最新港澳台华侨生联考:数学一轮复习:综合练习1(含答案)
- 格式:pdf
- 大小:223.70 KB
- 文档页数:5
2024年华侨港澳台联考高考数学试卷一、单选题(本大题共12小题,共60.0分.在每小题列出的选项中,选出符合题目的一项)1.设集合{}2{1,2,3,4,5},|A B x x A ==∈,则()A B ⋂=A.{1} B.{1,2}C.{1,4}D.φ2.已知21z ii+=+,则()z z +=A.12B.1C.32D.33.已知向量(2,1),(2,1)a x x x x b =++=--.若//a b ,则()A.22x = B.||2x = C.23x = D.||3x =4.不等式21230x x --<的解集是()A.1(1,0)0,3⎛⎫-⋃ ⎪⎝⎭B.(3,0)(0,1)-⋃C.1(,1),3⎛⎫-∞-⋃+∞ ⎪⎝⎭D.(,3)(1,)-∞-⋃+∞5.以(1,0)为焦点,y 轴为准线的抛物线的方程是()A.212y x =-B.212y x =+C.221y x =- D.221y x =+6.底面积为2π,侧面积为6π的圆锥的体积是()A.8πB.83π C.2πD.43π7.设1x 和2x 是函数32()21f x x ax x =+++的两个极值点.若212x x -=,则2(a =)A.0B.1C.2D.38.已知函数()sin(2)f x x ϕ=+.若1332f f ππ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭,则(ϕ=)A.2()2k k Z ππ+∈ B.2()3k k Z ππ+∈C.2()3k k Z ππ-∈ D.2()2k k Z ππ-∈9.函数12(0)xy x =>的反函数是()A.21(1)log y x x=> B.21log (1)y x x=>C.21(01)log y x x=<< D.21log (01)y x x=<<11.若双曲线C :22221(0,0)x y a b a b-=>>的一条㨆直线与直线21y x =+垂直,則C 的名心率为()A.5C.54D.5212.在1,2,3,4,5,6,7,8,9中任取3个不同的数,则这3个数的和能被3整除的概概是()A.928B.13C.514D.25二、填空题(本大题共6小题,共30.0分)13.曲线ln y x x =⋅在点(1,0)处的切线的方程为.14.已知O 为坐标原点,点P 在圆22(1)9x y ++=上,则||OP 的最小值为.15.若tan 3θ=,则tan 2θ=.16.设函数()(0xf x a a =>,且1)a ≠是增函数,若(1)(2)(2)(2f f f f ----,则a =.17.在正三棱柱111ABC A B C -中,121,2AB AA ==,则异面直线1AB 与1BC 所成角的大小为.18.设()f x 是定义域为R 的奇函数,()g x 是定义域为R 的偶函数.若()()2xf xg x +=,则(2)g =.三、解答题(本大题共4小题,共60.0分。
2024年华侨、港澳、台联考高考数学试卷A.{3}B.{0,1}C.{-2,-1,2}D.{-2,-1,0,1,2,3}A.1-2i B.1+2i C.-1-2i D.-1+2i A.1B.C.2D.-2(2024•香港)已知集合A={-2,-1,0,1,2},B={-2,-1,2,3},则A∩B=( )答案:C解析:结合交集的定义,即可求解.解答:解:A={-2,-1,0,1,2},B={-2,-1,2,3},则A∩B={-2,-1,2}.故选:C.(2024•香港)计算=( )3+4i 1-2i答案:D解析:直接利用复数代数形式的乘除运算化简得答案.解答:解:===-1+2i .故选:D.3+4i 1-2i (3+4i )(1+2i )(1-2i )(1+2i )-5+10i 5(2024•香港)函数y=sinx+cosx的最大值是( )√3√6答案:C 解析:利用两角和的正弦公式即可化为asinx+bcosx=sin(x+θ),进而利用正弦函数的单调性、最值即可得出.√+a 2b 2解答:解:∵y=sinx+cosx=2(sinx+cosx)=2sin(x+).∵-1≤sin(x+)≤1,√312√32π3π3A.y=±3x B.y=±2x C.y =±x D.y =±x A.“x=1,y=-2”是“a ∥b ”的必要条件B.“x=1,y=-2”是“a ∥b ”的充分条件C.“x=1,y=-2”是“a ⊥b ”的必要条件D.“x=1,y=-2”是“a ⊥b ”的充分条件∴当sin(x+)=1时,函数y取得最大值2.故选:C.π3(2024•香港)已知双曲线C:-=1(a >0,b >0)的离心率为,则双曲线C的渐近线方程为( )x 2a 2y 2b 2√101312答案:A 解析:利用双曲线的离心率,得到a,b关系式,然后求解双曲线的渐近线方程.解答:解:双曲线C:-=1(a >0,b >0)的离心率为,可得=,即=10,可得=3.双曲线C的渐近线方程为:y=±3x.故选:A.x 2a 2y 2b 2√10c a √10+a 2b 2a 2b a (2024•香港)已知平面向量a =(1,1),b =(x+1,y),则( )→→→→→→→→→→答案:D解析:根据已知条件,结合向量平行、垂直的性质,即可求解.解答:解:对于A,若a ∥b ,则1•y=1•(x+1),即y=x+1,充分性不成立,错误,对于B,当x=1,y=-2时,则b =(2,-2),a ∥b 不成立,错误,→→→→→A.f(x)是奇函数,不是增函数B.f(x)是增函数,不是奇函数C.f(x)既是奇函数,也是增函数D.f(x)既不是奇函数,也不是增函数A.1B.C.-D.-1对于C,若a ⊥b ,则x+1+y=0,必要性不成立,故错误,对于D,当x=1,y=-2时,则b =(2,-2),a •b =2-2=0,a ⊥b ,充分性成立,故D正确.故选:D.→→→→→→→(2024•香港)已知函数f (x )=ln (+x ),则( )√+1x 2答案:C解析:结合基本初等函数及复合函数的单调性及函数奇偶性即可判断.解答:解:函数的定义域为R,f(-x)+f(x)=ln(-x)+ln(+x)=ln(1+x 2-x 2)=0,所以f(-x)=-f(x),所以f(x)为奇函数,B,D错误;当x≥0时,t=+x单调递增,根据奇函数的单调性可知,t=+x在R上单调递增,根据复合函数单调性可知,f(x)为增函数,A错误,C正确.故选:C.√1+x 2√1+x 2√1+x 2√1+x 2(2024•香港)若(a+x)4的展开式中x的系数是-,则a=( )121212答案:C解析:根据二项式定理,建立方程,即可求解.A.2x-3y+2=0B.3x+2y+2=0C.3x+2y-2=0D.2x-3y-2=0A.4B.2C.1D.解答:解:∵(a+x)4的展开式中x的系数是•=-,∴a=-.故选:C.C 41a 31212(2024•香港)圆x 2+(y+2)2=4与圆(x+2)2+(y-1)2=9交于A,B两点,则直线AB的方程为( )答案:D 解析:将两圆的方程相减,即可求解.解答:解:圆x 2+(y+2)2=4,即x 2+y 2+4y=0①,圆(x+2)2+(y-1)2=9,即x 2+4x+y 2-2y=4②,②-①可得,化简整理可得,2x-3y-2=0,故直线AB的方程为2x-3y-2=0.故选:D.(2024•香港)已知x =和x =都是函数f(x)=sin(ωx+φ)(ω>0)的极值点,则ω的最小值是( )π4π212答案:A 解析:根据x=和x=都是函数f(x)的极值点,得出函数的周期T≤2×(-),由此求解即可.π4π2π2π4解答:解:因为x=和x=都是函数f(x)=sin(ωx+φ)(ω>0)的极值点,所以周期为T≤2×(-)=,所以≤,所以ω≥4,即ω的最小值是4.故选:A.π4π2π2π4π22πωπ2A.2B.1C.D.A.2B.(2024•香港)抛物线C:y 2=2px(p>0)的焦点为F,C上的点到F的距离等于到直线x=-1的距离,则p=( )1214答案:A 解析:求得抛物线的焦点和准线方程,由抛物线的定义和点到直线的距离公式,解得p,可得抛物线的方程;解答:解:抛物线C:y 2=2px(p>0)的焦点F(,0),准线方程为x=-,C上的点到F的距离等于到直线x=-1的距离,可得=1,解得p=2,故选:A.p 2p 2p 2(2024•香港)正四棱柱的八个顶点都在一个半径为1的球O的球面上,O到该正四棱柱侧面的距离为,则该正四棱柱的体积是( )12√2√223答案:B解析:根据题意可正四棱柱的体对角线即为其外接球的直径2R=2,再建立方程求出正四棱柱的,最后代入体积公式,即可求解.解答:解:∵正四棱柱的八个顶点都在一个半径为1的球O的球面上,O到该正四棱柱侧面的距离为,∴正四棱柱的底面边长为1,设正四棱柱的高为h,则正四棱柱的体对角线即为其外接球的直径2R=2,∴(2R)2=12+12+h 2,即4=2+h 2,∴h=,∴该正四棱柱的体积为1×1×=.故选:B.12√2√2√2(2024•香港)已知偶函数f(x)的图像关于直线x=1对称,当0≤x≤1时,f(x)=x 2+2x,则当2≤x≤3时,f(x)=( )A.x 2+2xB.x 2-2x C.-x 2+2x D.-x 2-2x答案:B 解析:根据题意,分析可得f(x+2)=f(x),当2≤x≤3时,有0≤x-2≤1,结合函数的解析式分析可得答案.解答:解:根据题意,f(x)为偶函数,则f(-x)=f(x),又由f(x)的图像关于直线x=1对称,则f(-x)=f(2+x),则有f(x+2)=f(x),当2≤x≤3时,有0≤x-2≤1,则f(x-2)=(x-2)2+2(x-2)=x 2-2x,则有f(x)=f(x-2)=x 2-2x.故选:B.(2024•香港)用1,2,…,9这9个数字,组成没有重复数字的三位数,其中奇数共有 280个.答案:280.解析:根据排列数公式,先排个位,再排其余,即可求解.解答:解:∵1,2,…,9这9个数字中奇数共有5个,∴用1,2,…,9这9个数字,组成没有重复数字的三位数,其中奇数共有•=280个.故答案为:280.A 51A 82(2024•香港)记等差数列{a n }的前n项和为S n ,若S 2=16,S 4=24,则a 8=-5.答案:-5.解析:根据等差数列的前n项和公式即可得.解答:解:设等差数列{a n }的首项为a 1,公差为d,由S 2=16,S 4=24,得,即,解得.所以等差数列{a n }的通项公式为a n =11-2n,a 8=11-16=-5.故答案为:-5.⎧⎨⎩2+d =164+d =24a 12×12a 14×32{2+d =162+3d =12a 1a 1{=9d =-2a 1.答案:[-2,].23解析:将不等式两边同时平方,再结合一元二次不等式的解法,即可求解.解答:解:2|x|≤|x-2|,则4x 2≤x 2-4x+4,化简整理可得,(3x-2)(x+2)≤0,解得-2≤x ≤,故所求解集为[-2,].故答案为:[-2,].232323(2024•香港)函数f(x)=e x -2x的最小值为2-2ln2.答案:见试题解答内容解析:f′(x)=e x -2,令f′(x)=e x -2=0,解得x=ln2.利用单调性即可得出.解答:解:f′(x)=e x -2,令f′(x)=e x -2=0,解得x=ln2.可得:函数f(x)在(-∞,ln2)上单调递减,在(ln2,+∞)上单调递增.∴x=ln2时,函数f(x)取得极小值即最小值,f(ln2)=2-2ln2.故答案为:2-2ln2.(2024•香港)已知函数f(x)的定义域为R,若f(x-1)f(x+1)=x 2+4x+3,f(1)=3,则f(9)=11.答案:11.解析:利用函数的解析式,依次能求出f(3),f(5),f(7),f(9)的值.解答:解:函数f(x)的定义域为R,f(x-1)f(x+1)=x 2+4x+3,f(1)=3,∴f(1)f(3)=4+8+3=15,∴f(3)=5,f(3)f(5)=16+16+3=35,∴f(5)=7,f(5)(7)=36+24+3=63,∴f(7)=9,f(7)f(9)=64+32+3=99,则f(9)=11.故答案为:11.(2024•香港)已知二面角α-AB-β的大小为90°,正方形ABCD在α内,等边三角形ABF在β内,则异面直线AC与BF所成角的余弦值为 .√244解析:由题意建立空间直角坐标系,设正方形的边长,求出直线BF,AC的方向向量BF ,AC 的坐标,进而求出两个向量的夹角的余弦值,进而求出异面直线所成的角的余弦值.→→解答:解:过F作FO⊥AB,在平面α过O作y轴⊥AB,因为二面角α-AB-β的大小为90°,所以FO⊥平面α,设正方形的边长为2,由题意OF=,可得F(0,0,),B(1,0,0),A(-1,0,0),C(1,2,0),则BF =(-1,0,),AC =(2,2,0),所以BF •AC =-1×2+0×2+×0=-2,|BF |==2,|AC |==2,所以cos<BF ,AC >==所以异面直线AC与BF所成角的余弦值为|cos<BF ,AC故答案为:.√3√3→√3→→→√3→√(-1++()202√3)2→√++222202√2→→BF •AC →→|BF |•|AC |→→4→→4√24(2024•香港)已知△ABC中,A =,AC=ABtanB.(1)求B;(2)求sinA+sinB+sinC.π3答案:(1);(2).π12+√3√62解析:(1)由题设及正弦定理,可得cosB=sinC,再根据诱导公式进行代换,即可求得角B;(2)根据角A,B,C的值,利用两角和的正弦公式即可求解.解答:解:(1)由AC=ABtanB,可得tanB =,由正弦定理,可得=,又B∈(0,π),sinB≠0,所以cosB=sinC,由诱导公式,可得cosB=sin(A+B)=cos[-(A +B )],所以B =-(A +B )+2kπ或B =(A +B )-+2kπ,k∈Z,又A =,所以B =+kπ,k∈Z,又B∈(0,π),故B=;(2)由(1)知,A =,B=,则C =,sin +sin =+sin (-)+sin (+)=+2sin cos2=.b csinB cosB sinB sinC π2π2π2π3π12π12ππ127π122π127π12√3πππ3π4√32π3π4222+√3√62(2024•香港)在一个工作日中,某工人至少使用甲、乙两仪器中的一个,该工人使用甲仪器的概率为0.6,使用乙仪器的概率为0.5,且不同工作日使用仪器的情况相互独立.(1)求在一个工作日中该工人既使用甲仪器也使用乙仪器的概率;(2)记X为在100个工作日中,该工人仅使用甲仪器的天数,求E(X).答案:(1)0.1;(2)50.解析:(1)利用概率的性质求解;(2)利用二项分布的期望公式求解.解答:解:(1)设事件A表示“在一个工作日中该工人既使用甲仪器也使用乙仪器”,则P(A)=0.6+0.5-1=0.1;(2)因为在一个工作日中该工人仅使用甲仪器的概率为0.6-0.1=0.5,A.{3}B.{0,1}C.{-2,-1,2}D.{-2,-1,0,1,2,3}A.1-2i B.1+2i C.-1-2i D.-1+2i A.1B.C.2D.-2则X~B(100,0.5),所以E(X)=100×0.5=50.(2024•香港)已知集合A={-2,-1,0,1,2},B={-2,-1,2,3},则A∩B=( )答案:C解析:结合交集的定义,即可求解.解答:解:A={-2,-1,0,1,2},B={-2,-1,2,3},则A∩B={-2,-1,2}.故选:C.(2024•香港)计算=( )3+4i 1-2i答案:D解析:直接利用复数代数形式的乘除运算化简得答案.解答:解:===-1+2i .故选:D.3+4i 1-2i (3+4i )(1+2i )(1-2i )(1+2i )-5+10i 5(2024•香港)函数y=sinx+cosx的最大值是( )√3√6答案:C 解析:利用两角和的正弦公式即可化为asinx+bcosx=sin(x+θ),进而利用正弦函数的单调性、最值即可得出.√+a 2b 2A.y=±3x B.y=±2x C.y =±x D.y =±x A.“x=1,y=-2”是“a ∥b ”的必要条件B.“x=1,y=-2”是“a ∥b ”的充分条件C.“x=1,y=-2”是“a ⊥b ”的必要条件D.“x=1,y=-2”是“a ⊥b ”的充分条件解答:解:∵y=sinx+cosx=2(sinx+cosx)=2sin(x+).∵-1≤sin(x+)≤1,∴当sin(x+)=1时,函数y取得最大值2.故选:C.√312√32π3π3π3(2024•香港)已知双曲线C:-=1(a >0,b >0)的离心率为,则双曲线C的渐近线方程为( )x 2a 2y 2b 2√101312答案:A 解析:利用双曲线的离心率,得到a,b关系式,然后求解双曲线的渐近线方程.解答:解:双曲线C:-=1(a >0,b >0)的离心率为,可得=,即=10,可得=3.双曲线C的渐近线方程为:y=±3x.故选:A.x 2a 2y 2b 2√10c a √10+a 2b 2a 2b a (2024•香港)已知平面向量a =(1,1),b =(x+1,y),则( )→→→→→→→→→→答案:D解析:根据已知条件,结合向量平行、垂直的性质,即可求解.A.f(x)是奇函数,不是增函数B.f(x)是增函数,不是奇函数C.f(x)既是奇函数,也是增函数D.f(x)既不是奇函数,也不是增函数A.1B.D.-1解答:解:对于A,若a ∥b ,则1•y=1•(x+1),即y=x+1,充分性不成立,错误,对于B,当x=1,y=-2时,则b =(2,-2),a ∥b 不成立,错误,对于C,若a ⊥b ,则x+1+y=0,必要性不成立,故错误,对于D,当x=1,y=-2时,则b =(2,-2),a •b =2-2=0,a ⊥b ,充分性成立,故D正确.故选:D.→→→→→→→→→→→→(2024•香港)已知函数f (x )=ln (+x ),则( )√+1x 2答案:C解析:结合基本初等函数及复合函数的单调性及函数奇偶性即可判断.解答:解:函数的定义域为R,f(-x)+f(x)=ln(-x)+ln(+x)=ln(1+x 2-x 2)=0,所以f(-x)=-f(x),所以f(x)为奇函数,B,D错误;当x≥0时,t=+x单调递增,根据奇函数的单调性可知,t=+x在R上单调递增,根据复合函数单调性可知,f(x)为增函数,A错误,C正确.故选:C.√1+x 2√1+x 2√1+x 2√1+x 2(2024•香港)若(a+x)4的展开式中x的系数是-,则a=( )1212C.-A.2x-3y+2=0B.3x+2y+2=0C.3x+2y-2=0D.2x-3y-2=0A.4B.2C.1D.12答案:C解析:根据二项式定理,建立方程,即可求解.解答:解:∵(a+x)4的展开式中x的系数是•=-,∴a=-.故选:C.C 41a 31212(2024•香港)圆x 2+(y+2)2=4与圆(x+2)2+(y-1)2=9交于A,B两点,则直线AB的方程为( )答案:D 解析:将两圆的方程相减,即可求解.解答:解:圆x 2+(y+2)2=4,即x 2+y 2+4y=0①,圆(x+2)2+(y-1)2=9,即x 2+4x+y 2-2y=4②,②-①可得,化简整理可得,2x-3y-2=0,故直线AB的方程为2x-3y-2=0.故选:D.(2024•香港)已知x =和x =都是函数f(x)=sin(ωx+φ)(ω>0)的极值点,则ω的最小值是( )π4π212答案:A 解析:根据x=和x=都是函数f(x)的极值点,得出函数的周期T≤2×(-),由此求解即可.π4π2π2π4A.2B.1C.D.A.2B.解答:解:因为x=和x=都是函数f(x)=sin(ωx+φ)(ω>0)的极值点,所以周期为T≤2×(-)=,所以≤,所以ω≥4,即ω的最小值是4.故选:A.π4π2π2π4π22πωπ2(2024•香港)抛物线C:y 2=2px(p>0)的焦点为F,C上的点到F的距离等于到直线x=-1的距离,则p=( )1214答案:A 解析:求得抛物线的焦点和准线方程,由抛物线的定义和点到直线的距离公式,解得p,可得抛物线的方程;解答:解:抛物线C:y 2=2px(p>0)的焦点F(,0),准线方程为x=-,C上的点到F的距离等于到直线x=-1的距离,可得=1,解得p=2,故选:A.p 2p 2p 2(2024•香港)正四棱柱的八个顶点都在一个半径为1的球O的球面上,O到该正四棱柱侧面的距离为,则该正四棱柱的体积是( )12√2√223答案:B解析:根据题意可正四棱柱的体对角线即为其外接球的直径2R=2,再建立方程求出正四棱柱的,最后代入体积公式,即可求解.解答:解:∵正四棱柱的八个顶点都在一个半径为1的球O的球面上,O到该正四棱柱侧面的距离为,∴正四棱柱的底面边长为1,设正四棱柱的高为h,则正四棱柱的体对角线即为其外接球的直径2R=2,∴(2R)2=12+12+h 2,即4=2+h 2,∴h=,12√2A.x 2+2xB.x 2-2x C.-x 2+2x D.-x 2-2x∴该正四棱柱的体积为1×1×=.故选:B.√2√2(2024•香港)已知偶函数f(x)的图像关于直线x=1对称,当0≤x≤1时,f(x)=x 2+2x,则当2≤x≤3时,f(x)=( )答案:B解析:根据题意,分析可得f(x+2)=f(x),当2≤x≤3时,有0≤x-2≤1,结合函数的解析式分析可得答案.解答:解:根据题意,f(x)为偶函数,则f(-x)=f(x),又由f(x)的图像关于直线x=1对称,则f(-x)=f(2+x),则有f(x+2)=f(x),当2≤x≤3时,有0≤x-2≤1,则f(x-2)=(x-2)2+2(x-2)=x 2-2x,则有f(x)=f(x-2)=x 2-2x.故选:B.(2024•香港)用1,2,…,9这9个数字,组成没有重复数字的三位数,其中奇数共有 280个.答案:280.解析:根据排列数公式,先排个位,再排其余,即可求解.解答:解:∵1,2,…,9这9个数字中奇数共有5个,∴用1,2,…,9这9个数字,组成没有重复数字的三位数,其中奇数共有•=280个.故答案为:280.A 51A 82(2024•香港)记等差数列{a n }的前n项和为S n ,若S 2=16,S 4=24,则a 8=-5.答案:-5.解析:根据等差数列的前n项和公式即可得.解答:解:设等差数列{a n }的首项为a 1,公差为d,由S 2=16,S 4=24,得,即,解得.所以等差数列{a n }的通项公式为a n =11-2n,a 8=11-16=-5.故答案为:-5.⎧⎨⎩2+d =164+d =24a 12×12a 14×32{2+d =162+3d =12a 1a 1{=9d =-2a 1.答案:[-2,].23解析:将不等式两边同时平方,再结合一元二次不等式的解法,即可求解.解答:解:2|x|≤|x-2|,则4x 2≤x 2-4x+4,化简整理可得,(3x-2)(x+2)≤0,解得-2≤x ≤,故所求解集为[-2,].故答案为:[-2,].232323(2024•香港)函数f(x)=e x -2x的最小值为2-2ln2.答案:见试题解答内容解析:f′(x)=e x -2,令f′(x)=e x -2=0,解得x=ln2.利用单调性即可得出.解答:解:f′(x)=e x -2,令f′(x)=e x -2=0,解得x=ln2.可得:函数f(x)在(-∞,ln2)上单调递减,在(ln2,+∞)上单调递增.∴x=ln2时,函数f(x)取得极小值即最小值,f(ln2)=2-2ln2.故答案为:2-2ln2.(2024•香港)已知函数f(x)的定义域为R,若f(x-1)f(x+1)=x 2+4x+3,f(1)=3,则f(9)=11.答案:11.解析:利用函数的解析式,依次能求出f(3),f(5),f(7),f(9)的值.解答:解:函数f(x)的定义域为R,f(x-1)f(x+1)=x 2+4x+3,f(1)=3,∴f(1)f(3)=4+8+3=15,∴f(3)=5,f(3)f(5)=16+16+3=35,∴f(5)=7,f(5)(7)=36+24+3=63,∴f(7)=9,f(7)f(9)=64+32+3=99,则f(9)=11.故答案为:11.(2024•香港)已知二面角α-AB-β的大小为90°,正方形ABCD在α内,等边三角形ABF在β内,则异面直线AC与BF所成角的余弦值为 .√244解析:由题意建立空间直角坐标系,设正方形的边长,求出直线BF,AC的方向向量BF ,AC 的坐标,进而求出两个向量的夹角的余弦值,进而求出异面直线所成的角的余弦值.→→解答:解:过F作FO⊥AB,在平面α过O作y轴⊥AB,因为二面角α-AB-β的大小为90°,所以FO⊥平面α,设正方形的边长为2,由题意OF=,可得F(0,0,),B(1,0,0),A(-1,0,0),C(1,2,0),则BF =(-1,0,),AC =(2,2,0),所以BF •AC =-1×2+0×2+×0=-2,|BF |==2,|AC |==2,所以cos<BF ,AC >==所以异面直线AC与BF所成角的余弦值为|cos<BF ,AC√3√3→√3→→→√3→√(-1++()202√3)2→√++222202√2→→BF •AC →→|BF |•|AC |→→4→→44(2024•香港)已知△ABC中,A =,AC=ABtanB.(1)求B;(2)求sinA+sinB+sinC.π3答案:(1);(2).π12+√3√62解析:(1)由题设及正弦定理,可得cosB=sinC,再根据诱导公式进行代换,即可求得角B;(2)根据角A,B,C的值,利用两角和的正弦公式即可求解.解答:解:(1)由AC=ABtanB,可得tanB =,由正弦定理,可得=,又B∈(0,π),sinB≠0,所以cosB=sinC,由诱导公式,可得cosB=sin(A+B)=cos[-(A +B )],所以B =-(A +B )+2kπ或B =(A +B )-+2kπ,k∈Z,又A =,所以B =+kπ,k∈Z,又B∈(0,π),故B=;(2)由(1)知,A =,B=,则C =,sin +sin =+sin (-)+sin (+)=+2sin cos2=.b csinB cosB sinB sinC π2π2π2π3π12π12ππ127π122π127π12√3πππ3π4√32π3π4222+√3√62(2024•香港)记数列{a n }的前n项和为S n ,已知a 1=4,=(-1).(1)证明:数列{}是等比数列;(2)求{a n }的通项公式.a n +14(n +1)2n -1S n -1S n 2n -1答案:(1)证明见解答;(2)a n =4n•3n-1,n∈N *.解析:(1)根据数列的和与项的转化关系,等比数列的定义,即可证明;(2)根据数列的和与项的转化关系,分类讨论,即可求解.解答:解:(1)证明:∵=(-1),∴-=(-1),∴(2n-1)S n+1-(2n-1)S n =4(n+1)S n -4(n+1),∴(2n-1)S n+1=(6n+3)S n -4(n+1),∴(2n-1)(S n+1-1)=(6n+3)S n -(6n+3),∴(2n-1)(S n+1-1)=3(2n+1)(S n -1),∴=3(),又=a 1-1=3,∴数列{}是以首项为3,公比为3的等比数列;(2)由(1)可得=,∴-1=(2n -1)×①,当n≥2时,-1=(2n -3)×②,①-②可得=(2n -1)×-(2n -3)×=4n•3n-1(n≥2),又a 1=4,也满足上式,∴a n =4n•3n-1,n∈N *.a n +14(n +1)2n -1S n S n +1S n 4(n +1)2n -1S n -1S n +12n +1-1S n 2n -1-1S 12×1-1-1S n 2n -1-1S n 2n -13n S n 3n S n -13n -1a n 3n 3n -1(2024•香港)已知椭圆C :+=1(a >b >0)的左焦点为F,点A(-a,0),B(0,b),过F的直线x-y+1=0交C于B,P两点.(1)求P的坐标;(2)若点R(-2,y 0)在直线AB上,证明:FR是∠PFA的角平分线.x 2a 2y 2b 2答案:(1)P(-,-).(2)证明详情见解答.4313解析:(1)直线方程中x-y+1=0,分别令y,x为0,解得b,c,由a 2=b 2+c 2,解得a,即可得出椭圆的方程,联立直线x-y+1=0与椭圆的方程,即可得出答案.(2)由(1)知A(-,0),B(0,1),写出直线AB的方程,进而可得Q点坐标,推出tan2∠RFA=tan∠RFA,即可得出答案.√2解答:解:(1)因为直线x-y+1=0过焦点F和点B,所以令y=0,得x=-1,即-c=-1,则c=1,令x=0,得y=1,即b=1,又a 2=b 2+c 2=2,所以椭圆的方程为+y 2=1,联立,解得x=0或x=-,所以x P =-,y P =x P +1=(-)+1=-,所以P(-,-).(2)证明:由(1)知A(-,0),B(0,1),令x=-2,得y=1-,所以R(-2,1-),tan∠RFA==-1,tan2∠RFA==因为直线x-y+1=0的斜率为1,所以tan∠RFA=1,所以tan2∠RFA=tan∠RFA,所以FR是∠PFA的角平分线.x 22{x -y +1=0+=1x 22y 2434343134313√2√2√2|1-|√2-1-(-2)√22tan ∠RFA 1-ta ∠n 2√2。
数列综合题1.已知数列{}n a 是公差不为0的等差数列,12a =,且2a ,3a ,41a +成等比数列.(1)求数列{}n a 的通项公式;(2)设()22n n b n a =+,求数列{}n b 的前n 项和n S .2.设数列{}n a 的前n 项和为n S ,且()...,2,112=-=n a S n n .(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()2,...,2,111==+=+b n b a b n n n ,求数列{}n b 的通项公式.3.已知等差数列{}n a 的公差0> d ,其前n 项和为n S , 11=a ,3632=S S ;(1)求出数列{}n a 的通项公式n a 及前n 项和公式nS (2)若数列{}n b 满足)2(,211≥=-=-n d b b b nn n ,求数列{}n b 的通项公式nb4.等差数列{}n a 中,11-=a ,公差0≠d 且632,,a a a 成等比数列,前n 项的和为n S .(1)求n a 及n S ;(2)设11+=n n n a a b ,n n b b b T +++= 21,求n T .5.已知数列{}n a 满足22a =,n S 为其前n 项和,且(1)(1,2,3,)2n n a n S n +== .(1)求1a 的值;(2)求证:1(2)1n n na a n n -=≥-;(3)判断数列{}n a 是否为等差数列,并说明理由.6.已知等比数列{}n a 的前n 项和为n S ,且满足()122n n S p n N +*=+∈.(I )求p 的值及数列{}n a 的通项公式;(II )若数列{}n b 满足()132n n a bn a p +=+,求数列{}n b 的前n 项和n T .7.在数列}{n a 中,c c a a a n n (,111+==+为常数,)*∈N n ,521,,a a a 构成公比不等于1的等比数列.记11+=n n n a a b ()*∈N n .(Ⅰ)求c 的值;(Ⅱ)设}{n b 的前n 项和为n R ,是否存在正整数k ,使得kk R 2≥成立?若存在,找出一个正整数k ;若不存在,请说明理由.8.已知数列{}n a 的前n 项和为n S ,()()*31N n a S n n ∈-=.(Ⅰ)求21,a a ;(Ⅱ)求证:数列{}n a 是等比数列.9.设数列{}n a 的前n 项和122n n S +=-,数列{}n b 满足21(1)log n nb n a =+.(1)求数列{}n a 的通项公式;(2)求数列{}n b 的前n 项和n T .10.已知数列{}n a 的前n 项和为n S ,且2n n S n +=2.(1)求数列}{n a 的通项公式;(2)若*)(,1211N n a b n n n n ∈-+=+求数列}{n b 的前n 项和n S .11.在数列{}n a 中,,31=a )n n 2,n 2-n 21*-∈≥+=且(n n a a (1)求32,a a 的值;(2)证明:数列{}n a n +是等比数列,并求{}n a 的通项公式;(3)求数列{}n a 的前n 项和n S .12.若数列{}n a 的前n 项和为n S ,对任意正整数n 都有612n n S a =-,记12log n n b a =.(1)求1a ,2a 的值;(2)求数列{}n b 的通项公式;(3)若11,0,n n n c c b c +-==求证:对任意*2311132,4n n n N c c c ≥∈+++< 都有.13.设数列{a n }是等差数列,数列{b n }的前n 项和S n 满足3(1)2n n S b =-且2152,.a b a b ==(Ⅰ)求数列{a n }和{b n }的通项公式:(Ⅱ)设T n 为数列{S n }的前n 项和,求T n .14.在数列}{n a 和等比数列}{n b 中,01=a ,23=a ,1*2()n a n b n N +=∈.(Ⅰ)求数列{}n b 及}{n a 的通项公式;(Ⅱ)若n n n b a c ⋅=,求数列{}n c 的前n 项和n S .15.设等比数列{n a }的前n 项和为n S ,已知对任意的+∈N n ,点(,)n n S ,均在函数r y x+=2的图像上.(Ⅰ)求r 的值;(Ⅱ)记n na a ab 2log 2log 2log 22212+++= 求数列⎭⎬⎫⎩⎨⎧n 1的前n 项和n T .16.设数列{}n a 满足:11,a =()121*n n a a n N +=+∈.(I )证明数列{1}n a +为等比数列,并求出数列{}n a 的通项公式;(II )若2log (1)n n b a =+,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n S .17.已知数列{}n a 是一个递增的等比数列,前n 项和为n S ,且42=a ,143=S ,①求{}n a 的通项公式;②若n n a C 2log =,求数列⎭⎬⎫⎩⎨⎧+11n n 的前n 项和nT 18.数列{}n a 中,12a =,1n n a a cn +-=(c 是常数,123n = ,,,),且123a a a ,,成公比不为1的等比数列.(Ⅰ)求c 的值;(Ⅱ)求{}n a 的通项公式.19.已知数列{}n a 的前n 项和n S 满足21n n S a =-,等差数列{}n b 满足11b a =,47b =.(1)求数列{}n a 、{}n b 的通项公式;(2)设11n n n c b b +=,数列{}n c 的前n 项和为n T ,求证12n T <.20.已知数列{}n a 的各项都是正数,前n 项和是n S ,且点(),2n n a S 在函数2y x x =+的图像上.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设121,2n n n nb T b b b S ==+++ ,求n T .21.已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S .(Ⅰ)求n a 及n S ;(Ⅱ)令b n =211n a -(n ∈N *),求数列{}n b 的前n 项和n T .22.已知数列{}n a 中,13a =,满足)2(1221≥-+=-n a a nn n 。
绝密★启用前2023年华侨、港澳、台联考高考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、单选题:本题共12小题,每小题5分,共60分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.集合A={−2,−1,0,1,2},B={2k|k∈A},则A∩B=( )A. {0}B. {0,2}C. {−2,0}D. {−2,0,2}2.已知(2+i)z−=5+5i,则|z|=( )A. √ 5B. √ 10C. 5√ 2D. 5√ 53.设向量a⃗=(2,x+1),b⃗ =(x−2,−1),若a⊥b⃗,则x=( )A. 5B. 2C. 1D. 04.不等式1x >1x−1的解集为( )A. (0,+∞)B. (1,+∞)C. (0,1)D. (0,12) 5.抛物线y2=2px过点(1,√ 3),求焦点( )A. (√ 312,0) B. (√ 36,0) C. (34,0) D. (32,0)6.长方体的对角线长为1,表面积为1,有一面为正方形,则其体积为( )A. √ 2108B. √ 227C. √ 29D. √ 267.已知函数f(x)=x3+ax2+x+b在x=1处取得极小值1,则b=( )A. −1B. 0C. 1D. 28.已知函数f(x)=sin(2πx−π5),则( )A. (−320,720)上单调递增 B. (−15,310)上单调递增C. (310,45)上单调递减 D. (320,1320)上单调递增 9.若log 2(x 2+2x +1)=4,且x >0,则x =( ) A. 2B. 3C. 4D. 510.S n 为等差数列的前n 项和,S 9=81,a 2=3,则a 10=( ) A. 2B. 11C. 15D. 1911.O 为原点,P 在圆C(x −2)2+(y −1)2=1上,OP 与圆C 相切,则|OP|=( ) A. 2B. 2√ 3C. √ 13D. √ 1412.在2、3、5、6中任选2个不同数字,其乘积能被3整除的概率为( ) A. 16B. 17C. 13D. 56第II 卷(非选择题)二、填空题:本题共6小题,每小题5分,共30分。
解三角形1.△ABC 中,45B =,60C =,1c =,则b 等于()A .63B .62C .12D .322.在ABC ∆中,︒=60A ,34=a ,24=b ,则B 等于()A .︒45或︒135B .︒135C .︒45D .以上答案都不对3.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若acos B =bcos A ,则△ABC 是()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形4.在△ABC 中,若sin cos A Ca c=,则C 的值为()A .30°B .45°C .60°D .90°5.在△ABC 中,若1=b ,3=c ,B=30º,则a =()A .2B .1C .1或2D .2或36.在△ABC 中,已知1,45,3000===a B A ,则=b ()A .2B .3C .22D .237.在ABC ∆中,若60A ∠=︒,45B ∠=︒,32,则AC =A .43B .23C 3D .328.在ABC ∆中,若sin sin cos cos sin A A C A C -=,则ABC ∆的形状是()A .等腰三角形B .正三角形C .直角三角形D .等腰直角三角形9.在ABC ∆中,已知bc c b a 2222=--,则角C B +等于()A .4πB .43πC .45πD .4π或43π10.若ABC ∆的三个内角满足13:12:5sin :sin :sin =C B A ,则ABC ∆()A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是钝角三角形,也可能是锐角三角形11.若ABC ∆的三内角A 、B 、C 对应的边分别是a 、b 、c ,若222a cb ac +-=,则B =A .30oB .60oC .120oD .150o12.△ABC 中,8b =,83c =,163ABC S ∆=,则A ∠等于()A .30B .60C .30或150D .60或12013.在ABC △中,若222sin sin sin A B C +=,则ABC △的形状是A .钝角三角形B .直角三角形C .锐角三角形D .不能确定14.ABC ∆中,,A B C 的对边分别是,,a b c 其面积2224a b c S +-=,则中C 的大小是()A .030B .045C .090D .013515.在△ABC 中,若222b a abc +=+,则角C =()A .30ºB .45ºC .60ºD .120º16.在ABC ∆中,若A b a sin 23=,则=B ()A .30B .60C . 30或120D .60或12017.在△ABC 中,若sin 2A +sin 2B >sin 2C .则△ABC 的形状是()A .锐角三角形B .直角三角形C .钝角三角形D .不能确定18.在△ABC 中,若1=b ,3=c ,B=30º,则a =()A .2B .1C .1或2D .2或319.在ABC ∆中,3=AB ,1=AC , 30=∠B ,ABC ∆的面积为3,则=∠C ()A .30B .45C .60D .7520.在ABC ∆中,已知2sin cos sin A B C =,那么ABC ∆一定是()A .直角三角形B .等腰直角三角形C .等腰三角形D .正三角形21.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足sin cos c A a C =.(1)求角C 的大小;(2)求()3cos()4f A A B π=-+的最大值.22.在ABC ∆中,角A 、B 、C 所对的边分别为32a b c a b ==、、,,,1cos 2A =-.(Ⅰ)求角B 的大小;(Ⅱ)若2()cos 2sin ()f x x c x B =++,求函数()f x 的最小正周期和单调递增区间.23.已知△ABC 的内角C B A ,,所对的边分别为,,,c b a 且53cos ,2==B a .(1)若4=b ,求A sin 的值;(2)若△ABC 的面积,4=∆ABC S 求c b ,的值.24.在ABC ∆中,三内角A 、B 、C 的对边分别是a 、b 、c .(1)若,2,4560===a A c 求C ;(2)若22242a b c bc =++,C B A sin sin sin 2=,试判断ABC ∆的形状.25.已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B=2sinAsinC (Ⅰ)若a=b ,求cosB ;(Ⅱ)设B=90°,且a=2,求△ABC 的面积.26.在锐角三角形ABC ∆中,,,a b c 分别是角,,A B C 32sin a c A =.(1)确定角C 的大小;(2)若7c =ABC ∆的面积为332,求a b +的值.27.在ABC △中,内角A 、B 、C a 、b 、c ,且222b c a bc +-=.(1)求A ;(2)若3a =,2cos 2B =,求b .28.在锐角ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,已知7a =3b =7sin 3B A +=.(1)求角A 的大小;(2)求ABC ∆的面积.29.已知,,a b c 分别是ABC ∆的角,,A B C 所对的边,且2c =,3C π=.(Ⅰ)若ABC ∆3,a b ;(Ⅱ)若sin sin()2sin 2C B A A +-=,求A 的值.30.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知12cos sin 2sin 2sin 222-++=C B A B A .(Ⅰ)求角C 的大小;(Ⅱ)若21a b -=,且△ABC 的面积为532,求边a 的长.31.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且满足cos (2)cos()b A c a B π=+-(1)求角B 的大小;(2)若4,b ABC =∆3a c +的值.32.在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,且()2cos cos b c A a C -=.(Ⅰ)求角A 的大小;(Ⅱ)若a =3,2b c =,求△ABC 的面积.33.在ABC ∆中,角C B A 、、的对边分别为c b 、、a ,若2,cos 21==-a C a c b .(1)求Ccsin 的值;(2)若,bc c b =+求ABC ∆的面积.34.在ABC ∆中,内角,,A B C 对边分别为,,a b c ,且sin 3cos b A a B =.(Ⅰ)求角B 的大小;(Ⅱ)若3,sin 2sin b C A ==,求,a c 的值.35.在ABC ∆中,π3A =,6cos 3B =,6BC =.(Ⅰ)求AC 的长;(Ⅱ)求ABC ∆的面积.36.已知ABC ∆的三个内角A 、B 、C 的对边分别为,,a b c ,且ABC ∆的面积3cos 2S ac B =.(1)求角B 的大小;(2)若2a =,且43A ππ≤≤,求边c 的取值范围.37.设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =4,c =2,A =2B.(1)求a 的值;(2)求sin (π+A 的值.38.在ABC ∆中,内角,,ABC 所对的边分别为,,a b c ,且sin 3cos 0b C c B -=。
排列1.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数有()(A )144个(B )120个(C )96个(D )72个2.已知6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有()(A )240种(B )360种(C )480种(D )720种3.6名同学排成一排,其中甲乙两人必须排在一起的不同排法有()A .240种B .360种C .720种D .120种4.用0,1,2,3组成没有重复数字的四位数,其中奇数有()A.8个B.10个C.18个D.24个5.6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有()A .240种B .360种C .480种D .720种6.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有A .36种B .42种C .48种D .54种7.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种是为()A.33!⨯ B.33(3!)⨯ C.4(3!)D.9!8.将3个不同的小球放入4个盒子中,则不同放法种数有()A .81B .64C .2D .149.由数字1,2,3,4,5组成没有重复数字的五位数,其中偶数共有()A .60个B .48个C .36个D .24个10.有七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两位同学要站在一起,则不同的站法有()A .240种B .192种C .96种D .48种11.6个人排成一排,其中甲、乙不相邻的排法种数是()A 、288B 、480C 、600D 、64012.6个人排成一排,其中甲、乙、丙三人必须站在一起的排列种数为()(A )66A (B )333A (C )3333A A (D )4433A A 13.火车上有10名乘客,沿途有5个车站,乘客下车的可能方式有()A.50种B.510种C.105种D.520种14.安排5名歌手的演出顺序时,要求某名歌手不是第一个出场,也不是最后一个出场,不同的安排方法总数为A .60种B .72种C .80种D .120种15.记者要为5名志愿者和他们帮助的2位老人拍合影照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()A .960种B .720种C .1440种D .480种16.把座位编号分别为1,2,3,4,5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张电影票必须是连号的,那么不同的分法总数为()A.24种B.48种C.96种D.144种17.6个人站成一排,则其中甲乙相邻且丙丁不相邻的不同站法共有()A .60种B .72种C .144种D .288种18.由6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有A.36B.48C.72D.9619.由e d c b a ,,,,这5个字母排成一排,且字母b a ,都不与c 相邻的排法有()A .36B .32C .28D .2420.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为()A.16B.18C.24D.32参考答案1.B 2.C 3.A 4.A 5.C 6.B 7.C 8.B 9.B 10.B 11.B 12.D 13.C 14.B 15.A 16.C17.C18.C19.A20.C。