数控车床机械部分分析
- 格式:doc
- 大小:524.00 KB
- 文档页数:26
●数控车床主要由哪几个部分构成?车床主机车床主机是数控车床的机械部件,主要包括床身、主轴箱、刀架、尾座、进给传动机构等。
数控系统伺服驱动系统由伺服驱动电路和驱动装置两大部分组成。
辅助装置如液压、气动装置,冷却、照明、润滑、防护和排屑装置等。
机外编程器机外编程器是在普通的计算机上安装一套编程软件,使用这套编程软件以及相应的后置处理软件,就可以生成加工程序。
●数控机床的进给传动齿轮为什么要消除齿侧间隙,圆柱齿轮传动消除间隙的方法齿侧间隙会造成进给系统的反向动作落后于数控系统指令要求,形成跟随误差甚至是轮廓误差。
l 对闭环系统来说,齿侧间隙也会影响系统的稳定性。
因此,齿轮传动副常采用各种消除侧隙的措施,以尽量减小齿轮侧隙。
偏心轴套调整法锥度齿轮调整法双片齿轮错齿调整法●用数学式子说明逐点比较法加工的原理(直线)(在第一象限画图)这个是不是把PPT里面的那个图,加上判别式,再说明一下就可以了●位置检测装置在数控机床中的作用、其分类及各自的特点作用: 检测位移和速度,并发出反馈信号和数控装置发出的指令信号相比较,构成闭环、半闭环控制。
分类:数字式测量和模拟量测量数字式测量特点:1. 被测的量转换为脉冲个数,便于显示和处理;2.测量精度取决于测量单位,和量程基本无关;3. 测量装置比较简单,脉冲信号抗干扰能力较强。
模拟量测量特点:1.直接测量被测的量,无需变换;2.在小量程内实现较高精度的测量,技术成熟第二套:●试述滚珠丝杆螺母副的优点和缺点是什么传动效率高,摩擦损失小传动效率η=0.92~0.96,可实现高速运动。
运动平稳无爬行摩擦阻力小,动、静摩擦系数之差极小,传动精度高.反向时无空程滚珠丝杆副经预紧后,可消除轴向间隙。
磨损小精度保持性好,使用寿命长。
具有运动的可逆性丝杆和螺母均可作主动件或从动件。
由于结构复杂,加工精度和表面质量要求高,故制造成本高。
不能自锁,特别是垂直安装时,会因自重而自动下降。
必须加制动装置。
数控车床结构范文数控车床是一种使用计算机控制系统的机床,通过预先编程的方式,能够自动进行加工,并且实现极高的准确度和效率。
数控车床的结构主要包括机床床身、主轴箱、进给箱和控制系统等部分。
一、机床床身数控车床的床身是整个机床的基础,也是承载所有组件和零部件的主要结构。
床身通常由铸铁或焊接钢板制成,具有足够的刚性和稳定性,能够承受加工过程中的各种力和震动。
床身上通常有V型或者平坦的导轨,用于安装和导向主轴箱和进给箱。
二、主轴箱主轴箱是数控车床上的一个重要部件,主要用于驱动刀具和工件的相对运动。
主轴箱通常由主轴驱动装置、主轴箱壳体、主轴箱传动装置和进给机构等组成。
主轴箱壳体上安装有主轴和主轴伺服电机,主轴通过传动装置和主轴驱动装置相连,用于旋转刀具。
进给机构通常是通过主轴箱内部的螺杆、滑块和导轨等部件来实现刀具和工件的进给运动。
三、进给箱进给箱是数控车床的另一个重要部件,用于控制刀具和工件在加工过程中的进给速度和方向。
进给箱通常由进给伺服电机、进给箱壳体、进给传动装置和进给机构等部分组成。
进给伺服电机通过传动装置与进给机构相连,实现刀具和工件的进给运动。
进给箱壳体上通常装有进给选择器,用户可以通过选择器设定进给模式、进给速度和进给方向等参数。
四、控制系统控制系统是数控车床上最为重要的部分,用于实时控制和监控机床的加工过程。
控制系统通常包括机床控制器、数控软件和人机界面等部分。
机床控制器与数控软件相连,通过预先编程的方式控制数控车床的各种运动和加工参数。
人机界面通常是通过电脑显示屏和键盘等设备,用户可以通过界面输入指令、监控加工过程和调整参数等。
总结:数控车床的结构包括机床床身、主轴箱、进给箱和控制系统等部分。
机床床身是整个机床的基础,具有足够的刚性和稳定性。
主轴箱用于驱动刀具和工件的相对运动,进给箱用于控制刀具和工件的进给速度和方向。
控制系统是整个数控车床的大脑,通过预先编程的方式实现加工过程的控制和监控。
简述数控车床结构数控车床是一种高精度、高效率的机床,它的结构设计和工作原理都非常复杂。
本文主要介绍数控车床的结构和组成部分,以及每个部分的功能和作用。
一、数控车床的结构数控车床的整体结构可以分为床身、主轴箱、进给箱、刀架、工作台等几个部分。
下面分别介绍每个部分的结构和作用。
1.床身床身是数控车床最基本的部分,它承载整个机床的重量和力量。
床身通常由铸铁或钢板制成,具有高强度和稳定性。
床身上安装了主轴箱、进给箱、刀架和工作台等组件。
2.主轴箱主轴箱是数控车床的核心部分,它包括主轴、主轴马达、主轴箱壳体、主轴前轴承和后轴承等组件。
主轴箱的主要作用是驱动工件旋转,完成车削加工。
3.进给箱进给箱是数控车床的另一个重要部分,它包括进给马达、进给螺杆、进给箱壳体、进给前轴承和后轴承等组件。
进给箱的主要作用是控制工件的进给速度和方向,完成车削加工。
4.刀架刀架是数控车床的切削部分,它包括主轴箱和进给箱中的伺服电机、刀架壳体、刀架座、刀杆、刀片等组件。
刀架的主要作用是控制刀具的位置和方向,完成车削加工。
5.工作台工作台是数控车床的工件支撑部分,它包括工作台床身、工件卡盘、工件支撑、工作台传动等组件。
工作台的主要作用是固定工件,并控制工件的旋转和进给。
二、数控车床的组成部分数控车床的组成部分主要包括数控系统、伺服系统、机械传动系统和液压系统等。
1.数控系统数控系统是数控车床的核心部分,它控制着整个机床的运动和加工过程。
数控系统包括硬件和软件两部分,硬件包括主板、数控器、显示屏等组件,软件包括编程软件、操作软件等组件。
数控系统可以实现自动化加工,提高生产效率和产品质量。
2.伺服系统伺服系统是数控车床的关键部分,它控制着刀架和进给箱的运动和位置。
伺服系统包括伺服电机、伺服驱动器、编码器等组件,它们通过信号传递和反馈控制实现精确的位置控制。
3.机械传动系统机械传动系统是数控车床的重要部分,它负责将电能转换成机械能,驱动主轴和进给箱的运动。
大型数控车床床身结构的有限元分析数控车床是一种高精度、高速、高自动化的机械设备。
其关键部分是床身结构,在高精度切削加工过程中承担着不小的负荷,因此对于其结构的优化设计至关重要。
本文将通过有限元分析对数控车床床身结构的强度和刚度进行优化设计。
一、有限元分析的基本概念有限元分析是求解强度、振动、热力学等问题的一种重要方法。
有限元方法将一个复杂的结构分割成有限个单元,每个单元可以看作是一个简单的结构,可以通过计算单元内各个点的力和位移,得到整个结构的力和位移的分布情况。
在有限元分析中,要首先进行预处理,包括建模、离散化和求解算法的选择等步骤。
然后进行求解过程,通过解出各个单元的刚度矩阵和外载荷矩阵,再根据边界条件组成总刚度矩阵和外载荷矩阵,最终求解结构中各点的位移和应力等参数。
最后进行后处理,对计算结果进行分析和优化。
二、建立数控车床床身的有限元模型在进行有限元分析之前,需要建立数控车床床身的有限元模型。
床身结构可以分为两部分:主床身和副床身。
主床身是床身的主要承载部分,唯一支撑和固定主轴箱和刀架;副床身是连接两端的连接体,起连接两端床身和承受工件切削力的作用。
我们分别对主床身和副床身进行静力学分析,求解其强度和刚度。
三、床身结构的静力学分析床身结构主要受到外部力荷载和自重荷载的作用。
基本的受力情况如下:1. 主轴箱在切削时产生的切向力和径向力。
2. 刀架的重量产生的自重荷载。
3. 工件在切削时产生的切向力和径向力。
由于车床的高速旋转的特殊性,其受力情况十分复杂,难以通过简单的解析法求解,因此需要运用有限元分析的方法。
四、床身结构的优化设计基于前面的有限元分析结果,我们可以得到数控车床床身的强度和刚度情况。
若发现床身结构在受到切削载荷时强度不足或刚度不够,我们可以对床身结构进行优化设计,包括优化结构形状,材料选型等方式。
例如,我们可以通过增加床身的内部加强支撑件、合理改变断面的形状、优化床身连接部位的刚性等方式,提高其整体刚度和强度。
1.2 数控机床的组成及基本工作原理一、数控机床组成数控机床由:程序、输人/输出装置、CNC单元、伺服系统、位置反馈系统、机床本体组成。
1、程序的存储介质,又称程序载体1)穿孔纸带(过时、淘汰);2)盒式磁带(过时、淘汰);3)软盘、磁盘、U盘;4)通信。
2、输人/输出装置1)对于穿孔纸带,配用光电阅读机;(过时、淘汰);2)对于盒式磁带,配用录放机;(过时、淘汰);3)对于软磁盘,配用软盘驱动器和驱动卡;4)现代数控机床,还可以通过手动方式(MDI方式);5)DNC网络通讯、RS232串口通讯。
3、CNC单元CNC单元是数控机床的核心,CNC单元由信息的输入、处理和输出三个部分组成。
CNC单元接受数字化信息,经过数控装置的控制软件和逻辑电路进行译码、插补、逻辑处理后,将各种指令信息输出给伺服系统,伺服系统驱动执行部件作进给运动。
其它的还有主运动部件的变速、换向和启停信号;选择和交换刀具的刀具指令信号,冷却、润滑的启停、工件和机床部件松开、夹紧、分度台转位等辅助指令信号等。
准备功能:G00,G01,G02,G03,辅助功能:M03,M04刀具、进给速度、主轴:T,F,S4、伺服系统由驱动器、驱动电机组成,并与机床上的执行部件和机械传动部件组成数控机床的进给系统。
它的作用是把来自数控装置的脉冲信号转换成机床移动部件的运动。
对于步进电机来说,每一个脉冲信号使电机转过一个角度,进而带动机床移动部件移动一个微小距离。
每个进给运动的执行部件都有相应的伺服驱动系统,整个机床的性能主要取决于伺服系统。
如三轴联动的机床就有三套驱动系统。
脉冲当量:每一个脉冲信号使机床移动部件移动的位移量。
常用的脉冲当量为0.001mm/脉冲。
5、位置反馈系统(检测反馈系统)伺服电动机的转角位移的反馈、数控机床执行机构(工作台)的位移反馈。
包括光栅、旋转编码器、激光测距仪、磁栅等。
(作业:让同学们网上查找反馈元件,下节课用5分钟自述所查容)反馈装置把检测结果转化为电信号反馈给数控装置,通过比较,计算实际位置与指令位置之间的偏差,并发出偏差指令控制执行部件的进给运动。
车床分析报告1. 概述车床是一种常用的金属加工机床,用于加工各种旋转对称的工件。
本文将对车床的结构、工作原理、应用领域等进行分析和介绍。
2. 结构一台典型的车床主要由以下组成部分构成:2.1 主轴主轴是车床的核心部件,它支撑和传动工件的旋转运动。
主轴通常由电机、轴承和变速装置组成,可以通过变速装置调整主轴的转速,以适应不同加工要求。
2.2 刀架刀架安装在车床的横梁上,用于安装和控制刀具。
刀架通常有两个轴向移动的自由度,即横向和纵向移动,以实现对工件的切削加工。
2.3 工作台工作台是车床上用于放置工件的平面,通常由一个旋转的工作台和一个定位的尾座组成。
工作台可以通过手动或自动控制旋转,以便对工件进行各种加工操作。
2.4 控制系统车床的控制系统用于控制和调整主轴、刀架和工作台的运动,以实现对工件的精确加工。
控制系统通常由数控系统和伺服系统组成,可以通过编程和输入指令来完成各种加工任务。
3. 工作原理车床的工作原理可以简单描述为:刀具在工件上进行切削运动,切削产生的金属屑从切削区域被刀具带走,从而实现对工件形状和尺寸的加工。
在具体的加工过程中,车床主要通过以下方式实现切削:•旋转切削:主轴带动刀具旋转,使其与工件表面接触,切削下来工件表面的金属。
•前进切削:刀架沿着工件轴向前进,使刀具相对于工件表面具有一定的进给速度,以实现对工件的切削。
•插入切削:刀架垂直向下进给,使切削刀具嵌入工件内部,实现对孔、槽等内部结构的加工。
4. 应用领域车床是一种十分常用的金属加工设备,广泛应用于以下领域:4.1 机械制造车床可以用来加工各种金属工件,包括轴、齿轮、套筒等。
在机械制造领域,车床常被用于制造各种机械零件和工具。
4.2 航空航天航空航天领域对零件的高精度要求非常高,而车床具有较高的加工精度和稳定性,因此在航空航天领域有广泛应用,如制造发动机零件、飞机结构等。
4.3 汽车制造汽车制造需要大量的金属零件,包括曲轴、凸轮轴等,这些零件通常需要通过车床进行加工和制造。
数控机床的机械结构在数控机床进展的最初阶段,其机械结构与通用机床相比没有多大的变化,只是在自动变速、刀架与工作台自动转位与手柄操作等方面作些改变。
随着数控技术的进展,考虑到它的操纵方式与使用特点,才对机床的生产率、加工精度与寿命提出了更高的要求。
数控机床的主体机构有下列特点:1)由于使用了高性能的无级变速主轴及伺服传动系统,数控机床的极限传动结构大为简化,传动链也大大缩短;2)为习惯连续的自动化加工与提高加工生产率,数控机床机械结构具有较高的静、动态刚度与阻尼精度,与较高的耐磨性,而且热变形小;3)为减小摩擦、消除传动间隙与获得更高的加工精度,更多地使用了高效传动部件,如滚珠丝杠副与滚动导轨、消隙齿轮传动副等;4)为了改善劳动条件、减少辅助时间、改善操作性、提高劳动生产率,使用了刀具自动夹紧装置、刀库与自动换刀装置及自动排屑装置等辅助装置。
根据数控机床的适用场合与机构特点,对数控机床结构因提出下列要求:一、较高的机床静、动刚度数控机床是按照数控编程或者手动输入数据方式提供的指令自动进行加工的。
由于机械结构(如机床床身、导轨、工作台、刀架与主轴箱等)的几何精度与变形产生的定位误差在加工过程中不能人为地调整与补偿,因此,务必把各处机械结构部件产生的弹性变形操纵在最小限度内,以保证所要求的加工精度与表面质量。
为了提高数控机床主轴的刚度,不但经常使用三支撑结构,而且选用钢性很好的双列短圆柱滚子轴承与角接触向心推力轴承铰接出相信忒力轴承,以减小主轴的径向与轴向变形。
为了提高机床大件的刚度,使用封闭界面的床身,并使用液力平衡减少移动部件因位置变动造成的机床变形。
为了提高机床各部件的接触刚度,增加机床的承载能力,使用刮研的方法增加单位面积上的接触点,并在结合面之间施加足够大的预加载荷,以增加接触面积。
这些措施都能有效地提高接触刚度。
为了充分发挥数控机床的高效加工能力,并能进行稳固切削,在保证静态刚度的前提下,还务必提高动态刚度。
实验一数控机床结构与典型部件解析实验地点:新厂房一、实验目的1.本实验使学生了解CKA6150数控车床布局、主轴系统、进给机构2.分析数控车床的组成、加工过程、进给运动、主运动传动关系、刀架结构的作用,使学生进一步明确数控机床的特点和用途。
二、实验要求1.了解CKA6150数控车床的布局,掌握主轴系统的工作原理和结构特点,以及各部分主要零件的作用;2.了解刀塔的换刀过程;三、实验仪器CKA6150、CK0628数控车床四、实验原理与内容本实验为认识实验,主要目的是加强学生对数控机床的基本组成、工作原理及功能部件、电子元器件、位置检测元件的感性认识。
由老师给学生作现场讲解并进行数控机床运动控制演示。
通过实物教学演示与讲解以下内容:1.知道数控机床基本组成结构。
数控机床一般由输入/输出设备、CNC装置、伺服单元、驱动装置(或执行机构)可编程控制器及电气控制装置、辅助装置、机床本体及测量装置组成,如下图所示为数控机床的组成框图。
其中除机床本体以外的部分统称为CNC系统。
2.各组成部分的作用:1)输入/输出装置输入装置的作用是将载体上的数控代码变成相应的电脉冲信号,传送并存入数控装置内,一般为键盘。
输入装置为显示器,其作用是为数控系统通过显示器为操作人员提供必要的信息,如正在编辑的程序、坐标值、报警信号等。
因此,输入/输出装置是机床数控系统和打操作人员进行信息交流、人机对话必须具备和必要的交互设备。
2)数控装置计算机数控系统的核心,接收的是输入装置送来的脉冲信号;经数控装置的系统软件或逻辑电路进行编译、运算和逻辑处理后,输出各种信号和指令,控制机床的各个部分,使其进行规定的、有序的动作。
这些控制信号中最基本的信号是经插补运算决定各坐标轴的进给速度、方向和位移指令,还有如主轴的变速、换向和启停信号,刀具的指令信号,冷却液、润滑油启停,工件和机床部件的松开、夹紧、分度工作台转位等辅助指令信号等。
它主要包括微处理器(CPU)、存储器、局部总线、外围逻辑电路以及与CNC系统其它组成部分联系的接。
数控车床的结构与工作原理数控车床是一种应用数字控制技术的现代机械加工设备,它可以高效、精准地加工各种金属材料。
数控车床结构复杂,但其工作原理的理解对于机械加工领域的工程师和技术人员来说至关重要。
本文将介绍数控车床的结构和工作原理,帮助读者更好地了解这种现代机械设备。
一、数控车床结构数控车床的结构由三个主要部分组成:数控系统、机床本体和夹具。
下面逐一介绍:1、数控系统数控系统是实现数控车床操作的核心部分,它包含了计算机、数控控制器、电机、传感器和运动控制元件等重要部件。
计算机用于编写和储存加工程序,数控控制器则根据程序来控制车床的动作,电机带动切削工具进行切削,传感器测量工件和切削工具位置坐标,而运动控制元件则负责控制各个部件的实际运动。
2、机床本体机床本体是数控车床的主要结构部件,它包括床身、主轴箱、床盘、滑板、刀塔、主轴和进给系统等核心部分。
床身是车床的主体,负责支持和固定所有其他部件;主轴箱则负责运转主轴;床盘则驱动工件与刀具之间的协作运动及其相对位置的转换;滑板则支撑沿程序指示加工切削运动轨迹的X轴和Z轴运动;刀塔则供给刀具进行切削加工;主轴是连接了主轴箱和刀具的部件,它可以按照加工程序控制转速和方向,实现不同工件的加工需求;进给系统则负责为车床提供进给运动,以完成切削加工的最终任务。
3、夹具夹具用于固定和支撑加工件,它是数控车床加工的重要辅助装置。
夹具的种类和类型根据加工件的形态和尺寸而异,目的是最大限度地满足加工过程的要求。
二、数控车床工作原理了解数控车床的工作原理,我们需要知道数控系统的四个基本步骤,包括数据输入、加工程序编写、程序校验和加工执行。
下面将逐一进行阐述:1、数据输入数据输入是指将几何图形数据和机床参数等信息输入数控系统中。
几何图形数据由CAD系统生成,包括零件轮廓线、孔位、表面形状等信息。
而机床参数则包括主轴转速、进给速度、切削力等信息。
这些数据通过U盘、网络、数码喷墨打印机等方式输入到数控系统中,成为加工指令的基础数据。
CK6136数控车床主轴部分机械设计1.主轴箱设计:主轴箱是支撑主轴的机床基础部件,它需要具备足够的刚性和稳定性。
主轴箱通常采用铸铁材料,采用箱形结构设计,以确保足够的强度和刚性。
主轴箱内部需要进行润滑油的循环,以降低摩擦和热量,提高主轴的使用寿命和稳定性。
2.主轴轴承设计:主轴轴承是支撑和固定主轴的关键部件,它需要满足高速旋转的要求,并具备足够的刚性和稳定性。
根据车床的使用要求和主轴的转速范围,可以选择不同类型的主轴轴承,如滚动轴承、滑动轴承或德国Schneeberger线性导轨轴承。
为了提高主轴的刚性和稳定性,还可以在主轴轴承上采用预拉力调节装置,以减少轴承的磨损和提高主轴的精度。
3.主轴驱动系统设计:主轴驱动系统是将动力传递给主轴的部件,常见的主轴驱动方式有皮带传动和直接驱动。
皮带传动方式可以通过调整皮带紧张度来调节主轴转速,适用于一些变速主轴车床。
直接驱动方式更加简单可靠,能够提供更高的主轴转速和更精确的加工效果。
直接驱动方式常见的有电机和主轴同轴分装,以及电机和主轴同轴集成在一起的设计。
为了确保主轴驱动的稳定性和准确性,需要采用高精度的联轴器和齿轮传动装置,以减少传动误差和振动。
此外,为了保证主轴的使用寿命和精度,还需要对主轴进行冷却和清洁。
冷却包括内部冷却和外部冷却,可以采用冷却液进行内部冷却,通过风扇或冷却器对外部进行冷却。
清洁方面可以采用集尘装置和冷却液过滤器,以确保主轴的清洁和润滑。
总之,CK6136数控车床的主轴部分机械设计是一个综合性工作,需要考虑刚性、稳定性、精度、耐用性等多方面因素。
只有通过精心的设计和优化选择,才能实现主轴的高效工作和长期可靠运行。
数控机床的结构分析:数控机床是一种高精度、高效率的自动化加工设备。
尽管数控机床价格昂贵,一次性投资巨大,但仍然为机械制造厂家所普遍采用并取得很好的经济效益,其原因在于数控机床能自动化地,高精度、高质量、高效率地解决中、小批量的加工问题。
数控技术、伺服驱动技术的发展及在机床上的应用,为数控机床的自动化、高精度、高效率提供了可能性,但要将可能性变成现实,则必须要求数控机床的机械结构具有优良的特性才能保证。
这些特性包括结构的静刚度、抗振性、热稳定性、低速运动的平稳性及运动时的摩擦特性、几何精度、传动精度等。
一、提高机床结构的静刚度机床结构的静刚度是指在切削力和其他力的作用下,机床抵抗变形的能力。
机床在加工过程中,受多种外力的作用,包括运动部件和工件的自重、切削力、驱动力、加减速时的惯性力、摩擦阻力等。
机床的各部件在这些力的作用下将产生变形,如各基础件的弯曲和扭转变形,支承构件的局部变形,固定连接面和运动啮合面的接触变形等。
这些变形都会直接或间接地引起刀具与工件之间产生相对位移,破坏刀具和工件原来所占有的正确位置,从而影响机床的加工精度和切削过程的特性,所以,提高机床的静刚度是机床结构设计的普遍要求。
数控机床为获得高效率而具有的大功率和高速度,使它所承受的各种外力负载更加恶劣,而且加工过程的自动化也使得加工误差无法由人工干预来修正和补偿,所以,数控机床的变形对加工精度的影响会更为严重。
为了保证数控机床在自动化、高效率的切削条件下获得稳定的高精度,其机械结构应具有更高的静刚度,有标准规定数控机床的刚度系数应比类似的普通机床高50 %。
1 .合理设计基础件的截面形状和尺寸,采用合理的筋板结构机床在外力的作用下,各基础件将承受弯曲和扭转载荷,其弯曲和扭转变形的大小则取决于基础件的截面抗弯和抗扭惯性矩,抗弯,抗扭惯性矩大,变形则小,刚度就高。
表5-1 列出了在截面积相同(即重量相同)时,不同截面形状和尺寸的惯性矩。
由表中数据可知:A在形状和截面积相同时,减小壁厚,加大截面轮廓尺寸,可大大增加刚度;B封闭截面的刚度远远高于不封闭截面的刚度;C圆形截面的抗扭刚度高于方形截面,抗弯刚度则低于方形截面;D矩形截面在尺寸大的方向具有很高的抗弯刚度。
因此,通过合理设计截面形状和尺寸,可大大提高基础件的结构静刚度。
图5-1 所示为日本森精机SL 系列数控车床的床身截面,床身导轨倾斜布置,改善了排屑条件,同时截面形状采用封闭式箱体结构,从而加大了床身截面的外轮廓尺寸,使该床身具有很高的抗弯、抗扭刚度。
这种倾斜布置的结构为数控车床所普遍采用。
图5-2 所示为卧式加工中心普遍采用的框式立柱结构。
从正面看,立柱截面成封闭框形,轮廓尺寸大,从而保证以高扭转刚度承受切削扭矩产生的扭转载荷。
从俯视截面看,两个立柱截面形状为矩形,矩形尺寸大的方向正是因切削力作用产生大的弯曲载荷的方向。
因而这种结构具有很高的刚度。
合理布置基础件的筋板可以提高静刚度,表5-2 给出了立柱的几种不同筋板布置时的相对静刚度。
从表中可知:A纵向筋板能提高立柱的抗弯和抗扭刚度,提高抗扭刚度效果更为显著;B对角线斜置筋板和对角线交叉筋板对提高立柱的刚度更为有效。
表5-2 不同筋板布置时立柱的静刚度对比图5-3 所示为两种立式加工中心立柱的横截面图。
由于该立柱承受弯扭组合载荷,故截面采用接近正方形的封闭外形,为了进一步提高抗弯、抗扭刚度,内部采用了斜方双层壁(相当于斜纵向筋板)和对角线交叉筋板。
所以,这两种立柱都有很高的抗弯、抗扭刚度。
(a)XK-716 型立式加工中心;(b)STAMA MCll8 型立式加工中心图5-3 立柱横截面合理布置筋板还可提高基础件的局部刚度,图5-4 所示为日本三井精机HS 6A 型超精密重切削卧式加工中心采用的床身结构。
该床身为整体式结构,截面为封闭箱形结构,整体结构刚度很高。
为了加强导轨连接的局部刚度,采用两条成Y 形的斜筋支撑导轨。
图5-4 三井精机HS 6A 型加工中心的床身结构2 .采用合理的结构布局,改善机床的受力状态,提高机床的静刚度在切削力、自重等外力相同的情况下,如果能改善机床的受力状态,减小变形,则能达到提高刚度的目的。
以机床主轴为例,在其他条件不变的情况下,缩短主轴前端的悬伸长度,可以减小主轴承受的弯矩,从而减小主轴前端的挠度,提高主轴的刚度。
采用合理的机床结构布局,可以显著地改善机床的受力状况,提高机床的刚度。
图5-5 所示为传统的车床床身布局(见图5-5(a))与数控车床床身布局(见图5-5(b))的受力状况的分析比较。
图5-5 车床床身布局设床身截面积和惯性矩及其所受切削力P 相等,对传统车床,床身水平布局,床身所受扭矩为:(5-1)对数控车床,床身倾斜布局,设倾角为β ,床身所受扭矩为:(5-2)比较式(5-1)和式(5-2)可看出,采用倾斜布局的数控车床床身所承受的扭矩要比采用水平布局的传统车床床身的要小,因而机床的刚度得到了提高。
图5-6 所示为传统的卧式镗铣床的结构布局和卧式加工中心(卧式自动换刀数控镗铣床)的结构布局的比较。
传统的卧式镗铣床由于主轴箱单面悬挂在立柱侧面,主轴箱自重将使立柱承受弯矩,切削力将使立柱承受扭矩内,立柱则不再承受由主轴箱自重产生的弯矩和由切削力产生的扭矩,从而改善了立柱的受力状况,减小了立柱的弯曲、扭转变形,提高了刚度。
图5-6 卧式镗铣床与卧式加工中心的结构布局比较3 .补偿有关零、部件的静力变形在外力的作用下,机床的变形是不可避免的,如果能采取措施使变形对加工精度的影响减小,其结果相当于提高了机床的刚度。
依照这一思路,产生了许多补偿有关零、部件的静力变形的方法,这种方法普遍用于补偿因自重而引起的静力变形。
如图5-7 所示的大型龙门铣床,当主轴部件移到横梁中部时,横梁的弯曲变形(下凹)最大。
为此可将横梁导轨加工成中部凸起的抛物线形,或者通过在横梁内部安装辅助梁和预校正螺钉将主导轨预调校正为中凸抛物线形,这样可以补偿主轴箱移动到横梁中部时引起的弯曲变形(图5-7(a))。
为补偿主轴箱自重的影响,也可以用加平衡重块或其他平衡力的方法,抵消部分直接作用于横梁上的自重,从而减小横梁因主轴箱自重引起的弯曲变形(图5-7(b))。
4 .提高机床各部件的接触刚度在机床各部件的固定连接面和运动副的结合面之间,总会存在宏观和微观不平,两个面之间真正接触的只是一些高点,实际接触面积小于两接触表面的面积(名义接触面积),因此,在承载时,作用于这些接触点的压强要比平均压强大得多,从而产生接触变形。
平均压强p 与变形δ 之比称为接触刚度,即(5-3)由于机床总有为数较多的静、动连接面,如果不注意提高接触刚度,各连接面的接触变形就会大大降低机床的整体刚度,对加工精度产生非常不利的影响。
图5-7 横梁弯曲变形补偿影响接触刚度的根本因素是实际接触面积的大小,任何增大实际接触面积的方法都能有效地提高接触刚度。
如机床的导轨常采用人工铲刮工艺作为最终的精加工工序,通过刮研,可以增加单位面积上的接触点,并使接触点分布均匀,从而增加导轨副结合面的实际接触面积,提高接触刚度。
又如采用滚动轴承作为支承的主轴部件,都要设计预紧结构调整轴承间隙,使轴承在有预加载荷的条件下运转,以提高主轴的支承刚度。
预加载荷增大了实际接触点的面积,从而达到提高接触刚度的目的。
采用螺纹紧固的固定连接面,合理布置一定数量的螺栓,并对螺栓的拧紧力矩提出严格要求以保证适当的预紧力,也是为提高接触刚度而常采用的措施。
5 .采用钢板焊接结构长期以来,机床基础件主要采用铸铁件。
近年来,以钢板焊接结构代替铸铁件的趋势不断扩大,从开始在单件和小批量的重型和超重型机床上的应用,逐步发展到有一定批量的中型机床。
表5-3 列出了Star-Turn1200 型数控车床焊接床身和铸造床身的刚度的对比结果。
从结果看,焊接床身的刚度高于铸造床身。
这是因为两种床身的筋板布置不同,钢板焊接结构容易采第五章数控机床的结构与传动用最有利于提高刚度的筋板布置形式,能充分发挥壁板和筋板的承载及抵抗变形的作用;焊接结构还无需铸造结构所需的出砂口,有可能将基础件做成完全封闭的箱形结构。
另外,钢板的弹性摸量E 为MPa ,而铸铁的弹性模量E 仅MPa ,两者几乎相差一倍,E= σ / ε ,在应力σ相同时,E 大则产生的应变ε 小,E 的大小反映了材料抵抗弹性变形的能力。
因此,在结构相同时,E 值大的材料刚度则高。
表5-3 焊接床身与铸造床身的刚度对比二、提高机床结构的抗振性机床的振动会在被加工工件表面留下振纹,影响工件的表面质量,严重时则使加工过程难以进行下去。
机床加工时可能产生两种形式的振动:强迫振动和自激振动。
机床的抗振性指的是抵抗这两种振动的能力。
强迫振动是在各种动态力(如高速回转零件的不平衡力、往复运动件的换向冲击力、周期变化的切削力等)作用下被迫产生的振动。
如果动态力的频率与机床某部件的固有频率重合,则将发生共振。
机床结构抵抗强迫振动的能力可以用动刚度大小来表示。
自激振动是在投有外加动态力的情况下,由切削过程自身所激发的振动。
自激振动的频率接近或略高于机床主振型的低阶固有频率,振幅较大,对加工过程产生极为不利的影响。
当机床的刚度、刀具切削角度、工件与刀具材料、切削速度和进给量都一定时,影响自激振动的主要因素就是切削宽度b ,因此,可以把不产生自激振动的最大切削宽度,称为临界切削宽度,作为判断机床切削稳定性(抵抗自激振动的能力)的指标。
高速切削是产生动态力的直接因素,强力切削也意味着切削宽度大。
数控机床在追求高速度、高切削效率的同时,也埋下了容易产生受迫振动和自激振动的根源。
切削过程的自动化又使得振动难以由人工来控制和消除,数控机床只有靠自身机床结构的高抗振性来减小和克服振动对加工精度、加工过程的影响。
提高机床的抗振性,可以从提高静刚度、固有频率和增加阻尼几个方面着手。
提高静刚度的措施已在前面有详细的介绍。
因为固有频率(其中,K 为静刚度,m 为结构质量),所以在提高静刚度时,能相对减小结构件的重量,即提高单位重量的刚度,则能提高固有频率。
前面介绍的合理布置筋板,采用钢板焊接结构等提高静刚度的措施,同样能达到提高固有频率的目的。
下面将主要介绍数控机床在增加阻尼方面采取的措施。
1 .基础件内腔充填泥芯、混凝土等阻尼材料图5-8 两种车床床身的动态特性比较在基础件内腔充填泥芯、混凝土,振动时可利用相对摩擦来耗散振动能量,从而提高结构的阻尼特性。
图5-8 所示为两种车床床身结构及动态特性的对比,充填泥芯的床身阻尼显著增加。
图5-9 所示为DNE 480L 型数控车床的底座和床身结构,底座内所充填的混凝土的内摩擦阻尼较高,再配以封砂的床身,使机床有较高的抗振性。