数列极限的运算法则
- 格式:doc
- 大小:122.00 KB
- 文档页数:3
1.极限法则:极限是一个数列取极限值的概念,它表示一个数包含在另一个数中时,前者的值趋于后者。
2.链式法则:链式法则是极限的一种计算方法,即从一个已知限的出发,由此推出另外一个极限。
3.运算法则:
(1)可积性法则:假设函数有连续的极限,则在极限中乘以另外一个函数后再求极限,则取得的极限结果等于先求出两个函数的极限再相乘;
(2)可逆性法则:假设函数有连续的极限,则在极限中除以另外一个函数后再求极限,则取得的极限结果等于先求出两个函数的极限再相除;
(3)可幂次性:假设对函数求极限,则取出的极限结果等于该函数的幂次方的极限。
数列极限四则运算法则的证明work Information Technology Company.2020YEAR数列极限四则运算法则的证明设limAn=A,limBn=B,则有法则1:lim(An+Bn)=A+B法则2:lim(An-Bn)=A-B法则3:lim(An·Bn)=AB法则4:lim(An/Bn)=A/B.法则5:lim(An的k次方)=A的k次方(k是正整数)(n→+∞的符号就先省略了,反正都知道怎么回事.)首先必须知道极限的定义:如果数列{Xn}和常数A有以下关系:对于ε>0(不论它多么小),总存在正数N,使得对于满足n>N的一切Xn,不等式|Xn-A|<ε都成立,则称常数A是数列{Xn}的极限,记作limXn=A.根据这个定义,首先容易证明: 引理1: limC=C. (即常数列的极限等于其本身)法则1的证明:∵limAn=A, ∴对任意正数ε,存在正整数N₁,使n>N₁时恒有|An-A|<ε.①(极限定义)同理对同一正数ε,存在正整数N₂,使n>N₂时恒有|Bn-B|<ε.②设N=max{N₁,N₂},由上可知当n>N时①②两式全都成立.此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)|≤|An-A|+|Bn-B|<ε+ε=2ε.由于ε是任意正数,所以2ε也是任意正数.即:对任意正数2ε,存在正整数N,使n>N时恒有|(An+Bn)-(A+B)|<2ε.由极限定义可知,lim(An+Bn)=A+B.为了证明法则2,先证明1个引理.引理2:若limAn=A,则lim(C·An)=C·A.(C是常数)证明:∵limAn=A, ∴对任意正数ε,存在正整数N,使n>N时恒有|An-A|<ε.①(极限定义)①式两端同乘|C|,得: |C·An-CA|<Cε.由于ε是任意正数,所以Cε也是任意正数.即:对任意正数Cε,存在正整数N,使n>N时恒有|C·An-CA|<Cε.由极限定义可知,lim(C·An)=C·A. (若C=0的话更好证)法则2的证明:lim(An-Bn)=limAn+lim(-Bn) (法则1)=limAn+(-1)limBn (引理2)=A-B.为了证明法则3,再证明1个引理.引理3:若limAn=0,limBn=0,则lim(An·Bn)=0.证明:∵limAn=0, ∴对任意正数ε,存在正整数N₁,使n>N₁时恒有|An-0|<ε.③(极限定义)同理对同一正数ε,存在正整数N₂,使n>N₂时恒有|Bn-0|<ε.④设N=max{N₁,N₂},由上可知当n>N时③④两式全都成立.此时有|An·Bn| =|An-0|·|Bn-0| <ε·ε=ε².由于ε是任意正数,所以ε²也是任意正数.即:对任意正数ε²,存在正整数N,使n>N时恒有|An·Bn-0|<ε².由极限定义可知,lim(An·Bn)=0.法则3的证明:令an=An-A,bn=Bn-B.则liman=lim(An-A)=limAn+lim(-A) (法则1)=A-A (引理2) =0.同理limbn=0.∴lim(An·Bn)=lim[(an+A)(bn+B)]=lim(an·bn+B·an+A·bn+AB)=lim(an·bn)+lim(B·an)+lim(A·bn)+limAB (法则1)=0+B·liman+A·limbn+limAB (引理3、引理2)=B×0+A×0+AB (引理1) =AB.引理4:如果limXn=L≠0,则存在正整数N和正实数ε,使得对任何正整数n>N,有|Xn|≥ε.证明:取ε=|L|/2>0,则存在正整数N,使得对任何正整数n>N,有|Xn-L|<ε.于是有|Xn|≥|L|-|Xn-L|≥|L|-ε=ε引理5: 若limAn存在,则存在一个正数M,使得对所有正整数n,有|An|≤M.证明:设limAn=A,则存在一个正整数N,使得对n>N有|An-A|≤1,于是有|An|≤|A|+1,我们取M=max(|A1|,...,|AN|,|A|+1)即可法则4的证明:由引理4,当B≠0时(这是必要条件),正整数N1和正实数ε0,使得对正整数n>N1,有|Bn|≥ε0.由引理5,又正数M,K,使得使得对所有正整数n,有|An|≤M,|Bn|≤K.现在对ε>0,正整数N2和N3,使得:当n>N2,有|An-A|<ε0*|B|*ε/(M+K+1);当n>N3,有|Bn-B|<ε0*|B|*ε/(M+K+1);现在,当n>max(N1,N2,N3)时,有|An/Bn-A/B|=|An*B-Bn*A|/|B*Bn|=|An(B-Bn)+Bn(An-A)|/|B*Bn|≤(|An|*|B-Bn|+|Bn|*|A-An|)/(|B|*ε0)≤ε(M+K)/((M+K+1)<ε法则5的证明:lim(An的k次方)=limAn·lim(An的k-1次方) (法则3) ....(往复k-1次) =(limAn)的k次方=A的k次方.。
数列极限的运算法则
数列是由一系列数字按照一定规律排列而成的序列,而数列的极限是指当数列中的项无限接近某个特定值时,该特定值就是该数列的极限。
数列的极限可以通过一些运算法则来求解,这些运算法则包括以下几个方面。
1. 线性运算法则:如果数列{an}和{bn}的极限分别为A和B,那么对于任意
实数c,数列{can}的极限为cA,数列{an+bn}的极限为A+B,数列{an-bn}的极限
为A-B。
2. 乘法运算法则:如果数列{an}和{bn}的极限分别为A和B,那么数列{anbn}的极限为AB。
3. 除法运算法则:如果数列{an}和{bn}的极限分别为A和B,且B不等于0,那么数列{an/bn}的极限为A/B。
4. 幂运算法则:如果数列{an}的极限为A,且m是一个正整数,那么数列{an^m}的极限为A^m。
5. 复合函数运算法则:如果函数f(x)在x=A处连续,并且数列{an}的极限为A,那么数列{f(an)}的极限为f(A)。
6. 夹逼准则:如果数列{an},{bn}和{cn}满足an≤bn≤cn,并且数列{an}和{cn}的极限都为A,那么数列{bn}的极限也为A。
7. 极限的唯一性:如果数列{an}的极限存在,那么该极限是唯一的。
这些运算法则可以帮助我们计算数列的极限,使得我们能够更加方便地求解数列的极限问题。
但需要注意的是,这些运算法则只适用于满足一定条件的数列,例如乘法运算法则中要求乘积数列的每一项都存在,除法运算法则中要求除数数列的每一项都不为0等。
在应用运算法则时,我们需要仔细分析数列的性质,确保运算的合理性。
高等数学极限知识点总结
以下是高等数学极限知识点总结:
1. 极限的定义:极限是描述函数在某一点的行为的数学工具。
它包括数列的极限和函数的极限。
2. 极限的性质:包括唯一性,有界性,和收敛性。
3. 极限的四则运算法则:如果lim f(x),lim g(x)存在,那么对于加减乘除四种运算,极限都存在。
4. 极限的夹逼定理:如果一个数列被两个已知极限的数列夹在中间,那么这个数列的极限就是这两个数列的极限。
5. 函数极限的运算法则:如果lim f(x)存在,那么lim [f(x) + c] = lim f(x) + lim c,lim [f(x) c] = lim f(x) lim c,其中c是一个常数。
6. 无穷小和无穷大的概念:无穷小是一个趋于0的变量,无穷大是一个趋于无穷的变量。
7. 洛必达法则:当分子和分母的极限都存在时,可以求出函数的极限。
8. 泰勒级数:将一个函数表示为其各阶导数的无限和的方法。
9. 单侧极限和双侧极限:函数在某一点的单侧极限是指函数在该点的左侧或右侧的极限;双侧极限是指函数在这一点左侧和右侧的极限。
10. 连续性和可微性:如果一个函数在某一点的极限值等于该点的函数值,则称该函数在该点连续;如果一个函数在某一点的导数存在,则称该函数在该点可微。
以上就是高等数学极限的基本知识点,希望对你有所帮助。
数列极限四则运算法则的证明设 limAn=A,limBn=B, 则有法则 1:lim(A n+B n)=A+B法则 2:lim(An-Bn)=A-B法则 3:lim(An • Bn)=AB法则 4:lim(An/Bn)=A/B.法则5:lim(An的k次方)=A的k次方(k是正整数)(n T + g的符号就先省略了,反正都知道怎么回事.)首先必须知道极限的定义:如果数列{Xn}和常数A有以下关系:对于?£>0(不论它多么小),总存在正数 N,使得对于满足n > N的一切Xn,不等式|Xn-A| <e都成立,则称常数A是数列{Xn}的极限,记作limXn=A.根据这个定义,首先容易证明:引理1: limC=C.(即常数列的极限等于其本身)法则1的证明:•••limAn=A,二对任意正数£ ,存在正整数N?,使n > N?寸恒有|An-A| <£ .(极限定义)同理对同一正数& ,存在正整数N?,使n > N?时恒有|Bn-B| <£ .②设N=max{N ?,N?},由上可知当n > N时①②两式全都成立.此时 |(An+Bn)-(A+B)|=|An-A)+(Bn- B)| < |AA|+|Bn-B| <£ + £ =2 £.由于&是任意正数,所以2 &也是任意正数.即:对任意正数2 £ ,存在正整数N,使n > N时恒有|(An+Bn)-(A+B)| v 2 £.由极限定义可知,lim(An+Bn)=A+B.为了证明法则2,先证明1个引理.引理 2:若 limAn=A,贝U lim(C • An)=C(C・是常数)证明:vlimAn=A, 二对任意正数e ,存在正整数N,使n > N时恒有|An-A| Ve .(极限定义)①式两端同乘|C|,得:|C • -CA| v C e.由于e是任意正数,所以C e也是任意正数.即:对任意正数 C e ,存在正整数N,使n > N时恒有|C -C A n V C e.由极限定义可知,lim(C ・AAn=O0的话更好证)法则2的证明:lim(A n-B n)=limAn+lim(-Bn)( 法则 1)=limAn+(-1)limBn ( 引理 2)=A-B.为了证明法则3,再证明1个引理.引理 3:若 limAn=O,limBn=0, 贝U lim(An • Bn)=0.证明:vlimAn=0, 二对任意正数e ,存在正整数N ?,使n > N ?时恒有|An-0| Ve .(极限定义) 同理对同一正数 e ,存在正整数N?,使n > N?时恒有|Bn-0| Ve .④设N=max{N ?,N?},由上可知当n > N时③④两式全都成立.此时有 |An • =Bnn- 0| • \Bn<£•=££ 2.由于&是任意正数,所以£ 2也是任意正数即:对任意正数£ 2,存在正整数,使n> N时恒有|An -0|B< & 2.由极限定义可知,lim(A n • Bn )=0.法则3的证明:令an=An-A,bn=Bn-B.则 liman=lim(An-A)=limAn+lim(-A)( 法则 1)=A-A (引理 2) =0.同理 limbn=0./• lim(A n • Bn)=lim[(an+A)(bn+B)]=lim(an • bn+B • an+A • bn+AB)=lim(a n • bn )+lim(B • an )+lim(A • b法则mAB=0+B • liman+A • limbn+limAB引理 3、引理 2)=B x 0+A x 0+AB (引理 1) =AB.引理4:如果limXn=L 工0,则存在正整麵和正实数£ ,使得对任何正整数n>N,有|Xn| >£.证明:取£ =|L|/2>0, 则存在正整数使得对任何正整数n>N,有|Xn- L|< £ .于是有|Xn- > |L| |Xn- L| > -L£ = £引理5:若limAn存M,使得对所有正整数n,有|An| wM.证明:设limAn=A,则存在一个正整数N,使得对n>N 有|An- A| w 1,于是有|An| w |A|+1, 我们取 M=max(|A1|,...,|AN|,|A|+1) 即可法则4的证明:由引理4,当B M0时(这是必要条件),?正整数 N1和正实数£ 0,使得对正整数n>N1,有|Bn| 0.由引理5,又?正数M,K,使得使得对所有正整数n,有|An| < M,|Bn| < K.现在对?£ >0?正整数N2和N3,使得:当 n>N2,有|An- A|< £ 0*|B|* £ /(M+K+1);当 n>N3,有 |Bn- B|< £ 0*|B|* £ /(M+K+1);现在,当 n>max(N1,N2,N3)时,有|An/Bn-A/B|=|A n*B-B n*A|/|B*B n|=|A n( B-B n)+B n(An-A)|/|B*B n|w (|An|*|B-Bn|+|Bn|*|A- An|)/(|B|* £ 0)(M+K)/((M+K+1)< £法则5的证明:lim(An 的k次方)=limAn • lim(A的 k-1 次方)(法则 3)....(往复 k-1 次)=(limAn)的k次方=A的k次方.。
数列极限的四则运算法则好嘞,今天咱们聊聊数列极限的四则运算法则。
听起来很严肃,对吧?其实这玩意儿就像你早上喝的豆浆,慢慢喝才有味道。
极限,这个词听上去高大上,其实说白了就是一个数列在无限逼近某个数字时的表现。
就像你追着一只小猫,越追越近,最后它就在你面前停下了。
这就是极限。
咱们得搞清楚,数列是什么东西。
数列就是一个个数字按一定规律排成的队伍。
想象一下,你在吃糖果,巧克力、牛奶糖、果仁糖,一颗接一颗,这些糖果就像数列里的数字。
你一开始可能就吃一颗,但随着时间推移,可能会吃到第十颗、第二十颗,甚至更多。
咱们要知道,每次吃到的新糖果代表数列中的一个数,慢慢地,你就会对它们的味道有个大概的了解。
极限的四则运算就像一场有趣的游戏。
加法、减法、乘法、除法,嘿,听起来是不是很简单?就像你和朋友一起吃火锅,大家分着吃,越吃越快乐。
先说加法,两个数列相加,就像把两盘菜放在一起,嘿嘿,味道更丰盛了。
假如你有两个数列,一个是2、4、6,另一个是3、5、7。
它们的极限分别是6和7,加起来,极限就是13。
这就跟你和朋友一起点了牛肉和虾,最后大家一起分享,肉虾双全,太幸福了。
再说减法,听上去似乎有点伤感。
两个数列相减,就像你从一盘菜里拿走一部分,虽然有点遗憾,但味道还是不错的。
比如说,数列A的极限是10,数列B的极限是4,AB的极限就是6。
别忘了,生活中总会有些失去,重要的是珍惜眼前的美好。
然后,咱们谈谈乘法,嘿,这个可真是让人激动。
两个数列相乘,就像把你最爱的两种口味的冰淇淋混合在一起。
假如一个数列的极限是2,另一个是3,它们的乘积的极限就是6。
这就像你吃到巧克力和香草的组合,哇,简直是味蕾的狂欢,幸福感直线飙升。
别忘了除法。
这个有点儿小心翼翼,毕竟不是所有的数都能被完美地分开。
就像你和朋友一起分披萨,不能让某个人分到0片,那可就没法玩了。
如果数列A的极限是8,B的极限是2,A除以B的极限就是4。
记住,除法的时候一定得小心,确保分母不是零,不然就得抓瞎。
一、数列的极限:1.极限的概念和运算法则数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a ,那么就说数列{a n }以a 为极限.数列极限的运算法则:如果A a n n =∞→lim ,Bb n n =∞→lim .则 ① ()B A b a n n n +=+∞→lim .② ()AB b a n n n =∞→lim .② ()0,0lim ≠≠=∞→B b B A b a n n n n .(注意:和与积中包含的数列个数必须是有限的,另外这些运算法则逆命题并不一定成立,例如,若已知()n n n b a ∞→lim 存在,n n a ∞→lim ,nn b ∞→lim 不一定存在,可以进行这样的改编,让学生自行判断和举反例。
)2.基本数列极限①为常数);C C C n (lim =∞→ ②);*(01lim N n n n ∈=∞→ ③);1|(|0lim <=∞→q q n n 而对于n n q lim ∞→,当1=q 时,1lim =∞→n n q ;当1||>q 或1-=q 时,n n q lim ∞→极限不存在。
3.无穷等比数列各项和当公比1||0<<q 时,无穷等比数列ΛΛn a a a a ,,,321的各项和为:);1||0(11lim <<-==∞→q q a S S n n(可以让学生解释各项和怎么由前n 项和公式演变而来,注意适用范围及两者区别)4.常见的数列极限可以归纳为两大类:第一类是两个关于自然数n 的多项式的商的极限:)0,0,,(.0;,*01110111lim ≠≠∈⎪⎩⎪⎨⎧>==++++++++----∞→l k l l l l k k k k n b a N l k k l k l b a b n b n b n b a n a n a n a 时,当时当ΛΛ当l k >时,上述极限不存在.第二类是关于n 的指数式的极限: ⎩⎨⎧=<=∞→时,当时;当111||,0lim q q q nn当1||>q或1-=q时,上述极限不存在(注意:求极限时,把常数项提到极限记号外面可以使运算变得很简洁。
精心整理
数列极限的运算法则(5月3日)
教学目标:掌握数列极限的运算法则,并会求简单的数列极限的极限。
教学重点:运用数列极限的运算法则求极限 教学难点:数列极限法则的运用
[→lim 0
x x 如果}有极二.例1.例2.(例3.求下列有限: (1)1312lim
++∞
→n n n (2)1
lim 2-∞→n n
n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。
例4.求下列极限:
(1))1
1
2171513(
lim 2
222+++++++++∞
→n n n n n n K (2)39312421(lim
1
1--∞→++++++++n n n K K 说明:1.数列极限的运算法则成立的前提的条件是:数列的极限都是存在,在进行极限运算时,要特别注意这一点。
当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。
2.
3.1.(12.(13.(1)n n lim
∞→; (2) 2
3lim -∞→n n ;
(3)2
12
3lim n n n --∞→; (4)1325lim 22--∞→n n n n 。
4.求下列极限
已知,3lim =∞→n n a ,5lim =∞
→n n b 求下列极限:
(1).).43(lim n n n b a -∞
→ (2). n
n n
n n b a b a +-∞
→lim
5.求下列极限:
(1). );2
7(lim n n -∞→ (2).)51
(
lim 2-∞
→n
n (3).)43
(1lim +∞→n n n (4).11
1
1
lim -+∞→n
n n
(5).22321lim n
n n ++++∞→Λ (6).11657lim -+∞→n n
n (7).
n (9。