湖南省长沙市 师大附中博才2018-2019学年度八年级下学期期末数学试卷(PDF版)
- 格式:pdf
- 大小:530.77 KB
- 文档页数:9
2018-2019学年湖南师大附中博才实验中学八年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,得分36分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列方程中是关于x的一元二次方程的是()A.x=x2﹣3B.ax2+bx+c=0C.D.3x2﹣2xy﹣5y2=02.(3分)为考察甲、乙、丙三种小麦的长势,在同一时期分别从中随机抽取部分麦苗,计算后得到苗高(单位:cm)的方差为,,,则麦苗高度最整齐的是()A.甲B.乙C.丙D.都一样3.(3分)已知一次函数y=(2m﹣1)x+3,如果函数值y随x的增大而减小,那么m的取值范围为()A.m<2B.C.D.m>04.(3分)方程3x2﹣7x﹣2=0的根的情况是()A.方程没有实数根B.方程有两个不相等的实数根C.方程有两个相等的实数很D.不确定5.(3分)关于x的方程x2+(m2﹣2)x﹣15=0有一个根是x=3,则m的值是()A.0B.2C.2或﹣2D.﹣26.(3分)已知数据x1,x2,x3的平均数是5,则数据3x1+2,3x2+2,3x3+2的平均数是()A.5B.7C.15D.177.(3分)抛物线y=x2﹣4x+5的顶点坐标是()A.(2,1)B.(﹣2,1)C.(2,5)D.(﹣2,5)8.(3分)对于抛物线y=﹣(x+2)2﹣1,下列说法错误的是()A.开口向下B.对称轴是直线x=﹣2C.x>﹣2时,y随x的增大而增大D.x=﹣2,函数有最大值y=﹣19.(3分)一次函数y=3x﹣4的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.(3分)下列命题中,真命题是()A.两对角线相等的四边形是矩形B.两对角线互相平分的四边形是平行四边形C.两对角线互相垂直的四边形是菱形D.两对角线互相垂直且平分的四边形是正方形11.(3分)某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x,则下列方程中正确的是()A.12(1+x)=17B.17(1﹣x)=12C.12(1+x)2=17D.12+12(1+x)+12(1+x)2=1712.(3分)如图,正方形ABCD中,AB=12,点E在边CD上,将△ADE沿AE对折至△AFE,延长EF交边BC 于点G,且BG=CG,连接AG、CF.下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正确结论的个数是()A.2个B.3个C.4个D.5个二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)已知菱形ABCD的对角线长度是8和6,则菱形的面积为.14.(3分)把抛物线y=2(x﹣1)2+1向左平移1个单位,再向上平移2个单位得到的抛物线解析式.15.(3分)设m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,则m+n+mn=.16.(3分)如图,已知二次函数y=ax2+bx+c的图象经过点A(3,0),对称轴为直线x=1,则点B的坐标是.17.(3分)如图是一次函数y=kx+b的图象,当y<0时,x的取值范围是.18.(3分)如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为.三、解答题(本大题共8小题,共66分)19.解下列方程式:(1)x2﹣3x+1=0.(2)x2+x﹣12=0.20.如图,直线l1解析式为y=2x﹣2,且直线l1与x轴交于点D,直线l2与y轴交于点A,且经过点B(3,1),直线l1、l2交于点C(2,2).(1)求直线l2的解析式;(2)根据图象,求四边形OACD的面积.21.为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题:(Ⅰ)本次抽测的男生人数为,图①中m的值为;(Ⅱ)求本次抽测的这组数据的平均数、众数和中位数;(Ⅲ)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.22.如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠2.(1)求证:四边形ABCD是矩形;(2)若∠BOC=120°,AB=4cm,求四边形ABCD的面积.23.长沙市的“口味小龙虾”冠绝海内外,如“文和友老长沙龙虾馆”订单排队上千号.某衣贸市场甲、乙两家农贸商店售卖小龙虾,甲、乙平时以同样的价格出售品质相同的小龙虾,“中非贸易博览会”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.(1)请求出y甲,y乙关于x的函数关系式;(2)“中非贸易博览会”期间,如果你是龙虾馆采购员,如何选择甲、乙两家商店购买小龙虾更省钱?24.已知两个共一个顶点的等腰直角△ABC和等腰直角△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图1,若CB=a,CE=2a,求BM,ME的长;(3)如图2,当∠BCE=45°时,求证:BM=ME.25.已知关于x的方程x2﹣kx+k2+n=0有两个不相等的实数根x1、x2,且(2x1+x2)2﹣8(2x1+x2)+15=0.(1)求证:n<0;(2)试用k的代数式表示x1;(3)当n=﹣3时,求k的值.26.图1,抛物线与x轴交于A(﹣1,0),B(3,0),顶点为D(1,﹣4),点P为y轴上一动点.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P,使△BDP是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.(3)如图2,点在抛物线上,求的最小值.2018-2019学年湖南师大附中博才实验中学八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,得分36分,在每小题给出的四个选项中,只有一项符合题目要求)1.【解答】解:A、由x=x2﹣3得到:x2﹣x﹣3=0,符合一元二次方程的定义,故本选项正确;B、当a=0时,该方程不是一元二次方程,故本选项错误;C、该方程不是整式方程,故本选项错误;D、该方程属于二元二次方程,故本选项错误;故选:A.2.【解答】解:因为S丙2=6.3>S甲2=4.1>S乙2=3.5,方差最小的为乙,所以麦苗高度最整齐的是乙.故选:B.3.【解答】解:∵函数值y随自变量x的增大而减小,∴2m﹣1<0,∴m<.故选:C.4.【解答】解:由根的判别式△=b2﹣4ac=(﹣7)2﹣4×3×(﹣2)=49+24=73>0,所以方程有两个不相等的实数根.故选:B.5.【解答】解:把x=3代入方程x2+(m2﹣2)x﹣15=0得9+3m2﹣6﹣15=0,整理得m=±2.故选:C.6.【解答】解:∵x1,x2,x3的平均数是5,∴x1+x2+x3=15,∴===17.故选:D.7.【解答】解:y=x2﹣4x+5=(x﹣2)2+1,所以抛物线的顶点坐标为(2,1).故选:A.8.【解答】解:∵y=﹣(x+2)2﹣1,∴该抛物线的开口向下,顶点坐标是(﹣2,﹣1),对称轴为直线x=﹣2,当x=﹣2时,函数有最大值y=﹣1,当x>﹣2时,y随x的增大而减小,故选项C的说法错误,故选:C.9.【解答】解:k=3>0,图象过一三象限;b=﹣4<0,图象过第四象限,∴一次函数y=3x﹣4的图象不经过第二象限.故选:B.10.【解答】解:A、对角线互相平分且相等的四边形是平行四边形,故A错;B、对角线互相平分的四边形是平行四边形,故B正确;C、对角线互相平分且垂直的四边形是菱形,故C错;D、对角线互相垂直平分且相等的四边形是正方形,故D错误;故选:B.11.【解答】解:设游客人数的年平均增长率为x,则2016的游客人数为:12×(1+x),2017的游客人数为:12×(1+x)2.那么可得方程:12(1+x)2=17.故选:C.12.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=12,∠B=∠GCE=∠D=90°,由折叠的性质得:AF=AD,∠AFE=∠D=90°,∴∠AFG=90°=∠B,AB=AF,在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),故①正确;∴∠BAG=∠F AG,由折叠可得,∠DAE=∠F AE,∴∠EAF=∠BAD=45°,故②正确;由题意得:EF=DE,BG=CG=6=GF,设DE=EF=x,则CE=12﹣x.在直角△ECG中,根据勾股定理,得CE2+CG2=GE2,即(12﹣x)2+62=(x+6)2,解得:x=4,∴DE=4,CE=8,∴CE=2DE,故③正确;∵CG=BG,BG=GF,∴CG=GF,∴∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∵∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GCF,∴∠AGB=∠GCF,∴AG∥CF,故④正确;∵S△GCE=GC•CE=×6×8=24,∵GF=6,EF=4,△GFC和△FCE等高,∴S△GFC:S△FCE=3:2,∴S△GFC=×24=,故⑤正确.故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.【解答】解:∵菱形的对角线长的长度分别为6、8,∴菱形ABCD的面积S=BD•AC=×6×8=24.故答案为24.14.【解答】解:抛物线y=2(x﹣1)2+1顶点坐标为(1,1),点(1,1)先向左平移2个单位,再向上平移1个单位后所得对应点的坐标为(0,3),所以平移后的抛物线的解析式为y=2x2+3.故答案是y=2x2+3.15.【解答】解:∵m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,∴m+n=﹣2,mn=﹣1,则m+n+mn=﹣2﹣1=﹣3.故答案为:﹣3.16.【解答】解:∵二次函数y=ax2+bx+c的图象与x轴交于A,B两点,∴点A与点B关于直线x=﹣1对称,而对称轴是直线x=1,点A的坐标为(3,0),∴点B的坐标是(﹣1,0).故答案为(﹣1,0).17.【解答】解:由图象可知,当x=2时,y=0,该函数图象y随x的增大而增大,∴当y<0时,x的取值范围是x<2,故答案为:x<2.18.【解答】解:∵A1(0,0),A2(4,0),A3(8,0),A4(12,0),…,∴A n(4n﹣4,0).∵直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,∴点A n+1(4n,0)在直线y=kx+2上,∴0=4nk+2,解得:k=﹣.故答案为:﹣.三、解答题(本大题共8小题,共66分)19.【解答】解:(1)∵x2﹣3x+1=0,∴x2﹣3x=﹣1,∴x2﹣3x+=,∴(x﹣)2=,∴x=;(2)∵x2+x﹣12=0,∴(x+4)(x﹣3)=0,∴x=﹣4或x=3;20.【解答】解:(1)∵点D是直线l1:y=2x﹣2与x轴的交点,∴y=0,0=2x﹣2,x=1,∴D(1,0),∵点C在直线l1:y=2x﹣2上,∴2=2m﹣2,m=2,∴点C的坐标为(2,2);∵点C(2,2)、B(3,1)在直线l2上,∴,解之得:,∴直线l2的解析式为y=﹣x+4;(2)∵点A是直线l2与x轴的交点,∴y=0,即0=﹣x+4,解得x=4,即点A(4,0),∴AD=4﹣1=3,四边形OACD的面积=S△ADC+S△AOD=×3×2+×4×1=5.21.【解答】解:(Ⅰ)本次抽测的男生人数为10÷20%=50,m%=×100%=28%,所以m=28,故答案为:50、28;(Ⅱ)平均数为=5.16次,众数为5次,中位数为=5次;(Ⅲ)×350=252,答:估计该校350名九年级男生中有252人体能达标.22.【解答】(1)证明:∵∠1=∠2,∴BO=CO,即2BO=2CO.∵四边形ABCD是平行四边形,∴AO=CO,BO=OD,∴AC=2CO,BD=2BO,∴AC=BD.∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)解:在△BOC中,∵∠BOC=120°,∴∠1=∠2=(180°﹣120°)÷2=30°,∴在Rt△ABC中,AC=2AB=2×4=8(cm),∴BC=(cm).∴四边形ABCD的面积=.23.【解答】解:(1)设y甲=kx,把(2000,1600)代入,得2000k=1600,解得k=0.8,所以y甲=0.8x;当0<x<2000时,设y乙=ax,把(2000,2000)代入,得2000a=2000,解得a=1,所以y乙=x;当x≥2000时,设y乙=mx+n,把(2000,2000),(4000,3400)代入,得,解得.所以y乙=;(2)当0<x<2000时,0.8x<x,到甲商店购买更省钱;当x≥2000时,若到甲商店购买更省钱,则0.8x<0.7x+600,解得x<6000;若到乙商店购买更省钱,则0.8x>0.7x+600,解得x>6000;若到甲、乙两商店购买一样省钱,则0.8x=0.7x+600,解得x=6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.24.【解答】证明:(1)如图1,延长BM交EF于点D,∵∠ABE=∠ABC=∠CEF=90°,∴AB∥EF∴∠DFM=∠BAM,且AM=MF,∠AMB=∠DMF∴△ABM≌△FDM(ASA)∴AB=DF,BM=DM∵在等腰直角△ABC和等腰直角△CEF中,AB=BC,EC=EF,∠FCE=45°∴DF=AB=BC∴EC﹣BC=EF﹣DF∴BE=DE,且∠BED=90°∴∠EBD=45°=∠FCE∴BM∥CF(2)由(1)可知:AB=BC=DF,BM=DM∵CB=a,CE=2a,∴BE=DE=a,且∠CEF=90°∴△BDE是等腰直角三角形,BD=a,且BM=DM∴BM=EM=BD=a,(3)如图2,延长AB交CE于点D,连接DF,延长FE与CB交于点G,连接AG,∵△ABC是等腰直角三角形∴AB=BC,∠BAC=∠BCA=45°,∠ABC=90°∵∠ECB=45°∴∠BDC=45°=∠ECB=∠CAB∴BD=BC,AC=CD∵AB=BD,点M为AF中点,∴BM=DF.同理可得:CF=CG,ME=AG.在△ACG与△DCF中,∴△ACG≌△DCF(SAS),∴DF=AG,∴BM=ME.25.【解答】证明:(1)∵关于x的方程x2﹣kx+k2+n=0有两个不相等的实数根,∴△=k2﹣4(k2+n)=﹣3k2﹣4n>0,∴n<﹣k2.又﹣k2≤0,∴n<0.解:(2)∵(2x1+x2)2﹣8(2x1+x2)+15=0,x1+x2=k,∴(x1+x1+x2)2﹣8(x1+x1+x2)+15=0∴(x1+k)2﹣8(x1+k)+15=0∴[(x1+k)﹣3][(x1+k)﹣5]=0∴x1+k=3或x1+k=5,∴x1=3﹣k或x1=5﹣k.(3)∵n<﹣k2,n=﹣3,∴k2<4,即:﹣2<k<2.原方程化为:x2﹣kx+k2﹣3=0,把x1=3﹣k代入,得到k2﹣3k+2=0,解得k1=1,k2=2(不合题意),把x2=5﹣k代入,得到3k2﹣15k+22=0,△=﹣39<0,所以此时k不存在.∴k=1.26.【解答】解:(1)∵抛物线顶点为D(1,﹣4)∴设顶点式为y=a(x﹣1)2﹣4∵A(﹣1,0)在抛物线上∴4a﹣4=0,解得:a=1∴抛物线的解析式为y=(x﹣1)2﹣4=x2﹣2x﹣3(2)在y轴的负半轴上存在点P,使△BDP是等腰三角形.∵B(3,0),D(1,﹣4)∴BD2=(3﹣1)2+(0+4)2=20设y轴负半轴的点P坐标为(0,t)(t<0)∴BP2=32+t2,DP2=12+(t+4)2①若BP=BD,则9+t2=20解得:t1=(舍去),t2=﹣②若DP=BD,则1+(t+4)2=20解得:t1=(舍去),t2=﹣﹣4③若BP=DP,则9+t2=1+(t+4)2解得:t=﹣1综上所述,点P坐标为(0,﹣)或(0,﹣﹣4)或(0,﹣1)(3)连接MC、MB,MB交y轴于点D,过点P作PQ⊥BC于点Q,过点M作MH⊥BC于点H ∵x=0时,y=x2﹣2x﹣3=﹣3∴C(0.﹣3)∵B(3,0),∠BOC=90°∴∠OBC=∠OCB=45°,BC=3∵∠PQC=90°∴Rt△PQC中,sin∠BCO==∴PQ=PC∴MP+PC=MP+PQ∵MH⊥BC于点H∴当点M、P、Q在同一直线上时,MP+PC=MP+PQ=MH最小∵M(﹣,m)在抛物线上∴m=(﹣)2﹣2×(﹣)﹣3=∴M(﹣,)设直线MB解析式为y=kx+b∴解得:∴直线MB:y=﹣x+∴MB与y轴交点D(0,)∴CD=﹣(﹣3)=∴S△BCM=S△BCD+S△CDM=CD•BO+CD•|x M|=CD•(x B﹣x M)=××(3+)=∵S△BCM=BC•MH∴MH=∴MP+PC的最小值为。
2018-2019学年湘教版八年级第二学期期末考试数学试题一、填空题(3×10分)1.Rt △ABC 中,∠C =90°,∠B =44° ,则∠A =( )A.66°B.36°C.56°D.46°2.△ABC 中,∠A :∠B :∠C =1:2:3,则△ABC 是( )A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形3.如右图,Rt △ABC 中,∠C =90°,∠B =30°,AD 是∠BAC 的平分线,AD =8,则点D 到AB 的距离是( )A.8B.5C.6D.44.平行四边形的两条对角线分别为4和6,则其中一条边x 的取值范围为( ).(A )2<x <3 (B )1<x <5 (C )0<x <4 (D )0<x <65.下列性质中,菱形具有但平行四边形不一定具有的是( )A .对边相等B .对角线相等C .对角线互相垂直;D .对角线互相平分6.在平面直角坐标系中,点P (3-,—4)关于y 轴对称点的坐标为( )A.(3-,4)B.(3,4)C.(3,-4)D.(3-,-4)7.在平面直角坐标系中,函数1y x =-+的图象经过( )A .一、二、三象限B .二、三、四象限;C .一、三、四象限;D .一、二、四象限8.点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x -1图象上的两个点,且 x 1<x 2,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1>y 2 >0C .y 1<y 2D .y 1=y 29.一次函数y =ax +1与y =bx ﹣2的图象交于x 轴上同一个点,那么a :b 等于( ) A .1:2 B .(﹣1):2 C .3:2 D .以上都不对10.某校为了了解学生在校午餐所需的时间,随机抽取了20名学生在校午餐所需的时间,获得如下的数据(单位:min ):10,12,15,10,16,18,19,18,20,28,22,25,20,18,18,20,15,16,21,16.若将这些数据以4 min 为组距进行分组,则组数是( )A.4B.5C.6D.7二、填空题(3×8分)11.若一个直角三角形的两边长分别是5、12,则第三边长为________。
八年级数学试卷 第 1 页 共 7 页2018-2019学年湘教版八年级(下)期末考试数学考试试题(满分:120分,考试时间:120分钟)温馨提示:1.本试题卷共三个大题26个小题,注意不漏页,不漏题。
2.答题时,切记答案要填在答题卷上,答在试题卷上的答案无效一、选择题(本题共10小题,每小题有且只有一个正确答案,每小题3分,共30分) 1.在△ABC 中,∠A 、∠B 、∠C 的对边分别是a b c ,,,且满足∠A :∠B :∠C =1:2:3,则△ABC 一定是A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定2.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.3.如点(,2)A a a --在第三象限,那么a 的值有可能是A. 0B. 1C. 2D. 34.已知四边形ABCD 是平行四边形,下列结论中不正确...的是 A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形 C .当∠ABC =90º时,它是矩形D .当AC =BD 时,它是正方形5.函数xy =的自变量x 的取值范围是 A .x ≠2B .x ≥0C .x ≥0且x≠2D .x >26.已知正比例函数3y x =的图象经过点(1,m ),则m 的值为A .B .3C .﹣D .﹣37.某校为了解学生参加社团活动的情况,抽查了100名同学,统计他们参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是A .4﹣6小时B .6﹣8小时C .8﹣10小时D .不能确定八年级数学试卷 第 2 页 共 7 页8.如图,在△ABC 中,∠C =90°,AC =4,BC =3,将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B 、D 两点间的距离为A .B .2C .3D .2第7题图 第8题图9.甲、乙两人赛跑,所跑路程与时间的关系如图(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四条信息,其中错误的是A. 这是一次1500m 赛跑B. 甲、乙同时起跑C. 甲、乙两人中先到达终点的是乙D. 甲在这次赛跑中的速度为5m/s10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,AC =4cm ,∠AOD =120°,则BC 的长为A .4cm B .4cmC .2cmD .2cm第9题图 第10题图二、填空题(本题共8个小题,每小题3分,共24分)11.若正多边形的一个内角等于140°,则这个正多边形的边数是.12.在平面直角坐标系中,点P (﹣3,4)关于x 轴的对称点的坐标是 . 13.一次函数112y x =-+的图像不经过第 象限. 14.如图,一棵大树在离地3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.15.根据如图的程序,计算当输入3x =时,输出的结果y = .第14题图第15题图16.某班有52名同学,在一次数学竞赛中,81﹣90这一分数段的人数所占的频率是0.25,那么成绩在这个分数段的人数有人.17.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.18.一名学生步行前往考场,10分钟走了总路程的41,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了分钟.第17题图第18题图三、解答题(本大题共8个小题,满分66分,需要写出必要的解题与推理过程............)19.(满分6分)计算:3132(1)223⎛⎫⎛⎫-+---⨯-⎪ ⎪⎝⎭⎝⎭20.(满分6分)如图,在△ABC中,已知AC=10,AD=6,CD=8,BC=17,求DB的长.输入5(1)y x x=-+>5(1)y x x=+≤输出八年级数学试卷第 3 页共 7 页八年级数学试卷 第 4 页 共 7 页21.(满分8分)为了提高学生书写汉字的能力,增强保护汉字的意识,我区某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x (分),且50≤x <100,将其按分数段分为五组,绘制出以下不完整表格:请根据表格提供的信息,解答以下问题:(1)直接写出表中a =,b = ; (2)本次决赛共有 名学生参加;(3)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .22.(满分8分)如图所示,一次函数y x m =-+的图象和y 轴交于点B ,与正比例函数y x =图象交于点P (2,n ).(1)求m 和n 的值;(2)求△POB 的面积.八年级数学试卷 第 5 页 共 7 页23.(满分8分)如图,AC 是平行四边形ABCD 的对角线,∠BAC =∠DAC . (1)求证:AB =BC ; (2)若AB =2,AC =2,求平行四边形ABCD 的面积.24.(满分8分)在平面直角坐标系xOy 中,已知点(02)B ,,点A 在x 轴正半轴上且30BAO ∠=︒.将OAB △沿直线AB 折叠得CAB △.(1)试求AC 的长度; (2)求点C 的坐标.25. (满分10分)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.八年级数学试卷第 6 页共 7 页26.(满分12分)如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,试求∠DPE的度数.八年级数学试卷第 7 页共 7 页。
湘教版2018-2019学年八年级(下)期末考试数学试题(时间:90分钟满分:120分)一、选择题(每小题3分,共24分)1.直角三角形的两个锐角平分线与斜边的所夹的锐角之和是( )A.30°B.60°C.45°D.15°和75°2.下列图形中,是轴对称图形又是中心对称图形的是( )3.将直线y=kx-1向上平移2个单位长度,可得直线的解析式为( )A.y=kx+1B.y=kx-3C.y=kx+3D.y=kx-14.已知点M(3a-9,1-a)在第三象限,且它的坐标是整数,则a等于( )A.1B.2C.3D.05.下列命题中正确的是( )A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形6.一次函数y=(k-3)x+2,若y随x的增大而增大,则k的值可以是( )A.1B.2C.3D.47.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是( )A.0.1B.0.2C.0.3D.0.78.为了鼓励节约用水,按以下规定收取水费:(1)每户每月用水量不超过20立方米,则每立方米水费1.8元;(2)若每户每月用水量超过20立方米,则超过部分每立方米水费3元,设某户一个月所交水费为y(元),用水量为x(立方米),则y与x的函数关系用图象表示为( )二、填空题(每小题3分,共24分)9.如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为__________米.10.若一个多边形内角和等于1 260°,则该多边形边数是__________.11.写出一个图象经过点(-1,2)的函数解析式___________________.12.如图,在□ABCD中,点E,F分别在边AD,BC上,且BE∥DF,若∠EBF=45°,则∠EDF的度数是__________.13.抽取某校学生的一个容量为150的样本,测得学生身高后,得到身高频数分布直方图如图所示,则在样本中,学生身高位于160 cm至175 cm之间学生的学生人数占总人数的__________.14.若点M(1+a,2b-1)在第二象限,则点N(a-1,1-2b)在第__________象限.15.若一条直线经过点(-1,1)和点(1,5),则这条直线与x轴的交点坐标为__________.16.如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为__________.三、解答题(共72分)17.(6分)如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.18.(6分)在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.求证:DF=D C.19.(6分)若点M(a-3,a+1)到x轴的距离是3,且它位于第三象限,求点M的坐标.20.(8分)已知一次函数y=kx+2k+4,当x=-1时的函数值为1.(1)求一次函数的解析式;(2)这个函数的图象不经过第几象限?(3)求这个一次函数的图象与y轴的交点坐标.21.(8分)已知,如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC,分别与AB,AC交于点G,F.(1)求证:GE=GF;(2)若BD=1,求DF的长.22.(8分)如图,在□ABCD中,F是AD的中点,延长BC到点E,使CE=12BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.23.(9分)某班在一次班会课上,就“遇见路人摔倒后如何处理”的主题进行讨论,并对全班50名学生的处理方式进行统计,得出相关统计表和统计图.请根据图表所提供的信息回答下列问题:(1)统计表中的m=_________,n=_________;(2)补全频数分布直方图;(3)若该校有2 000名学生,请据此估计该校学生采取“马上救助”方式的学生有多少人?24.(9分)为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题:(1)当用电量是180千瓦时时,电费是_________元;(2)第二档的用电量范围是_________;(3)“基本电价”是_________元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?25.(12分)如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.参考答案1.C 2.D 3.A 4.B 5.B 6.D7.B8.D9.100 10.9 11.答案不唯一,如y=-2x12.45°13.80% 14.三15.(-32,0) 16.5或617.在Rt△ABF中,∠A=70°,CE,BF是两条高,∴∠EBF=90°-∠A=90°-70°=20°,∠ECA=90°-∠A=90°-70°=20°,又∵∠BCE=30°,∴∠ACB=∠BCE+∠ECA=50°.∴在Rt△BCF中,∠FBC=90°-∠ACB=40°.∴∠EBF=20°,∠FBC=40°.18.证明:∵四边形ABCD是矩形,∴AB=CD,AD∥BC,∠B=90°.∵DF⊥AE,∴∠AFD=∠B=90°.∵AD∥BC,∴∠DAE=∠AE B.又∵AD=AE,∴△ADF≌△EAB(AAS).∴DF=A B.∴DF=D C.19.由题意知:|a+1|=3.∵点M位于第三象限,∴a+1=-3.∴a=-4.当a=-4时,a-3=-7,∴M的坐标为(-7,-3).20.(1)由已知可知,函数过点(-1,1),代入解析式得1=k·(-1)+2k+4.∴k=-3.故一次函数的解析式为:y=-3x-2;(2)因为x=0时y=-2,y=0时x=-23,故这个函数的图象不经过第一象限;(3)令x=0,代入函数解析式y=-3x-2.得y=-2.故一次函数的图象与y轴的交点坐标为(0,-2).21.(1)证明:∵DF∥BC,∠ACB=90°,∴∠CFD=90°.∵CD⊥AB,∴∠AEC=90°.∴∠AEC=∠CFD=90°.又∵∠ACE=∠DCF,DC=AC,∴Rt△AEC≌Rt△DFC(AAS).∴CE=CF.∴DE=AF.而∠AGF=∠DGE,∠AFG=∠DEG=90°,∴Rt△AFG≌Rt△DEG.∴GF=GE.(2)∵CD⊥AB,∠A=30°,∴CE=12AC=12C D.∴CE=E D.∴BC=BD=1.又∵∠ECB+∠ACE=90°,∠A+∠ACE=90°,∴∠ECB=∠A=30°,∠CEB=90°,∴BE=12BC=12BD=12.∵在Rt△ABC中,∠A=30°,∴AB=2BC=2.∴AE=AB-BE=3 2 .∵Rt△AEC≌Rt△DFC,∴DF=AE=3 2 .22.(1)证明:在□ABCD中,AD∥BC,AD=B C.∵F 是AD 的中点,∴DF =12A D. 又∵CE =12BC ,∴DF =CE ,DF ∥CE .∴四边形CEDF 是平行四边形. (2)过点D 作DH ⊥BE 于点H .∵在□ABCD 中,∠B =60°, ∴∠DCE =60°. ∵AB =4, ∴CD =AB =4.∴CH =2,DH 在□CEDF 中,CE =DF =12AD =3, ∴EH =1.∴在Rt △DHE 中,根据勾股定理得DE 23.(1)5 10 (2)图略 (3)2 000×3050=1 200(人). 24.(1)108 (2)180<x ≤450 (3)0.6(4)设直线BC 的解析式为y =kx +b ,由图象,得364.5540,283.5450.k b k b =+=+⎧⎨⎩解得0.9,121.5.k b ==-⎧⎨⎩ ∴y =0.9x -121.5.当y =328.5时,0.9x -121.5=328.5.解得x =500. 答:这个月他家用电500千瓦时.25.(1)在△DFC中,∠DFC=90°,∠C=30°,DC=4t,∴DF=2t,∵AE=2t,∴AE=DF.(2)能.理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.∵AE=DF,∴四边形AEFD为平行四边形,AE=AD=AC-DC=60-4t=2t.解得t=10,∴当t=10秒时四边形AEFD为菱形.(3)①当∠DEF=90°时,由(2)知EF∥AD,∴∠ADE=∠DEF=90°.∵∠A=60°,∴AD=12AE=t.又AD=60-4t,即60-4t=t.解得t=12.②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AED中,∠A=60°,则∠ADE=30°,∴AD=2AE,即60-4t=4t,解得t=15 2.③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在,所以当t=152秒或12秒时,△DEF为直角三角形.。
- 1 - 湘教版2018-2019学年八年级(下)期末考试数学试题(时间:90分钟 满分:120分)一、选择题(每小题3分,共24分)1.直角三角形的两个锐角平分线与斜边的所夹的锐角之和是( )A.30°B.60°C.45°D.15°和75°2.下列图形中,是轴对称图形又是中心对称图形的是()3.将直线y =kx -1向上平移2个单位长度,可得直线的解析式为( )A.y =kx +1B.y =kx -3C.y =kx +3D.y =kx -14.已知点M (3a -9,1-a )在第三象限,且它的坐标是整数,则a 等于( )A.1B.2C.3D.05.下列命题中正确的是( )A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形6.一次函数y =(k -3)x +2,若y 随x 的增大而增大,则k 的值可以是( )A.1B.2C.3D.47.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是( )A.0.1B.0.2C.0.3D.0.78.为了鼓励节约用水,按以下规定收取水费:(1)每户每月用水量不超过20立方米,则每立方米水费1.8元;(2)若每户每月用水量超过20立方米,则超过部分每立方米水费3元,设某户一个月所交水费为y (元),用水量为x (立方米),则y 与x 的函数关系用图象表示为( )。
附中博才八年级(下)期末数学模拟试卷班级学号姓名一、选择题(本大题共12 小题,每小题 3 分,共36 分)1,若y=kx+8 的函数值y 随着x 的增大而减小.则k 的值可能是()A. 0B. 1C. -1D. 22.下列方程中是一元二次方程的是()A.xy+2=1 B. C.x2=0 D.ax2+bx+c=03.对于一次函数y=2x+4,下列结论中正确的是()①若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1<y2.②函数的图象丌经过第四象限.③函数的图象不x 轴的交点坐标是(0,4).④函数的图象向下平移4 个单位长度得y=2x 的图象.A. 1 个B. 2 个C. 3 个D. 4 个4.四边形ABCD 中,对角线AC、BD 相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD 为平行四边形的选法有()A. 6 种B. 5 种C. 4 种D. 3 种4.抛物线y=3(x﹣1)2+1 的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)5.将抛物线x2﹣6x+21 向左平移2 个单位后,得到新抛物线的解析式为()6.为了从甲、乙两名选手中选拔一名参加射击比赛,现对他们进行一次测验,两个人在相同的条件下各射靶10 次,为了比较两人的成绩,制作了如下统计表:A.中位数B.平均数C.方差D.命中 10 环的次数7.宾馆有50 间房供游客居住,当毎间房每天定价为180 元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20 元的费用.当房价定为多少元时,宾馆当天的利润为10890 元?设房价定为x 元.则有()8.若菱形的周长为8,高为1,则菱形两邻角的度数比为()A. 3:1B. 4:1C. 5:1D. 6:19.若一次函数y=(2m-3)x-1+m 的图象不经过第三象限,则m 的取值范围是()A.1<m<3B.1≤m<3C.1<m≤3D.1≤m≤3 2 2 2 210.下列命题错误的是()A.正比例函数也是一次函数B.顺次连接四边形各边中点所得的四边形是平行四边形C.一组数据的平均数越大,则中位数越大 D.矩形的对角线互相平分11.若点A(,y1),B(﹣2,y2)都在直线y=-x+n 上,则y1 与y2 的大小关系是()A.y1<y2 B.y1>y2 C.y1=y2 D.以上都有可能12.如右图,矩形ABCD 中,AB=4,BC=3,动点E 从B 点出发,沿B-C-D-A 运动至A 点停止,设运动的路程为x,△ABE 的面积为y,则y 不x 的函数关系用图象表示正确的是()A. B. C. D.二、填空题(本大题共6 小题,每小题 3 分共18 分)13.矩形的两条对角线的夹角为60°,较短的边长为12 cm,则对角线的长为cm14.如图,矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在点D′处,则重叠部分△AFC 的面积为15.如图,已知直线y=mx+n 交x 轴于(3,0),直线y=ax+b 交x 轴于点(-2,0),且两直线交于点A(-1,2),则不等式0<mx+n<ax+b 的解为16.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF 的长为17、菱形的两条对角线分别是方程x2 −14x +48 =0的两实根,则菱形的面积为。
湖南省长沙市湖南师⼤附中联考2018-2019学年⼋下数学期末模拟试卷+(7套名校模拟卷)湖南省长沙市湖南师⼤附中联考2018-2019学年⼋下数学期末模拟试卷⼀.选择题(本⼤题12个⼩题,每⼩题4分,共48分)在每个⼩题的下⾯,都给出了代号为A 、B 、C 、D 的四个答案,其中只有⼀个是正确的,请将答题卡...中对应的⽅框涂⿊. 1.下列式⼦⼀定是⼆次根式的是()A .xB .2x --C .22x +D .22x -2.下列各组数中能作为直⾓三⾓形的三边长的是()A .2,2,4B .3,23,3C .4,5,7D .7,8,103.Rt△ABC 中,斜边BC=22,则AB 2+AC 2+BC 2的值为()A .16B .8C .8D .⽆法计算4.⼀次函数y=1﹣2x 的图象不经过的象限是()A .第⼀象限B .第⼆象限C .第三象限D .第四象限5.如图,菱形ABCD 的周长=40cm ,对⾓线AC 与BD 相交于点O ,点E 是BC 的中点,则OE 的长为()A .6cmB .5cmC .4cmD .3cm6.下列式⼦⼀定是最简⼆次根式的是()A .12B .12C .3a D .27.如图,矩形ABCD 中,DE⊥AC 于E ,且∠A CD :∠EDC=3:2,则∠AOD 的度数为()A .108°B .110°C .120°D .126°(第5题图)(第7题图)(第8题图)8.如图,⼀个底⾯圆周长为24cm ,⾼为5cm 的圆柱体,⼀只蚂蚁沿侧表⾯从点A 到点B所经过的最短路线长为() A .12cmB .13cmC .17cmD .581 cm9.2018年“⾦⾓”杯四国篮球邀请赛在綦江区体育馆举⾏,⼩童从家出发前往观看,先匀速步⾏⾄公交车站,等了⼀会⼉,邻居刘叔叔正好开着他的⼩轿车经过,⼩童搭乘刘叔叔的⼩轿车很快到达体育馆观看演出.演出结束后,⼩童搭乘刘叔叔的车回家,其中x 表⽰⼩童从家出发后所⽤时间,y 表⽰⼩童离家的距离,下⾯能反映y 与x 的函数关系的⼤致图象是()A .B .C .D .10.我区举⾏中学⽣“争创⽂明城区,从我做起”演讲⽐赛,某同学将选⼿的得分情况进⾏统计,绘成如图所⽰的得分成绩统计图,下列四个论断:①众数为6分;②有8名选⼿的成绩⾼于8分;③中位数是8分;④得6分和9分的⼈数⼀样多,其中正确的是() A .①②③ B .②③C .②④D .②③④(第10题图)(第11题图)11.如图,以下各图都是由同样⼤⼩的图形①按⼀定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,…,则第⑦个图形中完整菱形的个数为() A .61B .62C .85D .8612.已知⼀次函数y=2x+a ,y=﹣x+b 的图象都经过A (﹣2,0),且与y 轴分别交于B 、C 两点,则△ABC中,边AB 上的⾼为() A .556 B .5512 C .23D .26⼆、填空题(本⼤题6个⼩题,每⼩题4分,共24分)请将每⼩题的答案直接填在答题卡...中对应的横线上. 13.若式⼦32 x 有意义,则x 的取值范围是.14.若直线y=﹣x+a 和直线y=x+3相交于点M (m ,8),则a= .15.如图,以原点O 为圆⼼,OB 为半径画弧与数轴交于点A ,且点A 表⽰的数为x ,则x 2﹣29的⽴⽅根为.16.如图,在平⾯直⾓坐标系中,点A 、B 、C 的坐标分别是A (﹣2,5),B (﹣3,﹣1),C (1,﹣1),在第⼆象限内找⼀点D ,使得以点A 、B 、C 、D 为顶点构成的四边形是平⾏四边形,那么点D 的坐标是.(第15题图)(第16题图)17.某⽓象观测员测得古剑⼭景区五⽉份第⼀周前五天⽇最低⽓温并整理后得出下表:⽇期⼀⼆三四五平均⽓温⽅差最低⽓温 111312151413由于不⼩⼼被墨迹污染了⼀个数据,这个数据是.18.在⼀次越野赛跑中,当甲跑了1600m 时,⼄跑了1450m ,此后两⼈分别调整速度,并以各⾃新的速度匀速跑,⼜过100s 时⼄追上甲,200s 时⼄到达终点,300s 时甲到达终点.他们赛跑使⽤时间 t (s )及所跑距离s (m )如图,这次越野赛的赛跑全程为 m.三、解答题(本⼤题2个⼩题,每⼩题8分,共16分)解答时每⼩题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卡...中对应的位置上. 19.计算: )32)(23(3312+---20.如图,四边形ABCD 中,AB=CD ,AB//CD ,对⾓线AC ,BD交于点O ,过点O 画直线EF 分别交AD ,BC 于点E ,F ,求证:AE=CF .四、解答题(本⼤题4个⼩题,每⼩题l0分,共40分)解答时每⼩题必须给出位置上.必要的演算过程或推理步骤,请将解答过程书写在答题卡...中对应的21.如图,直线y=﹣x+10与x 轴、y 轴分别交于点B ,C ,点A 的坐标为(8,0),P (x ,y )是直线y=﹣x+10在第⼀象限内⼀个动点.(1)求△OPA 的⾯积S 与x 的函数关系式,并写出⾃变量的x的取值范围;(2)当△OPA的⾯积为24时,求点P的坐标.22.如图,把长⽅形纸⽚ABCD沿EF折叠后,点D与点B重合,点C落在点C′的位置上,若∠1=60°,AE=2.(1)求∠ 3的度数.(2)求梯形EFCD的周长.23.新世纪百货綦江商都统计了每个营业员在某⽉的销售额,统计图如下,根据统计图中给出的信息,解答下列问题:(1)设营业员的⽉销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x<20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.称职和优秀的营业员共有多少⼈?(2)根据(1)中规定,所有称职以上(称职和优秀)的营业员⽉销售额的中位数、众数和平均数分别是多少?(3)为了调动营业员的⼯作积极性,决定制定⽉销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得称职以上(称职和优秀)的营业员有⼀半能获奖,你认为这个奖励标准应定⽉销售额为多少元合适?并简述其理由.24.今年“五⼀”长假期间,“洋⼈街”某游乐场在暑假期间推出学⽣个⼈门票优惠活动,各类门票价格如下表:票价种类(A)夜场票(B)⽇通票(C)节假⽇通票单价(元)60 90 120某慈善单位欲购买三种类型的门票共100张奖励品学兼优的留守学⽣,设购买A种票x张,B种票张数是A种票的2倍还多7张,C种票y张,根据以上信息解答下列问题:(1)直接写出x与y之间的函数关系式;(2)设购票总费⽤为W元,求W(元)与x(张)之间的函数关系式;(3)为⽅便学⽣游玩,计划购买学⽣的夜场票不低于23张,且节假⽇通票⾄少购买15张,问如何安排费⽤最少?最少费⽤为多少?五、解答题(本⼤题2个⼩题,其中25题10分,26题12分,共22分)解答时每⼩题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卡...中对应的位置上. 25.通过以后的学习,同学们会发现⼀个有趣的结论:当直线111b x k y +=与直线222b x k y +=中的1k .2k =-1时,两直线互相垂直;反之亦然,即:若两直线互相垂直时1k .2k = -1.下⾯,请同学们利⽤上⾯的结论和学过的知识解决以下问题:(1)若直线l 1过点(-1,1),和点(2,4),直接写出该直线的函数解析式。
2018-2019学年湘教版八年级第二学期期末考试数学试题一、选择题(本大题共8小题,每小题3分,共24分)1.下列图案中,不是中心对称图形的是()A.B.C.D.2.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(﹣2,﹣3)C.(﹣3,2)D.(3,﹣2)3.要了解八年级学生身高在某一范围内学生所占比例,需知道相应的()A.平均数B.众数C.中位数D.频数4.对于函数y=﹣2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(﹣1,2)C.y随着x增大而增大D.经过二、四象限5.下列长度的三条线段能组成直角三角形的是()A.4,5,6 B.2,3,4 C.1,1,D.1,2,26.下列命题中的真命题是()A.有一组对边平行的四边形是平行四边形; B.有一个角是直角的四边形是矩形;C.对角线互相垂直平分的四边形是正方形; D.有一组邻边相等的平行四边形是菱形7.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形8.如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形.正确结论的个数是()A.2 B.3 C.4 D.5二、填空题(本大题共8小题,每小题3分,共24分)9.若n边形的每个内角都是150°,则n=.10.已知一个直角三角形斜边上的中线长为6cm,那么这个直角三角形的斜边长为cm.11.已知点A(a,b),B(4,3)关于y轴对称,则a+b=.12.将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为.13.如图,已知AC平分∠BAD,∠1=∠2,AB=DC=3,则BC=.14.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为米.15.矩形ABCD中,AC交BD于O点,已知AC=2AB,∠AOD=°.16.如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,且AB=10cm,则△DEB的周长是cm.三、解答题(17-19每题6分,20-23每题8分,24,25每题10分,26题12分,共82分)17.某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离了欲到达点B,结果离欲到达点B 240米,已知他在水中游了510米,求该河的宽度(两岸可近似看做平行).18.如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.19.已知一次函数y=kx+b经过(﹣1,2),且与y轴交点的纵坐标为4,求一次函数的解析式并画出此函数的图象.20.如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.21.如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.22.亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某校八年级学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.请根据图表信息解答下列问题:(1)a=;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)若把每天进行体育锻炼的时间在1小时以上定为锻炼达标,则被抽查学生的达标率是多少?23.甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD ﹣DE,如图所示,从甲队开始工作时计时.(1)求线段DE的函数关系式;(2)当甲队清理完路面时,乙队还有多少米的路面没有铺设完?24.某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为w元(注:总利润=总售价﹣总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.25.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,①求菱形的边长;②求折痕EF的长.26.已知直线l为x+y=8,点P(x,y)在l上,且x>0,y>0,点A的坐标为(6,0).(1)设△OPA的面积为S,求S与x的函数关系式,并直接写出x的取值范围;(2)当S=9时,求点P的坐标;(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.下列图案中,不是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义和各图特点即可解答.【解答】解:只有选项C连接相应各点后是正三角形,绕中心旋转180度后所得的图形与原图形不会重合.故选C.【点评】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合,和正奇边形有关的一定不是中心对称图形.2.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3) B.(﹣2,﹣3) C.(﹣3,2)D.(3,﹣2)【考点】点的坐标.【分析】根据平面直角坐标系中各个象限内点的坐标的符号即可解答.【解答】解:∵点C在x轴上方,y轴左侧,∴点C的纵坐标大于0,横坐标小于0,点C在第二象限;∵点距离x轴2个单位长度,距离y轴3个单位长度,所以点的横坐标是﹣3,纵坐标是2,故点C的坐标为(﹣3,2).故选C.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.要了解八年级学生身高在某一范围内学生所占比例,需知道相应的()A.平均数B.众数 C.中位数D.频数【考点】统计量的选择.【分析】平均数、中位数是表示样本的平均水平,众数则表示哪一个身高的学生最多,只有频率分步直方图可以清晰地揭示各个身高的学生所占的比例.【解答】解:频数分布直方图是用来显示样本在某一范围所占的比例大小,故选D.【点评】此题主要考查统计的有关知识,注:频率分布能清楚的了解每一个范围内的情况.4.对于函数y=﹣2x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(﹣1,2)C.y随着x增大而增大D.经过二、四象限【考点】正比例函数的性质.【分析】根据正比例函数的性质进行解答即可.【解答】解:A、∵函数y=﹣2x是正比例函数,∴此函数的图象是一条直线,故本选项正确;B、∵当x=﹣1时,y=2,∴过点(﹣1,2),故本选项正确;C、∵k=﹣2<0,∴y随着x增大而减小,故本选项错误;D、∵k=﹣2<0,∴函数图象经过二四象限,故本选项正确.故选C.【点评】本题考查的是正比例函数的性质,熟知正比例函数的增减性是解答此题的关键.5.下列长度的三条线段能组成直角三角形的是()A.4,5,6 B.2,3,4 C.1,1,D.1,2,2【考点】勾股定理的逆定理.【分析】三角形三边满足两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.【解答】解:A、52+42≠62,不能作为直角三角形的三边长,故本选项不符合题意.B、22+32≠42,不能作为直角三角形的三边长,故本选项不符合题意.C、12+12=()2,能作为直角三角形的三边长,故本选项符合题意.D、12+22≠22,不能作为直角三角形的三边长,故本选项不符合题意.故选C.【点评】本题考查勾股定理的逆定理,关键知道两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.6.下列命题中的真命题是()A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形【考点】命题与定理.【分析】根据平行四边形的判定方法对A进行判断;根据矩形的判定方法对B进行判断;根据正方形的判定方法对C进行判断;根据菱形的判定方法对D进行判断.【解答】解:A、有两组对边平行的四边形是平行四边形,所以A选项错误;B、有一个角是直角的平行四边形是矩形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;D、有一组邻边相等的平行四边形是菱形,所以D选项正确.故选D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形 C.菱形 D.正方形【考点】平行四边形的判定;三角形中位线定理.【分析】顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原来四边形某一对角线的一半,说明新四边形的对边平行且相等.所以是平行四边形.【解答】解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点.∵在△ABD中,E、H是AB、AD中点,∴EH∥BD,EH=B D.∵在△BCD中,G、F是DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形EFGH为平行四边形.故选:A.【点评】本题三角形的中位线的性质考查了平行四边形的判定:三角形的中位线平行于第三边,且等于第三边的一半.8.如图,在矩形ABCD中,有以下结论:①△AOB是等腰三角形;②S△ABO=S△ADO;③AC=BD;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD 会变成正方形.正确结论的个数是()A.2 B.3 C.4 D.5【考点】矩形的性质.【分析】根据矩形的性质、正方形的判定方法逐项分析即可.【解答】解:∵四边形ABCD是矩形,∴AO=BO=DO=CO,AC=BD,故①③正确;∵BO=DO,∴S△ABO=S△ADO,故②正确;当∠ABD=45°时,则∠AOD=90°,∴AC⊥BD,∴矩形ABCD变成正方形,故⑤正确,而④不一定正确,矩形的对角线只是相等,∴正确结论的个数是4个.故选C.【点评】本题考查了矩形的性质、等腰三角形的判定以及正方形的判定,解题的根据是熟记各种特殊几何图形的判定方法和性质.二、填空题(本大题共8小题,每小题3分,共24分)9.若n边形的每个内角都是150°,则n=12.【考点】多边形内角与外角.【分析】由题可得,该多边形的内角和为(n﹣2)×180°,根据n边形的每个内角都是150°,可得该正多边形的内角和为n×150°,再列方程求解.【解答】解:依题意得,(n﹣2)×180°=n×150°,解得n=12故答案为:12【点评】本题主要考查了多边形内角和定理,多边形内角和=(n﹣2)•180 (n≥3且n为整数).10.已知一个直角三角形斜边上的中线长为6cm,那么这个直角三角形的斜边长为12cm.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:∵直角三角形斜边上的中线长为6cm,∴这个直角三角形的斜边长为12cm.【点评】此题比较简单,考查的是直角三角形的性质,即直角三角形斜边上的中线等于斜边的一半.11.已知点A(a,b),B(4,3)关于y轴对称,则a+b=﹣1.【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:∵点A(a,b),B(4,3)关于y轴对称,∴a=﹣4,b=3,∴a+b=﹣4+3=﹣1.故答案为:﹣1.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12.将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为y=3x﹣4.【考点】一次函数图象与几何变换.【分析】根据“上加下减”的原则求解即可.【解答】解:将正比例函数y=3x的图象向下平移4个单位长度,所得的函数解析式为y=3x﹣4.故答案为y=3x﹣4.【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.13.如图,已知AC平分∠BAD,∠1=∠2,AB=DC=3,则BC=3.【考点】平行四边形的判定与性质.【分析】利用角平分线的性质和平行线,平行四边形的判定即可计算.【解答】解:∵AC平分∠BAD∴∠1=∠BAC∴AB∥DC又∵AB=DC∴四边形ABCD是平行四边形∴BC=AD又∵∠1=∠2∴AD=DC=3∴BC=3.【点评】此题考查角平分线的定义,平行线的判定,平行四边形的判定等知识点.14.如图,一棵树在一次强台风中于离地面4米处折断倒下,倒下部分与地面成30°夹角,这棵树在折断前的高度为12米.【考点】含30度角的直角三角形.【专题】应用题;销售问题.【分析】如图,由于倒下部分与地面成30°夹角,所以∠BAC=30°,由此得到AB=2CB,而离地面米处折断倒下,即BC=4米,所以得到AB=8米,然后即可求出这棵大树在折断前的高度.【解答】解:如图,∵∠BAC=30°,∠BCA=90°,∴AB=2CB,而BC=4米,∴AB=8米,∴这棵大树在折断前的高度为AB+BC=12米.故答案为:12.【点评】此题主要利用了直角三角形中30°的角所对的边是斜边的一半解决问题,然后解题时要正确理解题意,把握题目的数量关系.15.矩形ABCD中,AC交BD于O点,已知AC=2AB,∠AOD=120°.【考点】矩形的性质;含30度角的直角三角形.【分析】先由矩形的性质得出OA=OB,再证明AOB是等边三角形,得出∠AOB=60°,由邻补角关系即可求出结果.【解答】解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∴OA=OB,∵AC=2AB,∴OA=OB=AB,即△AOB是等边三角形,∴∠AOB=60°,∴∠AOD=180°﹣60°=120°;故答案为:120°.【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.16.如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,且AB=10cm,则△DEB的周长是10cm.【考点】角平分线的性质.【分析】由已知利用角的平分线上的点到角的两边的距离相等可得到DE=CD,AC=AE,加上BC=AC,三角形的周长为BE+BD+DE=BE+CB=AE+BE,于是周长可得.【解答】解:CD=DE∵AC=BC∴∠B=45°∴DE=BE∵△DEB的周长=DB+DE+BE=AC+BE=AB=10.故填10.【点评】本题主要考查角平分线上的点到角的两边距离相等的性质和线段的和差关系求值.利用线段相等,进行线段的转移是解决本题的关键.三、解答题(17-19每题6分,20-23每题8分,24,25每题10分,26题12分,共82分)17.某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离了欲到达点B,结果离欲到达点B 240米,已知他在水中游了510米,求该河的宽度(两岸可近似看做平行).【考点】勾股定理的应用.【分析】根据题意得出∠ABC=90°,由勾股定理求出AB即可.【解答】解:根据题意得:∠ABC=90°,则AB===450(米),即该河的宽度为450米.【点评】本题考查了勾股定理的运用;熟练掌握勾股定理,并能进行推理计算是解决问题的关键.18.如图,已知,在平面直角坐标系中,A(﹣3,﹣4),B(0,﹣2).(1)△OAB绕O点旋转180°得到△OA1B1,请画出△OA1B1,并写出A1,B1的坐标;(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.【考点】作图-旋转变换;平行四边形的判定.【专题】几何变换.【分析】(1)由于△OAB绕O点旋转180°得到△OA1B1,利用关于原点中心对称的点的坐标特征得到A1,B1的坐标,然后描点,再连结OB1、OA1和A1B1即可;(2)根据中心对称的性质得OA=OA1,OB=OB1,则利用对角线互相平分得四边形为平行四边形可判断四边形ABA1B1为平行四边形.【解答】解:(1)如图,A1(3,4),B1(0,2);(2)以A,B,A1,B1为顶点的四边形为平行四边形,理由如下:∵△OAB绕O点旋转180°得到△OA1B1,∴点A与点A1关于原点对称,点B与点B1关于原点对称,∴OA=OA1,OB=OB1,∴四边形ABA1B1为平行四边形.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平行四边形的判定.19.已知一次函数y=kx+b经过(﹣1,2),且与y轴交点的纵坐标为4,求一次函数的解析式并画出此函数的图象.【考点】待定系数法求一次函数解析式;一次函数的图象.【分析】将(﹣1,2)代入一次函数y=kx+4,求出k;结合两点确定一条直线作出图形.【解答】解:依题意可以设该一次函数解析式为y=kx+4(k≠0).把(﹣1,2)代入得到:2=﹣k+4,解得k=2,所以该函数解析式为:y=2x+4.其函数图象如图所示:.【点评】本题考查了一次函数图象和待定系数法求一次函数解析式.此题属于基础题,代入求值即可求得系数的值.20.如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线的性质先得出∠BEC=∠DFA,然后再证∠ACB=∠CAD,再证出△BEC≌△DFA,从而得出AE=CF.【解答】证明:∵平行四边形ABCD中,AD∥BC,AD=BC,∴∠ACB=∠CA D.∵BE、DF分别是∠ABC、∠ADC的平分线,∴∠BEC=∠ABE+∠BAE=∠FDC+∠FCD=∠DFA,在△BEC与△DFA中,∵∴△BEC≌△DFA(AAS),∴AF=CE,∴AE=CF.【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,解答本题的关键寻找两条线段所在的三角形,然后证明两三角形全等.21.如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.【考点】直角三角形全等的判定;全等三角形的性质.【分析】(1)根据∠1=∠2,得DE=CE,利用“HL”可证明Rt△ADE≌Rt△BEC;(2)是直角三角形,由Rt△ADE≌Rt△BEC得,∠3=∠4,从而得出∠4+∠5=90°,则△CDE是直角三角形.【解答】解:(1)全等,理由是:∵∠1=∠2,∴DE=CE,∵∠A=∠B=90°,AE=BC,∴Rt△ADE≌Rt△BEC(HL);(2)是直角三角形,理由是:∵Rt△ADE≌Rt△BEC,∴∠3=∠4,∵∠3+∠5=90°,∴∠4+∠5=90°,∴∠DEC=90°,∴△CDE是直角三角形.【点评】考查了直角三角形的判定,全等三角形的性质,做题时要结合图形,在图形上找条件.22.亚健康是时下社会热门话题,进行体育锻炼是远离亚健康的一种重要方式,为了解某校八年级学生每天进行体育锻炼的时间情况,随机抽样调查了100名初中学生,根据调查结果得到如图所示的统计图表.请根据图表信息解答下列问题:(1)a=35;(2)补全条形统计图;(3)小王说:“我每天的锻炼时间是调查所得数据的中位数”,问小王每天进行体育锻炼的时间在什么范围内?(4)若把每天进行体育锻炼的时间在1小时以上定为锻炼达标,则被抽查学生的达标率是多少?【考点】条形统计图;频数(率)分布表;中位数.【分析】(1)用总人数100减去A、B、D、E四个类别的人数,求得a的值;(2)根据a的值,在条形统计图中进行画图;(3)根据总人数为100,判断中位数的位置,求得小王每天进行体育锻炼的时间所在的范围;(4)用锻炼达标的学生数除以被抽查学生总数,求得被抽查学生的达标率.【解答】解:(1)a=100﹣5﹣20﹣30﹣10=35,故答案为:35;(2)条形统计图如下:(3)∵100÷2=50,25<50<60,∴第50个和51个数据都落在C类别1<t≤1.5的范围内,即小王每天进行体育锻炼的时间在1<t≤1.5范围内;(4)被抽查学生的达标率=×100%=75%.【点评】本题主要考查了条形统计图和频数分布表.解题时注意,将一组数据按照从小到大(或从大到小)的顺序排列,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.23.甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD ﹣DE,如图所示,从甲队开始工作时计时.(1)求线段DE的函数关系式;(2)当甲队清理完路面时,乙队还有多少米的路面没有铺设完?【考点】一次函数的应用.【分析】(1)先求出乙队铺设路面的工作效率,计算出乙队完成需要的时间求出E的坐标,再由待定系数法就可以求出结论.(2)由(1)的结论求出甲队完成的时间,把时间代入乙的解析式就可以求出结论【解答】解:(1)设线段DE所在直线对应的函数关系式为y=kx+b.∵乙队按停工前的工作效率为:50÷(5﹣3)=25,∴乙队剩下的需要的时间为:(160﹣50)÷25=,∴E(,160),∴,解得:∴线段DE所在直线对应的函数关系式为y=25x﹣112.5;(2)由题意,得甲队每小时清理路面的长为100÷5=20,甲队清理完路面的时间,x=160÷20=8.把x=8代入y=25x﹣112.5,得y=25×8﹣112.5=87.5.答:当甲队清理完路面时,乙队铺设完的路面长为87.5米.【点评】本题考查了待定系数法求一次函数的解析式的运用,工作总量=工作效率×工作时间的运用,解答时求出函数的解析式是关键.24.某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为w元(注:总利润=总售价﹣总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.【考点】一次函数的应用.【分析】(1)依题意可列出y关于x的函数关系式;(2)根据总利润=每个的利润×数量就可以表示出w与x之间的关系式;(3)由题意得55x+36(50﹣x)≤2000,解得x的值,然后可求y值,再由一次函数的解析式据可以求出进货方案及最大利润.【解答】解:(1)y与x的函数关系式为:y=50﹣x;(2)总利润w关于x的函数关系式为:w=(63﹣55)x+(42﹣36)(50﹣x)=2x+300;(3)由题意,得55x+36(50﹣x)≤2000,解得x≤10,∵w=2x+300,y随x的增大而增大,=2×10+300=320元,此时购进B品牌的饮料50﹣10=40箱,∴当x=10时,y最大值∴该商场购进A、B两种品牌的饮料分别为10箱、40箱时,能获得最大利润320元.【点评】本题考查了一次函数的实际运用,由销售问题的数量关系求出函数的解析式,列一元一次不等式解实际问题的运用,一次函数的性质的运用,解答时求出函数的解析式是关键.25.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,①求菱形的边长;②求折痕EF的长.【考点】翻折变换(折叠问题);菱形的判定与性质;矩形的性质.【分析】(1)根据折叠的性质得OA=OC,EF⊥AC,EA=EC,再利用AD∥AC得到∠FAC=∠ECA,则可根据“ASA”判断△AOF≌△COE,得到OF=OE,加上OA=OC,AC⊥EF,于是可根据菱形的判定方法得到四边形AECF为菱形;(2)①设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中,根据勾股定理得(8﹣x)2+42=x2,然后解方程即可得到菱形的边长;②先在Rt△ABC中,利用勾股定理计算出AC=4,则OA=AC=2,然后在Rt△AOE中,利用勾股定理计算出OE=,所以EF=2OE=2.【解答】证明:(1)∵矩形ABCD折叠使A,C重合,折痕为EF,∴OA=OC,EF⊥AC,EA=EC,∵AD∥AC,∴∠FAC=∠ECA,在△AOF和△COE中,∴△AOF≌△COE,∴OF=OE,∵OA=OC,AC⊥EF,∴四边形AECF为菱形;(2)①设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中,∵BE2+AB2=AE2,∴(8﹣x)2+42=x2,解得x=5,即菱形的边长为5;②在Rt△ABC中,AC==4,∴OA=AC=2,在Rt△AOE中,AE=5,OE==,∴EF=2OE=2.【点评】此题是折叠问题,主要考查了折叠的性质,全等三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形AECF为菱形和求出菱形的边长是解本题的关键.26.已知直线l为x+y=8,点P(x,y)在l上,且x>0,y>0,点A的坐标为(6,0).(1)设△OPA的面积为S,求S与x的函数关系式,并直接写出x的取值范围;(2)当S=9时,求点P的坐标;(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.【考点】轴对称-最短路线问题;一次函数图象上点的坐标特征.【分析】(1)根据三角形的面积公式即可直接求解;(2)把S=9代入,解方程即可求解;(3)点O关于l的对称点B,AB与直线x+y=8的交点就是所求.【解答】解:(1)如图所示:∵点P(x,y)在直线x+y=8上,∴y=8﹣x,∵点A的坐标为(6,0),∴S=3(8﹣x)=24﹣3x,(0<x<8);(2)当24﹣3x=9时,x=5,即P的坐标为(5,3).(3)点O关于l的对称点B的坐标为(8,8),设直线AB的解析式为y=kx+b,由8k+b=8,6k+b=0,解得k=4,b=﹣24,故直线AB的解析式为y=4x﹣24,由y=4x﹣24,x+y=8解得,x=6.4,y=1.6,点M的坐标为(6.4,1.6).【点评】本题考查了轴对称﹣﹣最短路线问题,要灵活运用对称性解决此类问题.。
湘教版2018-2019学年八年级第二学期期末考试数学试题一.选择题(共10小题)1.如图,BD 平分∠ABC ,CD ⊥BD ,D 为垂足,∠C =55°,则∠ABC 的度数是( ) A .35°B .55°C .60°D .70°2. Rt △ABC 中,∠C =90°,锐角为30°,最短边长为5cm ,则最长边上的中线是( ) A .5cm B .15cm C .10cmD .2.5cm3.下列图形中,不是中心对称图形但是轴对称图形的是( )A .B .C .D .4.如图,平行四边形ABCD 中,P 是形内任意一点,△ABP ,△BCP ,△CDP ,△ADP 的面积分别为S 1,S 2,S 3,S 4,则一定成立的是( ) A .S 1+S 2=S 3+S 4B .S 1+S 2>S 3+S 4C .S 1+S 3=S 2+S 4D .S 1+S 2<S 3+S 45.如图,在▱ABCD 中,AD =8,点E ,F 分别是BD ,CD 的中点,则EF 等于( ) A .2 B .3 C .4D .56.在平面直角坐标系中,点P (1,2)关于原点对称的点的坐标是( ) A .(﹣1,﹣2)B .(﹣1,2)C .(1,﹣2)D .(2,1)7.一次函数y =x ﹣1的图象向上平移2个单位后,不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限8.平行四边形的周长为240,两邻边长为x 、y ,则y 与x 之间的关系是( ) A .y =120﹣x (0<x <120) B .y =120﹣x (0≤x ≤120) C .y =240﹣x (0<x <240) D .y =240﹣x (0≤x ≤240)第1题图第4题图第5题图9.某校测量了初三(1)班学生的身高(精确到1cm ),按10cm 为一段进行分组,得到如图频数分布直方图,则下列说法正确的是( )A .该班人数最多的身高段的学生数为7人B .该班身高最高段的学生数为7人C .该班身高最高段的学生数为20人;D .该班身高低于160.5cm 的学生数为15人 10.如图,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…,△A n B n A n +1都是等腰直角三角形,其中点A 1,A 2,…,A n 在x 轴上,点B 1,B 2,…,B n 在直线y =x 上.已知OA 1=1,则点B 2016的横坐标为( )A .2016B .C .22016D .22015二.填空题(共8小题)11.如图,AC ⊥BC ,AD ⊥DB ,要使△ABC ≌△BAD ,还需添加条件 .(只需写出符合条件一种情况)(第11题) (第17题)12.已知△ABC 的三边长a 、b 、c 满足,则△ABC 一定是 三角形.13.顺次连接矩形四边中点所形成的四边形是 .学校的一块菱形花园两对角线的长分别是6m 和8m ,则这个花园的面积为 .14.一个四边形的四个内角的度数之比是3:3:2:1,求这个四边形的最小内角是 . 15.已知点P (2﹣a ,2a ﹣7)(其中a 为整数)位于第三象限,则点P 坐标为 .第10题图16.点A(0,﹣3),点B(0,﹣4),点C在x轴上,如果△ABC的面积为15,则点C的坐标是.17.一次函数y=kx+b的图象如图所示,当x时,y>2.18.2016年扬州体育中考现场考试内容有两项,50米跑为必考项目,另在立定跳远、坐位体前屈、实心球和一分钟跳绳中选一项测试.王老师对参加体育中考的九(1)班40名学生的一项选测科目作了统计,列出如图所示的统计表,则本班参加坐位体前屈的人数是人.三.解答题(共6小题)19.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC 和∠DAE的度数.20.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.21.已知函数y=(2m+1)x+m﹣3,(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.22.如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形.23.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.24.某农机租赁公司共有50台收割机,其中甲型20台、乙型30台,现将这50台联合收割机派往A、B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如下表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y 元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.参考答案一.选择题(共10小题)1.如图,BD 平分∠ABC ,CD ⊥BD ,D 为垂足,∠C =55°,则∠ABC 的度数是( )A .35°B .55°C .60°D .70° 解:∵CD ⊥BD ,∠C =55°,∴∠CBD =90°﹣55°=35°, ∵BD 平分∠ABC ,∴∠ABC =2∠CBD =2×35°=70°. 故选D .2. Rt △ABC 中,∠C =90°,锐角为30°,最短边长为5cm ,则最长边上的中线是( )A .5cmB .15cmC .10cmD .2.5cm 解:∵∠C =90°,∠B =30°,∴AB =2AC =10cm , ∵CD 是AB 的中线, ∴CD =12AB =5cm . 故选A .3.下列图形中,不是中心对称图形但是轴对称图形的是( )A .B .C .D .解:A 、是轴对称图形,不是中心对称图形.故正确; B 、不是轴对称图形,是中心对称图形.故错误; C 、是轴对称图形,也是中心对称图形.故错误; D 、是轴对称图形,也是中心对称图形.故错误. 故选A .4.如图,平行四边形ABCD 中,P 是形内任意一点,△ABP ,△BCP ,△CDP ,△ADP 的面积分别为S 1,S 2,S 3,S 4,则一定成立的是( )A .S 1+S 2=S 3+S 4B .S 1+S 2>S 3+S 4C .S 1+S 3=S 2+S 4D .S 1+S 2<S 3+S 4解:∵四边形ABCD 是平行四边形, ∴AB =CD ,AD =BC ,∴S1+S3=12平行四边形ABCD的面积,S2+S4=12平行四边形ABCD的面积,∴S1+S3=S2+S4,故选:C.5.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=12BC=12×8=4.故选C.6.在平面直角坐标系中,点P(1,2)关于原点对称的点的坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,1)解:∵P(1,2),∴点P关于原点对称的点的坐标是:(﹣1,﹣2),故选:A.7.一次函数y=x﹣1的图象向上平移2个单位后,不经过()A.第一象限B.第二象限 C.第三象限 D.第四象限解:因为一次函数y=x﹣1的图象向上平移2个单位后的解析式为:y=x+1,所以图象不经过四象限,故选D8.平行四边形的周长为240,两邻边长为x、y,则y与x之间的关系是()A.y=120﹣x(0<x<120) B.y=120﹣x(0≤x≤120)C.y=240﹣x(0<x<240) D.y=240﹣x(0≤x≤240)解:∵平行四边形的周长为240,两邻边长为x、y,∴2(x+y)=240,则y=120﹣x(0<x<120).故选:A.9.某校测量了初三(1)班学生的身高(精确到1cm),按10cm为一段进行分组,得到如图频数分布直方图,则下列说法正确的是()A.该班人数最多的身高段的学生数为7人B.该班身高最高段的学生数为7人C.该班身高最高段的学生数为20人D.该班身高低于160.5cm的学生数为15人解:由频数直方图可以看出:该班人数最多的身高段的学生数为20人;该班身高低于160.5cm的学生数为20人;该班身高最高段的学生数为7人;故选B.10.如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1,A2,…,A n在x轴上,点B1,B2,…,B n在直线y=x上.已知OA1=1,则点B2016的横坐标为()A.2016 B.C.22016 D.22015解:因为OA1=1,∴OA2=2,OA3=4,OA4=8,由此得出OA n=2n﹣1,所以OA2016=22015,所以点B2016的横坐标为=22015故选D二.填空题(共8小题)11.如图,AC⊥BC,AD⊥DB,要使△ABC≌△BAD,还需添加条件AC=BD或BC=AD 或∠DAB=∠CBA或∠CAB=∠DBA.(只需写出符合条件一种情况)解:∵AC⊥BC,AD⊥DB,∴∠C=∠D=90°∵AB为公共边,要使△ABC≌△BAD∴添加AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA后可分别根据HL、HL、AAS、AAS判定△ABC≌△BA D.12.(2015秋•扬州校级期末)已知△ABC 的三边长a 、b 、c 满足,则△ABC 一定是 等腰直角 三角形.解:∵△ABC 的三边长a 、b 、c 满足,∴a ﹣1=0,b ﹣1=0,c =0,∴a =1,b =1,c . ∵a 2+b 2=c 2,∴△ABC 一定是等腰直角三角形.13.顺次连接矩形四边中点所形成的四边形是 菱形 .学校的一块菱形花园两对角线的长分别是6m 和8m ,则这个花园的面积为 24m 2.解:连接AC 、BD , 在△ABD 中, ∵AH =HD ,AE =EB∴EH =12BD , 同理FG =12BD ,HG =12AC ,EF =12AC ,又∵在矩形ABCD 中,AC =BD ,∴EH =HG =GF =FE , ∴四边形EFGH 为菱形; 这个花园的面积是12×6m ×8m =24m 2, 故答案为:菱形,24m 2.14.一个四边形的四个内角的度数之比是3:3:2:1,求这个四边形的最小内角是 20° .解:设四边形4个内角的度数分别是3x ,3x ,2x ,x , 所以3x +3x +2x +x =360°, 解得x =20°.则最小内角为20×1=20°. 故答案为:20°.15.已知点P (2﹣a ,2a ﹣7)(其中a 为整数)位于第三象限,则点P 坐标为(﹣1,﹣1) .解:∵点P (2﹣a ,2a ﹣7)(其中a 为整数)位于第三象限, ∴20270-a a <⎧⎨-<⎩,解得:2<a <3.5,故a =3,则点P 坐标为:(﹣1,﹣1). 故答案为:(﹣1,﹣1).16.点A (0,﹣3),点B (0,﹣4),点C 在x 轴上,如果△ABC 的面积为15,则点C 的坐标是 (30,0)或(﹣30,0) .解:∵点A (0,﹣3),点B (0,﹣4), ∴AB =1∵点C 在x 轴上, 设C (x ,0),∵△ABC 的面积为15,∴12×AB ×|x |=15, 即:12×1×|x |=15,解得:x =±30∴点C 坐标是:(30,0),(﹣30,0). 故答案为:(30,0),(﹣30,0).17.一次函数y =kx +b 的图象如图所示,当x <0 时,y >2.解:由图形可知,该函数过点(0,2),(3,0),设解析式为y kx b =+,将A 、B 两点代人2003k b k b =⨯+⎧⎨=⨯+⎩,所以232k b ⎧=-⎪⎨⎪=⎩所以解析式为223y x =-+,令y >2,即223x -+>2, 解之得:x <0.18. 2016年扬州体育中考现场考试内容有两项,50米跑为必考项目,另在立定跳远、坐位体前屈、实心球和一分钟跳绳中选一项测试.王老师对参加体育中考的九(1)班40名学生的一项选测科目作了统计,列出如图所示的统计表,则本班参加坐位体前屈的人数是 14 人.解:∵频率=,∴频数=频率×总数=0.35×40=14人. 故答案为14. 三.解答题(共6小题)19.如图,AD 是△ABC 的BC 边上的高,AE 平分∠BAC ,若∠B =42°,∠C =70°,求∠AEC 和∠DAE 的度数.解:∵∠B =42°,∠C =70°,∴∠BAC =180°﹣∠B ﹣∠C =68°, ∵AE 是角平分线, ∴∠EAC =12∠BAC =34°. ∵AD 是高,∠C =70°, ∴∠DAC =90°﹣∠C =20°,∴∠EAD =∠EAC ﹣∠DAC =34°﹣20°=14°, ∠AEC =90°﹣14°=76°.20.如图,直角坐标系中,△ABC 的顶点都在网格点上,其中,C 点坐标为(1,2).(1)写出点A 、B 的坐标:A ( 2 , ﹣1 )、B ( 4 , 3 )(2)将△ABC 先向左平移2个单位长度,再向上平移1个单位长度,得到△A ′B ′C ′,则A ′B ′C ′的三个顶点坐标分别是A ′( 0 , 0 )、B ′( 2 , 4 )、C ′( ﹣1 , 3 ).(3)△ABC 的面积为 5 .解:(1)写出点A 、B 的坐标:A (2,﹣1)、B (4,3)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).(3)△ABC的面积=3×4﹣2×12×1×3﹣12×2×4=5.21.已知函数y=(2m+1)x+m﹣3,(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.解:(1)把(0,0)代入,得:m﹣3=0,m=3;(2)根据y随x的增大而减小说明k<0.即2m+1<0.解得:m<.22.如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形.证明:(1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF.∴EH=GF.在平行四边形ABCD中,AB=CD,AD=BC,∴AB﹣AE=CD﹣CG,AD﹣AH=BC﹣CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.∴GH=EF.∴四边形EFGH是平行四边形.(2)解:在平行四边形ABCD中,AB∥CD,AB=C D.设∠A=α,则∠D=180°﹣α.∵AE=AH,∴∠AHE=∠AEH=.∵AD=AB=CD,AH=AE=CG,∴AD﹣AH=CD﹣CG,即DH=DG.∴∠DHG=∠DGH=.∴∠EHG=180°﹣∠DHG﹣∠AHE=90°.又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形.23.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.解:(1)∵B(﹣3,3),将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,∴﹣3+1=﹣2,3﹣2=1,∴C的坐标为(﹣2,1),设直线l1的解析式为y=kx+c,∵点B、C在直线l1上,∴代入得:解得:k=﹣2,c=﹣3,∴直线l1的解析式为y=﹣2x﹣3;(2)∵将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,C(﹣2,1),∴﹣2﹣3=﹣5,1+6=7,∴D的坐标为(﹣5,7),代入y=﹣2x﹣3时,左边=右边,即点D在直线l1上;(3)把B的坐标代入y=x+b得:3=﹣3+b,解得:b=6,∴y=x+6,∴E的坐标为(0,6),∵直线y=﹣2x﹣3与y轴交于A点,∴A的坐标为(0,﹣3),∴AE=6+3=9,∵B(﹣3,3),∴△ABE的面积为12×9×|﹣3|=13.5.24.某农机租赁公司共有50台收割机,其中甲型20台、乙型30台,现将这50台联合收割机派往A、B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如下表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.解:(1)由于派往A地的乙型收割机x台,则派往B地的乙型收割机为(30﹣x)台,派往A、B地区的甲型收割机分别为(30﹣x)台和(x﹣10)台.∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x≤30)(2)由题意,得200x+74000≥79600,解得x≥28,∵28≤x≤30,x是正整数∴x=28、29、30∴有3种不同分派方案:①当x=28时,派往A地区的甲型收割机2台,乙型收割机28台,余者全部派往B地区;②当x=29时,派往A地区的甲型收割机1台,乙型收割机29台,余者全部派往B地区;③当x=30时,即30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区;(3)∵y=200x+74000中y随x的增大而增大,∴当x=30时,y取得最大值,此时,y=200×30+74000=80000,建议农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,最高租金为80000元.。
湖南师大附中2018-2019学年度第二学期期末联考八年级数学注意事项:1.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2.必须在答题卡上答题,在草稿纸、试题卷上答题无效;3.答题时,请考生注意各大题题号后面的答题提示;4.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5.答题卡上不得使用涂改液、涂改胶和贴纸;6.本学科试卷共26个小题,考试时量120分钟,满分120分。
一、选择题(本大题共12小题,每小题3分,满分36分)1.下列多项式中,不能用平方差公式分解的是( )A.x 2-y 2B.-x 2-y 2C.4x 2-y 2D.-4+x 22.不等式125131<-x 的正整数解有( )A.2个B.3个C.4个D.5个3.下列命题中,真命题是( )A. 互补两角若相等,则此两角都是直角B. 直线是平角C. 不相交的两条直线叫做平行线D. 和为180︒的两个角叫做邻补角4.化简:329122++-m m 的结果是( ). A.962-+m m B.32-m C.32+m D.9922-+m m5.在△ABC 中,I 是内心(三角形内角平分线的交点),∠BIC =130°,则∠A 的度数是()A.40°B.50°C.65°D.80°6.若实数b a 、满足0<ab ,且b a <,则函数b ax y +=的图象可能是7.如图,某农场计划利用一面墙(墙的长度不限)为一条边,另三边用总长58米的篱笆围 成一个面积为200平方米的矩形场地。
若设该矩形的宽为x 米,则可列方程为A.()20058=-x xB.()20029=-x xC.()200229=-x xD.()200258=-x x8.如图,直线b kx y +=1与直线n mx y -=2交于点P(m ,1),则不等式b kx n mx +->的解集 是第7题 第8题A.0>xB.0<xC.1>xD.1<x9.若方程0132=--x x 的两根是1x 和2x ,则=+2111x x A.3 B.3- C.31 D.31- 10.函数m x x y +-=822的图象上有两点A(11y x ,),B(22y x ,),且2221++x x >,则A.21y y <B.21y y =C.21y y >D.21y y 、的大小不确定 1l.一次函数b ax y +=与二次函数c bx ax y ++=2在同一坐标系中的图像可能是A B C D12.函数c bx x y ++=2与x y =的图象如图所示,有以下结论:①042>c b -;②0=+c b ;③063=++c b ;④当31<<x 时,()012<c x b x +-+。