组成部分包括橡胶层和嵌入其中的铅芯。
这种结构在地震时能够吸收和分散地震能量,从而减少对建筑物的破坏。
为了选择合适的铅芯橡胶隔震支座,需要对其参数进行计算。
以下是一些关键参数的计算方法:1.设计位移:这是指隔震支座在地震作用下预期的最大位移。
设计位移通常根据建筑物的地震响应分析来确定,需要确保支座在此位移范围内能够正常工作。
2.水平刚度:水平刚度是指隔震支座在水平方向上抵抗变形的能力。
它可以通过实验测定或根据制造商提供的数据来确定。
水平刚度对建筑物的自振周期有重要影响,进而影响地震响应。
3.阻尼比:阻尼比是衡量隔震支座耗能能力的一个指标。
铅芯橡胶隔震支座的阻尼主要来源于橡胶材料的剪切变形和铅芯的塑性变形。
阻尼比可以通过实验测定或根据制造商提供的数据来确定。
4.竖向承载力:这是指隔震支座在竖向方向上能够承受的最大压力。
竖向承载力应根据建筑物的重量和可能产生的竖向力(如风力、雪载等)来确定。
5.铅芯含量:铅芯含量是指隔震支座中铅芯所占的比例。
铅芯含量会影响支座的耗能能力和延性。
一般来说,铅芯含量越高,耗能能力越强,但延性可能会降低。
因此,铅芯含量应根据具体工程需求进行优化设计。
在计算这些参数时,需要考虑建筑物的具体情况,如结构形式、地震烈度、场地条件等。
此外,还应参考相关的国家和地方标准,确保隔震支座的设计符合规范要求。
最后,需要注意的是,铅芯橡胶隔震支座的参数计算是一个复杂的过程,建议在实际工程中咨询专业的结构工程师或隔震技术专家。
建筑结构设计中的隔震减震措施探讨摘要:地震是地壳移动快速释放能量过程中造成的振动,强大的地震波对建筑物而言是一场无法避免的灾难,建筑物的隔震减震措施越来越重要。
本文阐述了建筑减震隔震措施的基本原理,并对目前建筑结构减震技术措施及隔震技术措施进行了分析,可以看出随着社会的进步及科技的发展,建筑结构的减震隔震措施正逐步完善,具备更强的适应性及耐久性。
关键词:结构设计、建筑隔震、建筑减震1引言我国处于环太平洋地震带和欧亚地震带之间,是一个地震频发的沿海国家,受到太平洋板块、印度板块及菲律宾海板块的挤压;特别是汶川大地震后,给人们的生活带来了极大的不利影响,给社会经济带来了巨大的破坏,由此,抗震问题越来越受到人民的关注,采用合适的抗震设防措施来增加建筑物的抗震性能是建筑工程结构设计过程种的重要内容。
现阶段,我国《建筑抗震设计规范》(GB50011-2010)(2016年版)中对建筑结构的抗震性能有明确的规定,即大震不倒、中震可修、小震不坏,为实现“三个水准”的设防目标,国内学者及有关主管部门在建筑结构抗震方面进行了大量的研究工作,归纳总结了较多的抗震设计原则,例如:适当把控建筑结构刚度、允许地震时建筑物处于非弹性状态、允许建筑物地震时出现裂缝等,即达到增加结构延性、实现裂而不倒的目标。
根据我国几十年来的结构抗震实践证明,传统的设计原则基本可行,当遇小震、中震时尚可保障建筑结构的安全性,当遇到超出本地区抗震设防烈度的地震时,结构的安全就无法得到较好的保障,因此,部分处于地震断裂带附近的城市将学校、医院等公共服务设施的抗震设防烈度在本地区基本烈度的基础上适当的提高。
当传统的抗震设计原则无法满足现代的抗震要求时,隔震减震技术应运而生。
2建筑减震隔震基本原理隔震是指在建筑物基础、下部及上部结构之间设置具有整体复位能力的隔震层,从而达到延长结构自振周期、减小水平地震作用的功能。
隔震技术多用于高层建筑中,可降低40%~80%的地震作用,特别是在高烈度地区效果最为明显,但是隔震技术属于半主动抗震技术,施工时预制在建筑物结构中,构造要求较高且做法复杂,不易更换,后期需要进行适当的维护。
建筑结构设计中的隔震减震措施摘要:随着社会的不断向前发展,我国的建筑物也越来越多,而且建筑物的高度也在不断增加,建筑物的隔震减震措施也越来越重要。
文章阐述了建筑结构设计中隔震减震存在的问题,并提出相关措施。
关键词:建筑结构设计;隔震;减震;措施;1建筑结构设计中隔震减震存在的问题1.1隔震减震支座会受到抗震墙的影响为了能够让建筑结构变得更加稳固,这就需要在对减震和隔震的设计上做到尽量分散,若设置在建筑周围,地震时建筑的倾覆力大大增加,同时也会对建筑物的支座拉力产生严重的影响。
根据设计过程中的实际情况,在受力较大的一面应当设置抗震减震支座,支座间的距离也不能够过大,一般在2 m左右就能够满足实际的设计需求。
其次就是隔震减震支座往往也会因为拉力而产生变化,导致建筑的减震隔震效果受到一定的影响,从而导致建筑物出现水平方向的形变。
1.2高层建筑结构设计中建筑物走向对抗震的影响地震是常见的自然灾害,引起地震发生的主要原因就是地壳运动。
因此这就需要相关的工作人员在建筑设计的过程中对当地的地质结构进行全面细致的分析,往往地震过程当中地震的方向会对房屋产生明显的影响。
震向指的是房屋在地震过程当中的震动方向,在建筑物建造过程当中选择建造地址时一定要结合当地的地质状况和地震发生的方向,让建筑物的走向和震向呈现出相互垂直的状态,避免建筑物和震向之间出现相互平行的情况。
如果建筑物在建造的过程当中走向和震向相对平行,那么建筑物在地震中的倒塌概率大幅度增加,而垂直的话就能够很好的避免这一情况的出现。
1.3建筑结构的选择在建筑的隔震减震设计的过程中结构形式的选择是非常重要的。
传统的框架结构主要的特点就是剪切变形,现阶段通常选择的都是橡胶支座来进行隔震和减震。
在实际应用的过程当中采用重叠的橡胶支座不单单能够让框架的隔震减震作用得到一个大幅度的提升,最重要的是还能够让主框架的避震能力大大提升,从而确保建筑物在地震中的安全。
1.4墙体与防震缝设计问题在建筑物建造和设计的过程当中,对墙体的规划和设计也是非常重要的环节之一。
中图分类号:TU973文献标识码:A文章编号:1001-6945(2023)08-75-04经过几十年发展,以叠层橡胶隔震技术为首的隔震技术已经应用于许多落地工程,部分工程经受过真实强震考验,用事实证明隔震技术的优越性和经济性。
然而从早些年建筑发展来看,我国的高层建筑尤其是复杂高层建筑应用该技术很少。
除了经济发展水平原因外,主要原因是房屋高度过高、地震力较大时,结构在强震下产生非常大的倾覆力,使柱底支座产生很大的轴向拉应力而使橡胶支座发生变形、破坏。
当支座高度较高、剪切变形过大时,结构甚至有倒塌风险。
因此,如何控制橡胶支座的受拉应力对隔震技术在高层建筑中的应用和推广变得尤为关键。
对此,国内外专家学者做了大量深入研究,并取得了丰富的研究成果。
王曙光等[1]对十层框架按不同柱网下角部支座进行对比,通过时程分析得出,柱网间距越小,支座就越容易受拉。
还对剪力墙不同方案进行对比,认为规范要求剪力墙结构支座间距不宜过大的规定是不利于支座受拉控制的;熊伟[2]对一框筒隔震结构进行分析发现,层高越高,支座轴力呈线性增长,降低上部结构层高对控制支座受拉是有利的;程华群等[3]认为可采用高抗拉性能支座或普通橡胶支座与滑板支座混合应用来解决支座受拉大的问题;苏键等[4]提出可利用支座承压能力来抵抗拉应力的设计方法。
从以上可以看出,不少学者对控制隔震支座受拉问题研究,多从支座材料、上部结构等方面入手。
尽管不少新型隔震支座已申请专利,但很多没有实用性,且造价高,无法大规模推广。
传统设计思路和流程中,高层隔震建筑往往根据结构竖向压力和厂家试验数据确定支座的初步布置方案,并根据受力结果调整支座的大小。
当结构体型复杂时,边角处竖向力较小部位的支座拉应力反而非常大,为控制拉应力而盲目增大支座的直径是非常不经济合理的,必须探索更好的思路来解决这一问题。
对此,基于某国内第一高隔震楼隔震设计为依据,提出了适当降低隔震支座竖向刚度的方法可有效降低支座在地震作用下的受拉作用,方法简单,方便有效。
铅芯橡胶支座力学性能及应用研究本文介绍了铅芯橡胶支座的性能,利用大型通用结构分析程序Ansys,对一实际工程建模分析了铅芯橡胶支座的减震效果,结果证明铅芯橡胶支座具有较好的减震、隔震性能。
标签:铅芯橡胶支座减隔震连续梁应用研究1 铅芯橡胶支座及力学特性铅芯橡胶支座是新西兰人W.H.Robinson在1975年4月发明的,一经问世就受到各国关注,并得到了广泛应用。
它将竖向支承、水平向柔性(由橡胶提供)和滞变阻尼(由铅的塑性变形提供)三种功能结合在一个装置里,比较经济地解决了桥跨结构的隔震问题。
一般叠层橡胶支座是由薄橡胶板和薄钢板交错叠合并相互硫化粘结而成的产品。
由于钢板对橡胶板横向变形产生约束,使其具有非常大的竖向刚度。
同时钢板又不影响橡胶板的剪切变形,保持了橡胶固有的柔韧性,使其具有比竖向刚度小得多的水平刚度,及延长桥梁结构的水平自振周期。
从而使支座具有竖向支承与水平隔震机构的双重功能。
铅芯橡胶支座的吸能效果主要是利用铅芯弹塑性变形来达到。
由于铅棒的屈服强度较低(7MPa),并在弹塑性变形条件下具有较好的疲劳性能,它被认为是一种较理想的阻尼器。
大量实验研究表明:铅芯橡胶支座的恢复力模型可以用双线性来表示。
铅芯橡胶支座的屈服力与铅棒的面积有关,增大铅棒的面积可以提高屈服力,从而提高耗能效果。
铅芯橡胶隔震支座的滞回耗能特性主要有其控制参数屈服力、初始剪切刚度及屈服后刚度所确定。
本文主要致力于对铅芯支座的计算及实际应用,推动减隔震支座在桥梁中应用与发展。
2 抗震分析方法2.1 模型建立清瀾大桥由于引桥结构是对称结构,考虑到各联之间的相互影响,以及对比不同墩高之间的隔震效果,现选择西侧引桥7号桥墩至15号桥墩之间的部分作为抗震分析对象,此部分的桥型图如图1所示。
采用有限元程序Ansys对该大桥进行抗震计算,采用空间梁单元beam188模拟预应力混凝土连续梁桥的主梁和桥墩;二期恒载采用集中质量单元mass21模拟;主梁与边墩之间的联结用combine39单元来模拟。
不同尺寸铅芯橡胶隔震支座力学性能的有限元分析艾方亮;朱玉华;任祥香【摘要】研究不同尺寸铅芯橡胶隔震支座力学性能的变化规律,为小比例隔震结构模型隔震层的相似设计提供依据.采用ABAQUS对不同尺寸的铅芯橡胶隔震支座进行有限元分析.在橡胶和薄钢板厚度按比例变化的情况下,分析了不同尺寸铅芯橡胶隔震支座在竖向荷载和剪切荷载作用下的力学性能,研究了竖向刚度、水平等效刚度、屈服后刚度、屈服剪力、等效阻尼比等随铅芯橡胶隔震支座尺寸的变化规律.分析结果表明:竖向刚度、水平等效刚度、屈服后刚度等随铅芯橡胶支座尺寸的增大而线性增大,等效阻尼比与铅芯橡胶支座的尺寸关系不大,支座屈服剪力与铅芯直径尺寸近似成二次抛物线变化的关系.【期刊名称】《结构工程师》【年(卷),期】2016(032)006【总页数】6页(P74-79)【关键词】铅芯橡胶隔震支座;有限元分析;力学性能【作者】艾方亮;朱玉华;任祥香【作者单位】同济大学建筑工程系,上海200092;同济大学建筑工程系,上海200092;同济大学结构工程与防灾研究所上海 200092【正文语种】中文隔震结构通过在基础结构和上部结构之间设置隔震层,使上部结构与地震动的水平成分绝缘[1]。
隔震层中设置隔震支座和阻尼器等隔震装置,铅芯橡胶支座作为具有阻尼性能的隔震装置在实际工程中得到了广泛的应用。
1994年美国北岭地震和1995年日本阪神地震中,此类隔震结构经受了强烈地震动的考验,表现出良好的减震效果[2]。
模拟地震振动台试验能很好地再现地震过程,是考察结构地震反应和破坏机理最直接的方法,是研究和评价隔震结构抗震性能的重要手段之一[3]。
国内外研究学者对隔震结构开展了一系列的振动台模型试验研究[4-6],其研究内容主要针对隔震结构的抗震性能及验证基础隔震技术的隔震效果。
刘文光等[7]采用按比例缩小的铅芯橡胶隔震支座来模拟隔震层,表明小尺寸铅芯橡胶支座可以很好的模拟实际结构的隔震效果。
隔震结构体系的原理分析摘要:随着国民经济的不断发展,建筑抗震设计的要求也不断提高,各种耗能减震技术的应用也越来越广泛。
隔震结构体系通过在结构的底部和基础之间设置一个柔性的隔震层来耗散地震能量。
隔震层的设置,显著地降低了地震动的作用,很好地控制了地震作用下的结构响应,提高了建筑物的抗震性能。
关键词:隔震结构体系;耗能减震技术;隔震层;叠层橡胶支座;摩擦隔震系统1.隔震结构体系的基本原理隔震结构体系主要有三个部分组成:一是上部结构,二是隔震层,三是下部结构。
隔震层主要包括耗能元件和隔震元件,这两种元件的变形能力强,水平刚度小于上部结构的刚度,因此,结构的基本周期将被延长,和场地的卓越周期相互错开,从而使结构的地震作用效应大大减小。
隔震元件赋予了结构在基础面上做柔性滑动的能力,可延长结构的固有周期。
阻尼元件则给隔震层提供耗能能力,且自身拥有合适的刚度,防止结构在风荷载和地震的作用下产生较大位移。
为了使结构拥有优良的的减震能力,同时又可满足正常使用情况下的变形条件,隔震结构体系需拥有下面的基本特性:(1)承载特性:隔震装置需要具备足够的竖向承载力,确保建筑在日常的使用状况下可以正常地支承上部结构的荷载。
(2)隔震特性:隔震装置在较低的水平作用下,即普通风荷载或者小震情况下,拥有合适的弹性刚度,用于满足日常的使用要求。
当承受较大的水平作用时,即大震情况下,允许隔着装置产生一定量的柔性滑动,让结构体系进入耗能状态。
(3)复位特性:隔震装置需要具备一定的弹性恢复力,从而让上部结构和隔震装置在地震作用下具可以自动复位,降低震后的修复工作量。
(4)阻尼特性:隔震装置需要具有良好的耗能能力。
在地震作用下,隔震结构体系的整体表现如下:因设置了水平刚度显著小于上部结构的隔震装置,上部结构的水平变形为整体平动,即在地震下上部结构依然保持弹性状态。
2叠层橡胶支座叠层橡胶支座由交错叠合的钢板层和橡胶层组成,钢板层可约束橡胶层水平变形,因此,橡胶支座在竖直方向上拥有足够的承载力和刚度,同时在水平方向上其刚度较小,具备延长结构固有周期的效果。
欢迎前来选购点击咨询J4Q铅芯隔震橡胶支座和Y4Q铅芯隔震橡胶支座同由上连接板上封板、铅芯、多层橡胶、加劲钢板、保护层橡胶、下封板和下连接板组成。
多层橡胶、加劲钢板构成多层橡胶支座承担建筑物重量和水平位移的功能,铅芯在多层橡胶支座剪切变形时,靠塑性变形吸收能量,地震后,铅芯又通过动态恢复与再结晶过程,以及橡胶的剪切拉力的作用,建筑物自动恢复原位。
对应不同铅芯、桥梁的要求,隔震橡胶支座可以有不同的叠层结构、制造工艺和配方设计,以满足所需要的垂直钢度、侧向变形、阻尼、耐久性、倾覆提离等性能要求。
J4Q铅芯隔震橡胶支座为矩形,Y4Q铅芯隔震橡胶支座为圆形。
铅芯隔震橡胶支座生产工艺:铅芯隔震橡胶支座现在还没有完全实现自动话生产,硫化之前的步骤基本都是手工操作,下片,裁片,叠层等工序的好坏与工人的熟练程度有很大关系。
在硫化机上的硫化时间和温度控制也很重要,不同的规格的橡胶支座硫化时间是不一样的,如果达不到相应的硫化时间,那么就会形成夹生,里边的胶没有充分硫化,影响橡胶支座产品质量。
欢迎前来选购点击咨询J4Q铅芯隔震橡胶支座和Y4Q铅芯隔震橡胶支座规格J4Q铅芯隔震橡胶支座分为29类:400×400,450×450,500×500,500×550,550×550,600×600,650×650,700×700,750×750,800×800,850×850,900×900,950×950,1000×1000,1050×1050,1100×1100,1150×1150,1200×1200,1250×1250,1300×1300,1350×1350,1400×1400,1450×1450,1500×1500,1550×1550,1600×1600,1650×1650,1700×1700,1750×1750。