典型金属的晶体结构资料
- 格式:ppt
- 大小:3.50 MB
- 文档页数:13
常见纯金属的晶格类型
常见金属晶体的晶格类型有:(1)正方晶系;(2)单斜晶系,包括等轴晶系和面心立方晶系;
(3)四方晶系,即一组四个角为120°的平行四边形晶胞。
纯金属中,按照晶胞的大小分为大、中、小三种晶粒尺寸;按照晶体结构可以分为等轴晶系、面心立方晶系、六方晶系、四方晶系、八面体晶系等几种晶格类型。
在单斜晶系中,因为每条棱都是相互垂直的,所以一个晶胞中只能出现两个晶面。
而六方晶系里,由于每条棱都垂直,所以同样一个晶胞中会有6个晶面。
正方晶系中最主要的晶体结构是立方晶胞。
金属材料的晶体结构及其性质金属材料是指由金属元素或合金元素组成的材料,具有优良的导电性能、塑性和韧性,常用于各种工业领域。
而这些特性和性质的背后,与金属材料的晶体结构密不可分。
一、晶体结构晶体结构是指原子在立方、六方、单斜、正交等几何形状中有序排列而形成的三维周期性结构,它决定了金属材料的物理、化学性质。
在实践应用中,常见的金属晶体有面心立方晶体、体心立方晶体、六方密堆晶体等。
1.面心立方晶体面心立方晶体是金属晶体中最常见的结构类型之一,其晶胞中堆积着许多等体积的球形离子,其排列成为面心立方体结构。
面心立方晶体结构中相邻的原子之间的键长为1.28A,原子之间有12个近邻,它的密度较大,但这种密堆积结构存在一定的缺陷,因为它的球形离子之间的间距较小,容易发生塌陷,从而导致材料失去稳定性。
2. 体心立方晶体体心立方晶体是一种另外一种常见的金属晶体结构,其晶胞中有一个球形原子居于体心,被八个等距的球形原子包围。
体心立方晶体结构中相邻原子间的键长为2.06A,与面心立方晶体相比,原子之间的距离较远,原子间的紧密程度相对较低,从而具有较好的稳定性。
由于其晶体结构封闭、稳定,使得体心立方晶体在许多工业领域得到广泛的应用。
3. 六方密堆晶体六方密堆结构,又称密堆六方晶体结构,指的是在轴向上紧密堆积的一种晶胞结构。
在这种结构中,每个原子有12个近邻,六个处于同一层,三个分别居于每个上下相邻层中。
其中除轴向STC键长为2.88A之外,其它键长相等且约为2.49A。
这种类型的晶体结构出现在一些金属中,如石墨和锆。
四、性质晶体结构对金属材料的物理、化学性质有着重要影响。
金属的结构特性决定了它们的多种性质,如导电性能、塑性、热膨胀系数等。
1.导电性金属材料的导电性是由其结晶中的自由电子导致的,而这些自由电子存在于金属晶体结构的价电子带或导带中。
当电场作用在金属晶体中时,导电性能表现为传导电流的能力。
一般地,面心立方晶体结构的金属材料具有更好的导电性能。
金属的晶体结构介绍
一基本概念
固体物质按原子排列的特征分为:
晶体: 原子排列有序,规则,固定熔点,各项异性。
非晶体:原子排列无序,不规则,无固定熔点,各项同性。
如: 金属、合金,金刚石—晶体玻璃,松香、沥青—非晶体
晶格: 原子看成一个点,把这些点用线连成空间格子。
结点: 晶格中每个点。
晶胞: 晶格中最小单元,能代表整个晶格特征。
晶面: 各个方位的原子平面。
晶格常数: 晶胞中各棱边的长度(及夹角), 以A(1A=10-8cm)度量
金属晶体结构的主要区别在于晶格类型,晶格常数。
二常见晶格类型
1 体心立方晶格:Cr 、W、α-Fe、Mo 、V等,特点:强度大,塑性较好,原子数:1/8 X8 +1=2,20多种
2 面心立方晶格: Cu、Ag、Au、Ni、Al、Pb、γ- Fe塑性好。
原子数:4,20多种
3 密排六方晶格:Mg、Zn、Be、β-Cr α-Ti Cd(镉),纯铁在室温高压(130x108N/M2)成ε-Fe,原子数=1/6 x12+1/2 x2+3=6 , 30多种三多晶结构
单晶体:晶体内部的晶格方位完全一致。
多晶体:许多晶粒组成的晶体结构,各项同性。
晶粒:外形不规则而内部晶各方位一致的小晶体。
晶界:晶粒之间的界面。
金属晶体的常见结构
金属晶体的常见结构有以下几种:
1. 面心立方(FCC)结构:在这种结构中,金属原子分别位于正方形面的角点和中心,以及正方形面的中心。
每个原子都与12个邻近原子相接触,形成一个紧密堆积的结构。
典型的例子是铜、铝和金。
2. 体心立方(BCC)结构:在这种结构中,金属原子分别位于正方体的角点和正方体的中心。
每个原子都与8个邻近原子相接触,形成一个比较紧密的结构。
铁和钨是常见的具有BCC结构的金属。
3. 密排六方(HCP)结构:在这种结构中,金属原子以一定的方式排列,形成六边形的密排层,其中每个层的原子位于前一层原子的空隙上。
这些层之间存在垂直堆叠,形成一个紧密堆积的结构。
典型的例子是钛和锆。
除了以上三种常见的金属晶体结构外,还有其他特殊的结构,如体心立方密堆积(BCC HCP)和面心立方密堆积(FCC HCP)等。
这些不同的结构对于金属的性质和行为有着重要的影响。
1。
原创不容易,【关注】店铺,不迷路!晶体系统,空间晶格,金属常见晶体结构图今天边肖整理总结了关于金属的晶系、空间晶格、常见晶体结构的知识点,方便大家复习这些知识点~~~7微晶系统十四个空间格及其单位格金属的常见晶体结构三种典型金属结构的晶体特性(晶胞中的原子序数、晶格常数和原子半径、密度和配位数)几种常见金属的晶格类型;面心立方:铝、铜、-铁;体心立方:Cr,Mo,Cs,-Fe,-Fe;密集的六边形:锌、镁。
概念:配位数CN:晶体结构中相互距离最近且等距的原子数量。
配位多面体:在晶体结构中,对于离子晶体结构,正离子和负离子中心连线形成的多面体成为配位多面体。
对于金属晶体结构来说,是由围绕着院子的配位原子中心连接而成的多面体。
致密度:晶体结构中原子体积占总体积的百分比,也称为空间利用率。
球体空间利用率(原子体积与晶胞体积之比)=密实度系数=体积密度=密实度K=mv/V其中:n-单元中的原子数目;v——原子的体积;V-单位细胞体积。
催化裂化单元电池原子密堆面和密堆方向:密堆面{111}密堆方向:110。
原子堆积模式:原子平面的间隙由三个原子组成,原子排列紧密。
原子堆积模式是AB CBC………。
间隙有两种:四面体间隙和八面体间隙。
八面体隙位于晶胞的中心和每条边的中点,被6个面心型原子包围,隙数为4。
面心立方晶格的四面体间隙由一个顶点原子和三个顶点原子组成被面心型原子包围,有8个间隙。
四面体间隙是正四面体间隙,间隙半径是顶点原子到间隙中心的距离减去原子半径。
原子中心到间隙中心的距离为3a/4,因此间隙半径为3a/4-2a/40.08a 面心立方晶格的八面体隙由六个面心组成,属于正八面体隙。
间隙半径为顶点原子到间隙中心的距离减去原子半径,原子中心到间隙中心的距离均为a/2,原子半径为2a/4,因此间隙半径为:A/2-2A/40.146a。
基底细胞癌单位细胞密集表面:{110},密集方向:1116.间隙:八面体和四面体间隙八面体间隙位于晶胞中每个面的中心和每个边的中心,数量为6。
金属间化合物的晶体结构金属间化合物是由两种或多种金属元素组成的化合物,具有特殊的晶体结构。
这些化合物通常具有高硬度、高熔点和良好的导电性等特性,因此广泛应用于材料科学和工程领域。
本文将介绍金属间化合物的晶体结构和其形成原因。
1.铜金属间化合物:铜金属间化合物的典型晶体结构是CuAl2或CuZn5等。
在这些化合物中,铜原子通常占据体心或面心位置,形成一个紧密堆积的结构。
在这种结构中,铜原子与其他金属原子之间有共价键和金属键的形成,使得化合物具有高强度和硬度。
2.镍基金属间化合物:镍基金属间化合物通常具有复杂的晶体结构,如Al3Ni2、Ni3Al等。
这些化合物中,镍和铝原子按照一定比例堆积在一起,形成由金属键和共价键组成的三维网络。
这种结构使得镍基金属间化合物具有高熔点、高硬度和良好的抗腐蚀性能。
3.钛金属间化合物:钛金属间化合物的晶体结构种类较多,常见的有TiAl、TiNi等。
在这些化合物中,钛原子和其他金属原子形成各种晶格结构,如体心立方、面心立方等。
这些化合物具有高硬度、高熔点、较低密度和良好的抗腐蚀性能。
4.铁基金属间化合物:铁基金属间化合物的晶体结构也较为复杂,常见的有Fe3Al、Fe2Ti等。
这些化合物中,铁原子和其他金属原子按照一定比例排列在一起,形成复杂的晶格结构。
这种结构使得铁基金属间化合物具有高硬度、高熔点和良好的热稳定性。
1.金属元素之间的原子半径差异:金属原子的半径决定了化合物的晶格结构。
如果两种金属元素的原子半径差异较小,它们可能会形成固溶体,而不会形成金属间化合物。
然而,如果差异较大,它们通常会形成金属间化合物。
2.金属元素之间的电负性差异:金属元素之间的电负性差异也会影响金属间化合物的形成。
如果两种金属元素的电负性相差较大,它们通常会形成金属间化合物,而不是固溶体。
3.金属元素的原子堆积方式:金属原子的堆积方式也影响着金属间化合物的晶体结构。
不同的原子堆积方式会导致不同的晶体结构。
常见金属矿物特征金属矿物结晶特征1.黄铁矿(Pyrite)Fe[S2]【晶体结构】等轴晶系;【形态】常见完好晶形,呈立方体、五角十二面体或八面体}。
在立方体晶面上常能见到3组相互垂直的晶面条纹,集合体常成致密块状、分散粒状及结核状等【物理性质】浅铜黄色,表面带有黄褐的锖色;条痕绿黑色;强金属光泽,不透明。
无解理;断口参差状。
硬度6~6.5。
相对密度4.9~5.2。
性脆。
2.黄铜矿(Chalcopyrite) CuFeS2【晶体结构】四方晶系;。
【形态】通常为致密块状或分散粒状集合体(图L-7)。
偶而出现隐晶质肾状形态。
晶体常见单形有四方四面体、四方双锥,但单晶较少见。
【物理性质】颜色为铜黄色,但往往带有暗黄或斑状锖色,条痕绿黑色,金属光泽,不透明,解理不发育,硬度3~4,相对密度4.1~4.3,性脆,能导电。
3.方铅矿(Galena)PbS【晶体结构】等轴晶系;【形态】最常呈立方体,还可出现八面体、菱形十二面体,并有时以八面体与立方体聚形出现。
也常见成粒状、致密块状集合体。
【物理性质】铅灰色;条痕灰黑色,强金属光泽,解理平行完全,硬度2~3,相对密度74~76。
具弱导电性。
【鉴定特征】铅灰色,强金属光泽,立方体完全解理,相对密度大,硬度小(比辉钼矿硬度大,晶形好,不染手)。
4.闪锌矿(Sphalerite) ZnS【晶体结构】等轴晶系;【形态】通常呈粒状集合体,有时呈肾状、葡萄状,反映出胶体成因的特征。
单晶体常呈四面体(图L-5),正形和负形的晶面上常见聚形纹。
有时呈菱形十二面体(通常为低温下形成)。
偶见以{111}为接合面成双晶,双晶轴平行[111],有时成聚片双晶。
闪锌矿的形态具有标型意义:一般地,高温条件下形成的闪锌矿主要是呈正负四面体,并见立方体,中低温下则以菱形十二面体为主【物理性质】Fe的含量直接影响闪锌矿的颜色、条痕、光泽和透明度。
当含Fe量增多时,颜色为浅黄、棕褐直至黑色(铁闪锌矿);条痕由白色至褐色;光泽由树脂光泽至半金属光泽;透明至半透明。
金属中常见的晶体结构金属,咱们生活中常见的材料,像是铁、铝、铜什么的,大家肯定都耳熟能详。
但是你知道这些金属的内部结构吗?没错,就是它们的晶体结构!嘿,别急,今天咱们就来聊聊这些有趣的东西。
听起来可能有点复杂,但其实没那么难。
想象一下,一个金属就像一个大派对,里面的人(原子)们都在按照某种特定的舞步来跳舞,形成各种有趣的图案。
咱们得说说面心立方结构,简称FCC。
这个名字听起来高深莫测,其实就是在说这些金属的原子排列得特别紧凑,像是在大场面上跳舞一样,节奏感十足。
比如说,金属铜、铝和黄金,它们都是这个大家庭的一员。
你想啊,面对面地站着,大家都紧紧围成一圈,互相碰撞又不掉队,这种感觉是不是特别温暖?这也是为什么这些金属通常比较坚固、耐用。
就像你身边的朋友,靠谱得很,一般情况下不会出什么差错。
我们聊聊体心立方结构,也就是BCC。
这个结构有点不同,像是一个不太爱社交的人,中心的原子就独自一人待在中间,周围的原子则是四面八方地围绕着他。
比如说铁就是这样的家伙。
要说BCC的金属,其实它们的排列稍微松散一点,像是那种一群朋友一起聚会,结果有人偏偏要去吃炸鸡,结果有点拉开了距离。
尽管这样,它们依然坚固,但弹性和塑性就稍微逊色一些。
不过,你要是碰到铁这个家伙,千万别小看它哦,虽然看起来有点“孤僻”,但一到关键时刻,它的强度可是数一数二的。
然后就是六方密堆积结构,简称HCP。
这个结构就像是一个立体的蜂窝,原子们在空间中安排得像个大方阵。
镁和钴就是这个派对里的明星,大家彼此之间的距离掌握得恰到好处,感觉特别和谐,简直就是“齐心协力”的最佳体现。
HCP金属虽然不像FCC那么普遍,但它们各自都有独特的魅力。
就像那种低调奢华的朋友,平时不太张扬,但关键时刻总能给你带来惊喜。
不得不提一下金属的变形能力。
金属在受力的时候,就像一个柔韧的橡皮筋,能适当伸展但又不会轻易断裂。
FCC金属在这方面表现得尤为出色,就像那种能从容应对各种挑战的健身达人,不管是什么压力,它们都能稳稳地应对。