混沌现象研究
- 格式:doc
- 大小:944.50 KB
- 文档页数:7
非线性动力学系统的混沌现象研究在当代科学领域中,非线性动力学系统的混沌现象一直是比较热门的话题。
这个话题不仅影响了自然科学领域,也对社会科学领域有一定的影响。
本文将探讨非线性动力学系统的混沌现象研究,旨在深入了解这一重要科学问题。
非线性动力学系统是一类包括非线性微分方程、差分方程、递归方程等在内的系统。
这类系统具有多种复杂行为,其中混沌现象是最为突出的表现之一。
混沌是指系统表现出的随机、无规则的运动行为,具有高度的敏感性和极大的不确定性,它在科学、工程、生物学、社会科学等众多领域具有重要应用。
大约在20世纪60年代左右,混沌现象被科学家所发现和研究。
受到混沌这个词本身含义的影响,混沌似乎不是好事情,但是,非线性动力学系统的混沌现象却有着广泛的实际应用。
例如在工程控制中,混沌现象可以为自适应控制、噪声降低、各向异性滤波等提供有效手段。
在社会科学领域,混沌理论也被广泛应用于敌我互动、经济波动、政治变化等方面的研究。
混沌现象的研究不仅扩展了人类对自然、社会的认识,也在一定程度上对人类行为和社会发展提供了重要的理论支持。
非线性动力学系统的混沌现象与线性系统有所不同。
线性系统的稳定性只与系统的本征值有关,而非线性系统的本征值是不确定的,系统的稳定性因此也显得不稳定。
此外,非线性动力学系统还存在着吸引子、周期解等现象,在不同的初始条件下,系统表现出不同的稳定性和动力学特征。
由此引发了混沌现象的相关研究。
针对非线性动力学系统的混沌现象,科学家们提出了一些定量分析方法。
其中最为常见的方法是用分形维数和李雅普诺夫指数来描述混沌现象。
分形维数是描述复杂几何结构的量度,可以用来衡量混沌吸引子的几何质量。
李雅普诺夫指数则是描述混沌轨迹敏感性的指标,它可以反映系统状态随时间演变的速率。
除此之外,还有一些相应的图像处理和非线性数据分析方法,如小波分析、自回归模型和谱分析等,它们在非线性动力学系统的混沌现象研究中也发挥了重要作用。
非线性动力学中的混沌与分岔现象混沌现象的介绍混沌现象是非线性动力学中一个重要的研究课题,它描述了一种似乎随机的、无规律可循的运动状态。
在混沌现象的研究中,人们发现了一些特征,如灵敏依赖于初始条件、无周期运动和封闭轨道等。
混沌现象的研究对于理解自然界中的复杂系统行为具有重要的意义。
混沌现象最早是由美国数学家Edward Lorenz于20世纪60年代发现的。
他在研究气象学中的大气运动方程时,意外地发现了不确定性的现象。
这个发现被称为“蝴蝶效应”,即当一个蝴蝶在巴西振动翅膀时,可能引发一系列的气流变化,最终导致美国得克萨斯州的一个龙卷风的形成。
这个例子说明了混沌现象中初始条件的微小变化可能引起系统运动的巨大变化。
混沌现象的数学表示混沌现象可以用一些非线性动力学方程描述。
这些方程通常包含了一些非线性项,使得系统的演化不再是简单的线性叠加。
一个经典的混沌系统方程是Lorenz方程:\\frac{{dx}}{{dt}} = \\sigma(y - x),\\frac{{dy}}{{dt}} = x(\\rho - z) - y,\\frac{{dz}}{{dt}} = xy - \\beta z其中,x、y和z是系统的状态变量,t是时间。
σ、ρ和β是一些常数,它们决定了系统的性质。
这个方程描述了一个三维空间中的运动,这种运动就是混沌现象。
分岔现象的介绍分岔现象是混沌现象的一个重要特征,它描述了系统参数发生微小变化时,系统行为的剧烈变化。
简单来说,分岔现象就是系统从一个稳定的演化状态变成多个稳定状态的过程。
分岔现象的经典例子是Logistic映射。
Logistic映射是一种常用的非线性映射,它用于描述生物种群的增长。
Logistic映射的公式为:x_{n+1} = r \\cdot x_n \\cdot (1 - x_n)其中,x_n是第n个时刻的种群密度,x_{n+1}是下一个时刻的种群密度,r是系统的参数,它决定了种群的增长速度。
动力学系统中的混沌与共振现象研究引言:在物理世界中,许多系统都可以用动力学模型来描述其运行规律。
在这些动力学系统中,混沌和共振是两种十分重要而又引人入胜的现象。
混沌现象指的是某些系统的微小初始条件会导致长期上的巨大变化,这使得预测和控制系统的未来状态变得困难。
而共振现象则表示系统对外界激励的某个特定频率有着极大的响应,这种响应可以放大系统的某些特性,产生重要影响。
本文将就动力学系统中的混沌与共振现象展开研究。
一、混沌现象的研究混沌现象的研究始于20世纪60年代,最早的研究者包括洛伦兹等人。
通过对混沌系统的数学建模和计算机模拟,科学家们认识到混沌现象在天体力学、生物学和工程学等领域中都有重要应用。
混沌系统凭借其自组织、非线性和敏感依赖等特性,在信息传输、密码学和优化问题等方面发挥着重要作用。
其次,混沌现象也揭示了系统动力学的复杂性。
混沌系统通常具有稳定解的丧失,表现为阶段性的轨迹围绕在某一区域内,形成所谓的“奇异吸引子”。
奇异吸引子的形态复杂多变,显示了混沌系统的多样性和不可预测性。
其中,分叉现象是最有代表性的现象之一,当系统的参数变化时,系统的解分支呈现出分叉现象,并且分叉点处的解存在着周期倍增的行为,这为动力学系统提供了更广泛的研究空间。
二、共振现象的研究共振现象是物理学中的一个重要概念,在许多领域中都有广泛应用。
共振现象是指当一个动态系统受到外界周期性激励时,系统出现频率等于激励频率的特定共振状态。
共振现象不仅在固体振动、电磁场、流体力学等基础物理学中有重要应用,而且在控制论、生物力学等交叉学科中也具有广泛的研究价值。
共振现象的理论研究主要集中在两个方面:共振的条件和共振的机理。
共振的条件主要包括激励频率、系统本征频率、激励强度等因素。
共振的机理可以通过线性系统理论和非线性系统理论进行解释。
在线性系统中,系统对共振激励的响应具有线性关系,其共振频率由系统的特征频率决定;而在非线性系统中,系统对共振激励的响应可能出现倍增、超共振等非线性效应,这使得系统对于外界激励表现出更加强烈的共振现象。
动力系统中的混沌现象研究动力系统是涉及物体或系统运动的力学领域,而混沌现象则是指在一些简单的动力系统中出现的看似随机、无序的行为。
混沌现象的研究对于我们理解自然界的复杂性以及应用于科学、工程等领域具有重要意义。
本文将对动力系统中的混沌现象进行研究和讨论。
一、混沌现象的背景和定义混沌现象最早在20世纪60年代由Edward Lorenz研究气象学时发现。
他的研究发现,即使是在一个简单的天气系统中,微小差异的初始条件也可能导致系统的完全不同行为,这就是“蝴蝶效应”的提出。
混沌现象被定义为一个动力系统在某种程度上高度敏感于初始条件的现象,即使微小变化也能产生巨大的影响,导致不可预测的结果。
这一现象使得长期的天气预测变得困难,并且在其他领域也具有深远的影响。
二、混沌现象的数学模型为了研究混沌现象,数学家引入了一系列的混沌模型,其中最著名和最广泛研究的是洛伦兹系统。
洛伦兹系统由一组非线性微分方程组成,描述了流体力学中的对流现象。
这个系统的特点是对于初始条件高度敏感,产生了混沌行为。
混沌现象的数学模型可以通过图像、时间序列和相图等方式进行分析。
图像是通过绘制系统动力学随时间的变化而得到的,可以展示系统的特殊性质和周期性行为。
时间序列则是将系统状态的演化按时间顺序排列而得到的,可以通过频域分析等方法获取系统的频谱特征。
相图则是将系统的状态用相空间中的点表示,展示了系统的相空间流动性质。
三、混沌现象在科学和工程中的应用混沌现象的研究不仅仅是理论学科和数学领域中的一项重要研究,还具有广泛的应用价值。
在科学研究中,混沌现象的理解有助于我们对自然界中复杂系统的认识。
例如,在气象学中,混沌现象的研究可以提高天气预测的准确性,有助于人们更好地了解气候变化。
在工程领域,混沌现象的应用也十分广泛。
例如,混沌现象可以用于增强通信系统的安全性和可靠性。
混沌加密技术利用了系统非线性和高度敏感的特性,使得加密通信更具保密性。
此外,混沌现象在信号处理、图像识别、电力系统和控制系统等领域也得到了广泛的应用。
经典力学中的混沌现象研究混沌现象是指在经典力学中的一类非线性动力学系统中展现出的高度敏感依赖于初始条件的现象。
它起初被误认为是系统运动的不可预测性,但随着对混沌现象的深入研究,科学家们逐渐认识到混沌是一种具有内在规律性的现象。
经典力学中的混沌现象研究对于科学的发展和理论的构建具有重要的意义。
一、混沌现象的起源混沌现象的起源可以追溯到1887年霍普夫提出的迭代逃逸现象。
他在研究一个简单的力学系统时发现,该系统在经过多次迭代后产生了无规则的运动。
这一发现引起了科学家们的兴趣,随后,洛伦兹在20世纪60年代提出了著名的洛伦兹方程,揭示了混沌现象的基本特征。
二、混沌现象的基本特征混沌现象的基本特征包括:敏感依赖于初始条件、确定性、自组织、非周期性等。
敏感依赖于初始条件是混沌现象最引人注目的特征,它意味着微小的初始条件变化会导致系统演化出完全不同的轨迹。
确定性表示混沌现象的演化过程是可以通过确定的数学方程描述和预测的。
三、混沌现象的数学模型混沌现象可以通过一系列的数学模型来描述。
其中最经典的混沌模型之一是洛伦兹方程。
洛伦兹方程是一个三维非线性系统,它描述了大气运动中的流体对流现象。
洛伦兹方程的解具有非常复杂的轨迹,即使微小的初始条件变化也会导致系统行为的剧烈改变。
四、混沌现象的应用混沌现象的研究在许多领域都有广泛的应用。
在天体力学中,混沌现象的研究可以用于描述行星轨道的演化和宇宙运动的复杂性。
在气候学中,混沌现象的研究可以用于分析气候系统的变化和周期性。
在信息加密中,混沌现象的应用可以用于生成随机数和保护数据安全。
五、混沌现象的研究挑战与展望尽管经典力学中的混沌现象已经取得了许多重要的研究成果,但仍然存在许多挑战和未解之谜。
例如,尚未找到一种通用的方法来确定混沌系统的初始条件,这限制了对混沌现象的深入研究。
此外,混沌现象在理论上的解释和数学模型的构建仍然需要更多的理论探索和实验验证。
总之,经典力学中的混沌现象是一门极富挑战性的研究领域。
动力系统中的混沌现象与控制研究混沌理论,作为非线性动力学中的重要研究领域,不仅在数学领域有重要应用,也在物理、生物、经济等多个领域得到广泛应用。
混沌现象的产生和控制成为动力系统研究中的一个热点。
本文将从混沌现象的定义、产生机制、数学模型以及相关控制研究等方面进行探讨。
一、混沌现象的定义和特征混沌现象,最早由美国数学家E. N. Lorenz在1963年提出,用来描述某些非线性动力系统中出现的随机且不可预测的行为。
相对于简单周期性行为的规律性,混沌现象表现出无规则、无周期性和高度敏感依赖于初始条件的特点。
混沌现象的特征在于系统的轨迹表现出看似随机的变化,但却受到确定性规律的支配。
在混沌系统中,微小的扰动可能引发系统的巨大变化,这被称为“蝴蝶效应”。
此外,混沌系统的轨迹通常具有分形结构,即存在着自相似的特征。
二、混沌现象的产生机制混沌现象的产生机制是非线性动力学中的重要问题。
在简单系统中,存在着一类称为“映射”的特殊动力学函数,通过不断迭代这些映射函数,系统可能进入混沌状态。
混沌的产生也可以通过连续非线性系统实现。
例如,当一个非线性振荡系统的驱动频率接近系统的固有频率时,系统可能由有序运动突然转变为混沌运动。
此时,系统会出现频率锁定现象,这使得微小的扰动也能引发系统的混沌行为。
三、混沌系统的数学模型为了更好地理解混沌现象,并对其进行研究和控制,研究者们借助数学模型对混沌系统进行描述。
常见的混沌系统包括Logistic映射、Henon映射、Lorenz方程等。
Logistic映射是最著名的一类混沌映射之一,由R. May在1975年引入,其形式为:\[x_{n+1}=rx_n(1-x_n)\]其中,\(x_n\)表示第n次迭代时的变量值,r为非线性参数。
Henon映射是另一个常用的二维混沌系统,其形式为:\[x_{n+1} = 1- ax_n^2 + y_n, y_{n+1} = bx_n\]其中,\(a\)和\(b\)为非线性参数。
管理科学中的混沌现象研究一、引言混沌理论是20世纪60年代末期由美国数学家Edward Lorenz 提出的,在经过几十年的发展和研究,已成为一门发展完备的科学理论。
混沌现象已经应用到多个领域,包括天气预报、股票市场、流体力学等。
本文将会对混沌现象在管理科学中的应用进行探讨和分析。
二、混沌现象简述所谓混沌现象,指的是在某些非线性系统中,当初始条件发生微小变化时,系统的状态也发生了很大的改变,产生了不可预测的结果。
与此同时,混沌现象还包括一些普遍的特征,如无规律出现的震荡、出现奇异吸引子等。
三、混沌现象在管理科学中的应用在管理科学领域中,混沌现象主要被应用于预测和控制方面。
具体应用包括:1.金融市场预测由于股票、期货市场本身就具有非线性因素,所以混沌理论在金融市场预测中应用得非常广泛。
基于混沌理论的金融市场预测模型,可以根据历史股市数据预测未来市场的趋势和价格波动情况。
通过这种方法,投资者可以更好地把握市场节奏,提高盈利率和降低投资风险。
2.产品质量控制在产品量产后,混沌理论被应用于分析生产工艺。
通过对不同温度、压力等参数进行微调,可以防止系统进入混沌状态,保证产品质量的稳定性,提高生产效率和质量。
3.销售预测进入市场后,混沌理论也可以被应用于销售预测。
通过对客户交易数据的分析,可以预测客户的未来购买行为,从而帮助企业更准确地进行产品定价和库存管理,提高销售效率和盈利率。
4.组织管理在组织管理方面,混沌理论可以通过研究组织内部的交互关系和协作模式,优化组织结构,提升组织运营效率。
此外,混沌理论还可以被用于解决企业中的决策问题。
通过对决策者的行为和决策参数进行分析,可以确定最优决策方案,提高决策者的决策质量和效率。
四、结论在管理科学中,混沌理论的应用范围非常广泛,并且具有非常重要的价值。
通过混沌理论的应用,可以提高企业的管理效率和盈利能力。
因此,我们应该积极探索混沌理论在管理科学中的应用,以期更好地服务于企业和社会的发展。
混沌现象研究实验报告混沌现象是一种复杂的动力学现象,它展现了一种看似随机但又有序的行为。
混沌现象在物理学、数学、生物学等多个领域都得到了广泛的研究和应用。
在本实验中,我们将使用一个简单的混沌系统模型进行研究,探究混沌现象的基本特征和产生机制。
首先,我们介绍实验所使用的混沌系统模型,这是一个基于离散映射的模型。
模型的动力学方程如下:x(n+1) = r*x(n)*(1-x(n))其中,x(n)是系统在第n个时间步的状态变量,r是一个控制参数,决定了系统的行为。
该方程描述了一个种群数量的变化规律,可以用来研究种群的动态演化。
为了观察混沌现象,我们在模型中引入了一个初始条件x0。
我们会通过调节参数r和初始条件x0的值,观察系统的演化过程。
在实验中,我们将选择不同的参数r值和初始条件x0,观察系统的行为。
例如,我们可以选择r=2.5和x0=0.5作为初始条件。
我们将通过迭代计算x(n)的值,并绘制出x(n)随时间的变化图像。
实验结果显示,当r取不同的值时,系统的行为也会发生明显的变化。
当r小于3时,系统的行为相对简单,呈现出周期性和收敛性;当r大于3时,系统的行为变得复杂,呈现出混沌现象。
我们可以通过统计混沌系统产生的时间序列数据的特征,如Lyapunov指数、分岔图、功率谱等来定量描述混沌现象。
此外,我们还可以通过系统的相图来观察混沌现象。
相图描述了系统状态变量的轨迹,可以直观地展示系统的复杂行为。
我们将绘制x(n)和x(n+1)的关系图像,以及x(n+1)和x(n+2)的关系图像,通过观察图像的形状和分布情况,可以发现混沌现象的特征。
通过实验的观察和分析,我们可以得出以下结论:1. 混沌现象具有确定性,但是在初值和参数微小变化的情况下表现出不可预测的特点;2. 混沌系统的行为对参数和初值条件非常敏感,微小的变化可以导致完全不同的演化结果;3. 混沌系统的行为可以通过一些统计特征来描述,如Lyapunov指数、分岔图、功率谱等;4. 混沌现象具有普适性,可以在不同的领域中观察到。
一、实验目的1. 了解混沌现象的基本概念和特性。
2. 掌握混沌系统实验的基本方法和步骤。
3. 通过实验观察混沌现象,验证混沌系统的基本特性。
4. 理解混沌现象在实际应用中的意义。
二、实验原理混沌现象是自然界和人类社会普遍存在的一种复杂现象,具有以下基本特性:1. 敏感性:初始条件的微小差异会导致系统行为的巨大差异。
2. 无序性:混沌系统表现出复杂、不规则的行为,难以预测。
3. 非线性:混沌系统内部存在非线性相互作用,导致系统行为复杂。
4. 吸引子:混沌系统最终会收敛到一个或多个吸引子上,形成稳定的动态行为。
本实验主要研究一个典型的混沌系统——洛伦茨系统,其数学模型如下:\[\begin{cases}\frac{dx}{dt} = \sigma(y - x) \\\frac{dy}{dt} = x(\rho - z) - y \\\frac{dz}{dt} = xy - \beta z\end{cases}\]其中,\(x\)、\(y\)、\(z\) 分别代表洛伦茨系统的三个状态变量,\(\sigma\)、\(\rho\)、\(\beta\) 为系统参数。
三、实验仪器与设备1. 混沌系统实验仪2. 数字示波器3. 计算机及数据采集软件四、实验步骤1. 打开混沌系统实验仪,连接好实验仪器。
2. 设置洛伦茨系统的参数,包括 \(\sigma\)、\(\rho\)、\(\beta\)。
3. 通过实验仪观察洛伦茨系统的动态行为,并记录实验数据。
4. 使用数字示波器观察洛伦茨系统的相图和时序图。
5. 使用数据采集软件记录洛伦茨系统的状态变量随时间的变化曲线。
6. 分析实验数据,验证混沌系统的基本特性。
五、实验结果与分析1. 当 \(\sigma = 10\)、\(\rho = 28\)、\(\beta = 8/3\) 时,洛伦茨系统呈现出典型的混沌现象。
从时序图可以看出,系统状态变量 \(x\)、\(y\)、\(z\) 随时间的变化呈现出无规则、复杂的振荡行为。
量子力学中的混沌现象探究量子力学是当代物理学中最具有影响力和颠覆性的学科之一。
它分析微观粒子的行为,探究物质和能量之间的相互作用关系。
作为一门探究物质世界本质的科学,量子力学被称为“科学的终极边界”,涵盖了众多神秘、奇特和深奥的现象。
其中,混沌现象是量子力学当中的重要组成部分,对我们对于理解物质微观世界的本质有着重要的意义。
本文将着重探究量子力学中的混沌现象,从宏观和微观两个层面分析其特性和本质。
一、量子混沌的概念与特征混沌现象,指的是具有极度复杂性和难以预测性的现象。
在物理学中,混沌现象是指连续系统和离散系统中因参数变化而产生的复杂不规则运动。
在传统经典力学中,混沌现象已经得到了广泛的研究和应用。
而在现代量子力学中,混沌现象更为丰富和神秘。
量子混沌是指在量子系统中存在着复杂性和不可预测性的现象。
与经典混沌不同的是,量子混沌并不是因为参数的微小变化而产生的,而是由于量子力学的本质所产生的。
在量子混沌中,实验结果与理论预测之间存在较大的差异,无法进行精确的预测和控制,同时在小量程上也呈现出随机性和不确定性。
量子混沌的特征主要表现在以下几个方面:1.混沌性质。
在量子系统中,当系统中包含了多个能量级别时,这些能量级别之间会相互耦合,导致能谱的结构复杂、分布不规则,具有混沌性质。
2. 熵增特性。
在经典力学中,混沌现象会造成物理系统的熵增,而在量子系统中,这种熵增会反映在量子系统的量子相干度上。
3. 分数阶关联。
量子系统中存在着一类分形结构,它们的关联性表现出分数阶关联,这种关联具有自相似性和不可回复性。
二、量子混沌的物理基础量子混沌的出现主要是因为量子力学基本假设的存在。
量子力学的基本假设是波粒二象性和测不准性原理,这些假设决定了量子系统的随机性和不确定性。
波粒二象性是指微观粒子既有粒子的特性又有波的特性,具有粒子和波的双重属性。
这种特殊的属性导致了量子系统的态空间具有高维的结构。
在复杂的能量谱中,波函数随时间的变化会产生复杂的运动,导致能量分布的复杂性和分布的不规则性。
实验二十九混沌现象研究长期以来,人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动有一个完美确定的解析解。
但是自然界在相当多情况下,非线性现象却起着很大的作用。
1963年美国气象学家Lorenz在分析天气预报模型时,首先发现空气动力学中的混沌现象,该现象只能用非线性动力学来解释。
于是,1975年混沌作为一个新的科学名词首次出现在科学文献中。
从此,非线性动力学迅速发展,并成为有丰富内容的研究领域。
该学科涉及非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。
混沌通常相应于不规则或非周期性,这是由非线性系统本质产生的。
本实验将引导学生自己建立一个非线性电路,该电路包括有源非线性负阻、LC振荡器和RC移相器三部分;采用物理实验方法研究LC振荡器产生的正弦波与经过RC移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象;测量非线性单元电路的电流—电压特性,从而对非线性电路及混沌现象有一深刻了解;学会自己制作和测量一个实用带铁磁材料介质的电感器以及测量非线性器件伏安特性的方法。
【实验原理】1、非线性电路与非线性动力学实验电路如图30-1所示,图30-1中只有一个非线性元件R,它是一个有源非线性负阻器件。
电感器L和电容器C2组成一个损耗可以忽略的谐振回路;可变电阻R0和电容器C1串联将振荡器产生的正弦信号移相输出。
本实验所用的非线性元件R是一个五段分段线性元件。
图30-2所示的是该电阻的伏安特性曲线,可以看出加在此非线性元件上电压与通过它的电流极性是相反的。
由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。
C2R0R C1L图29-2 非线性元件伏安特性图29-1 非线性电路原理图V(R)图30-1电路的非线性动力学方程为:C 1dtdU C 1=G(U C2-U C1)-gU C1 C 2dt dU C 2=G(U C1-U C2)+i L (30-1) L dtdiL =-U C2 式中,U C1、U C2是C 1、、C 2上的电压,iL 是电感L 上的电流,G=1/R 0是电导,在图5中,g为U 的函数,如果R 是线性的,g 是常数,电路就是一般的振荡电路,得到的解是正弦函数,电阻R 0的作用是调节C 1和、C 2的位相差,把C 1和C 2两端的电压分别输入到示波器的x ,y 轴,则显示的图形是椭圆。
如果R 是非线性的,会看到什么现象呢?电路中的R 是非线性元件,它的伏安特性如图4所示,是一个分端线性的电阻,整体呈现出非线性。
gU C1是一个分段线性函数。
由于g 总体是非线性函数,三元非线性方程组(1)没有解析解。
若用计算机编程进行数据计算,当取适当电路参数时,可在显示屏上观察到模拟实验的混沌现象[见参考资料(6)]。
除了计算机数学模拟方法之外,更直接的方法是用示波器来观察混沌现象,实验电路如图5所示,图5中,非线性电阻是电路的关键,它是通过一个双运算放大器和六个电阻组合来实现的。
电路中,LC 并联构成振荡电路,R 0的作用是分相,使J1和J2两处输入示波器的信号产生位相差,可得到x,y 两个信号的合成图形,双运放LF353的前级和后级正、负反馈同时存在,正反馈的强弱与比值R 3/R 0,R 6/R 0有关,负反馈的强弱与比值R 2/R 1,R 5/R 5有关。
当正反馈大于负反馈时,振荡电路才能维持振荡。
若调节R 0,正反馈就发生变化,LF353处于振荡状态,表现出非线性,从C ,D 两点看,LF353与六个电阻等效一个非线性电阻,它的伏安特性大致如图30-4所示。
2、有源非线性负阻元件的实现图29-4 双运放非线性元件的伏安特性图29-3 有源非线性器件R5R6有源非线性负阻元件实现的方法有多种,这里使用的是一种较简单的电路采用两个运算放大器(一个双运放LF353)和六个配制电阻来实现,其电路如图3所示,它的伏安特性曲线如图4所示,实验所要研究的是该非线性元件对整个电路的影响,而非线性负阻元件的作用是使振动周期产生分岔和混沌等一系列非线性现象。
实际非线性混沌实验电路如图30-5所示3、名词解释本名词解释引自参考资料2中的附录3 “简明词汇”。
这些定义是描述性的,并非是标准数学定义,但有助于初学者对这些词汇的理解。
这些词汇定义多数是按相空间作出的。
分岔:在一族系统中,当一个参数值达到某一临界值以上时,系统长期行为的一个突然变化。
混沌:①表征一个动力系统的特征,在该系统中大多数轨道显示敏感依赖性,即完全混沌。
②有限混沌;表征一个动力系统的特征,在该系统中某些特殊轨道是非周期的,但大多数轨道是周期或准周期的。
【实验仪器】实验用仪器如图6所示。
非线性电路混沌实验仪由四位半电压表(量程0~19.999V ,分辩率1mV )、-15V~0~+15V 稳压电源和非线性电路混沌实验线路板三部分组成。
观察倍周期分岔和混沌现象用双踪示波器。
【实验内容】一、必做内容1、测量有源非线性电阻的伏安特性并画出伏安特性图(1)由于非线性电阻是含源的,测量时不用电源,用电阻箱调节,伏安表图29-5 非线性电路混沌实验电路R6R5J 2(CH 2)J 1(CH 1)L并联在非线性电阻两端,再和电阻箱串联在一起构成回路。
(2) 尽量多测数据点。
图29-6 实验装置2、倍周期现象、周期性窗口、单吸引子和双吸引子的观察、记录和描述 将电容C 1和C 2上的电压输入到示波器的X ,Y 轴,先把R 0调到最小,示波器上可以观察到一条直线,调节R 0,直线变成椭圆,到某一位置,图形缩成一点。
增大示波器的倍率,反向微调R 0,可见曲线作倍周期变化,曲线由一周期增为二周期,由二周期增为四周期……直至一系列难以计数的无首尾的环状曲线,这是一个单涡旋吸引子集,再细微调节R 0,单吸引子突然变成了双吸引子,只见环状曲线在两个向外涡旋的吸引子之间不断填充与跳跃,这就是混沌研究文献中所描述的 “蝴蝶”图象,也是一种奇怪吸引子,它的特点是整体上的稳定性和局域上的不稳定性同时存在。
利用这个电路,还可以观察到周期性窗口,仔细调节R 0,有时原先的混沌吸引子不是倍周期变化,却突然出现了一个三周期图象,再微调R 0,又出现混沌吸引子,这一现象称为出现了周期性窗口。
混沌现象的另一个特征是对于初值的敏感性。
观察并记录不同倍周期时UC 1--t 图和R 0的值。
二、选做内容测量一个铁氧体电感器的电感量,观测倍周期分岔和混沌现象。
1、按图5所示电路接线。
其中电感器L 由实验者用漆包铜线手工缠绕。
可在线框上绕75—85圈,然后装上铁氧体磁芯,并把引出漆包线端点上的绝缘漆用刀片刮去,使两端点导电性能良好。
也可以用仪器附带铁氧体电感器。
2、串联谐振法测电感器电感量。
把自制电感器、电阻箱(取30.00Ω)串联,并与低频信号发生器相接。
用示波器测量电阻两端的电压,调节低频信号发生器正弦波频率,使电阻两端电压达到最大值。
同时,测量通过电阻的电流值I 。
要求达到I=5mA(有效值)时,测量电感器的电感量实验步骤1、倍周期分岔和混沌现象的观测及相图描绘1.1、按图5接好实验面板图,将方程(1)中的1/G即RV1+RV2值放到较大某值,这时示波器出现李萨如图,如图7-a所示,用扫描档观测为二个具有一定相移(相位差)的正弦波。
1.2、逐步减小1/G值,开始出现二个“分列”的环图,出现了分岔现象,即由原来1倍周期变为2倍周期,示波器上显示李萨如图,如图7-b所示。
1.3、继续减小1/G值,出现4倍周期(如图7-c所示)、8倍周期、16倍周期与阵发混沌交替现象,阵发混沌见图7-d。
1.4、再减小1/G值,出现了3倍周期,如图7-e所示,图象十分清楚稳定。
根据Yorke的著名论断“周期3意味着混沌”,说明电路即将出现混沌。
1.5、继续减小1/G,则出现单个吸引子,如图7-f 所示。
1.6、再减小1/G,出现双吸引子,如图7-g所示。
2、电感量与工作电流的关系由于在本实验中制作线圈时使用了磁芯,因而线圈的电感对电流的变化非常明显,以下测量到的数据可以很清楚地说明这一点,但由于本实验对混沌现象只用于定性半定量的观察,因而对实验影响并不大。
3、测量电感L特性的方法CH2测量R两端电压。
保持信号发生器输出电压不变,调节频率,当CH2测得的电压最大时,RLC串联电路达到谐振。
CH2L C RCH1图30-8 测量电感的电路电感谐振时有ωL=1/ωC f0=1/2πLCL =1/4π2Cf 20 U R =U CH2/22,回路中电流的有效值I=UR/R其中f 0为谐振频率,UCH2表示CH2波形的峰-峰电压,UR 表示电阻R 两端输出的电压。
测量的实验数据记录表如表1所示表1 电感L 随电流I 变化的数据表4、有源非线性负阻元件的伏安特性双运算放大器中2个对称放大器各自的配置电阻相差100倍,这就使得2个放大器输出电流的总和,在不同的工作电压段,输出总电流随电压变化关系不相同(其中一个放大器达到电流饱和,另一个尚未饱和),因而出现了非线性的伏安特性。
测量结果如表2,实验电路如图11所示。
图29-9 有源非线性负阻元件伏安特性原理图5、有源非线性电路的伏安特性曲线测量有源非线性负阻元件一般满足“蔡氏电路”的特性曲线。
实验中,将电路的LC 振荡部分与非线性电阻直接断开,图8的伏特表用来测量非线性元件两端的电压。
由于非线性电阻是有源的,因此回路中始终有电流流过,R 使用的是电阻箱,其作用是改变非线性元件的对外输出。
使用电阻箱可以得到很精确的电阻,尤其可以对电阻值做微小的改变,因而微小地改变输出。
R ’R ’有源非线性负阻(接通电源的双运放)R 为外接电阻箱实验测得数据记录见表2(仅供参考):表2 非线性电路伏安特性思考题1、实验中需自制铁氧体为介质的电感器,该电感器的电感量与哪些因素有关?此电感量可用哪些方法测量?2、非线性负阻电路(元件),在本实验中的作用是什么?3、为什么要采用RC移相器,并且用相图来观测倍周期分岔等现象?如果不用移相器,可用哪些仪器或方法?4、通过做本实验请阐述倍周期分岔、混沌、奇怪吸引子等概念的物理含义。