2-2建筑地基基础计算
- 格式:docx
- 大小:49.40 KB
- 文档页数:12
地基基础方案评价1、天然地基上的浅基础设计为六层住宅楼,砖混结构,拟采用天然地基上的浅基础,最大线荷载F K=300kN/m。
根椐场地地质条件对浅基础进行评价:①、属先确定持力层,根椐场地地质条件,第②层可做为基础的持力层,其承载力特征值f ak=150kPa。
基础埋深d=2.0m。
②、求持力层修正后的承载力特征值f a(深度修正):根椐5.2.4公式: f a=f ak+εdγm(d-0.5)式中:f ak---持力层承载力特征值 =150kPaεd=1.6, (根椐基底下土的类别,查表5.2.4:e=0.821, I L=0.35)若为湿陷性黄土或新近堆积黄土(Q42)应按GBJ25-90规范表3.0.4确定。
γm-----基础底面以上土的加权平均重度=16.5kN/m3,d----基础埋深=2.0m代入计算为:f a=150+1.6×16.5×(2-0.5)=189.6kPa。
③、计算基础宽度b:根椐基础面积计算公式代入计算:A=Lb≥ = m取2.2m式中: F K---基础顶面的竖向力=300kN/mf a----修正后的地基承载力特征值=189.6kPaL、b---基础的长度和宽度(条基时,L取1.0米)γ---基础及上伏土的平均重度=20.0kN/m3④、求基底压力P K:根椐5.2.2-1 公式式中:F k=300kN/mG k=L b dγ=1×2.2×2.0×20=88kNA=1×2.2m将参数代入计算后得p k=176.4kN/m2(kPa)⑤、根椐5.2.1-1式:f a≥p k判定地基强度是否滿足要求。
以上计算的f a=189.6kPa,p k=176.4kPa,滿足5.2.1-1式f a≥p k ,地基强度滿足要求。
⑥、验算下卧层的承载力⒈已知下卧层的f ak=100kPa⒉下卧层顶面以上地基土的加权平均重度为:γm = = 18.3kN/m3⒊求下卧层(第③层粉土)修正后的地基承载力特征值f a:f a=f ak+εdγm(d-0.5)式中:f ak=100kPaεd=1.5 (第③层粉土I p=8.1 ρw>10%)查表5.2.4。
1 总则1.0.1 为了在地基基础设计中贯彻执行国家的技术经济政策,做到安全适用、技术先进、经济合理、确保质量、保护环境,制定本规范。
1.0.2 本规范适用于工业与民用建筑(包括构筑物)的地基基础设计。
对于湿陷性黄土、多年冻土、膨胀土以及在地震和机械振动荷载作用下的地基基础设计,尚应符合国家现行相应专业标准的规定。
1.0.3 地基基础设计,应坚持因地制宜、就地取材、保护环境和节约资源的原则;根据岩土工程勘察资料,综合考虑结构类型、材料情况与施工条件等因素,精心设计。
1.0.4 建筑地基基础的设计除应符合本规范的规定外,尚应符合国家现行有关标准的规定。
2 术语和符号2.1 术语2.1.1 地基 Subgrade, Foundation soils支承基础的土体或岩体。
2.1.2 基础 Foundation将结构所承受的各种作用传递到地基上的结构组成部分。
2.1.3 地基承载力特征值 Characteristic value of subgrade bearing capacity由载荷试验测定的地基土压力变形曲线线性变形段内规定的变形所对应的压力值,其最大值为比例界限值。
2.1.4 重力密度(重度) Gravity density, Unit weight单位体积岩土体所承受的重力,为岩土体的密度与重力加速度的乘积。
2.1.5 岩体结构面 Rock discontinuity structural plane岩体内开裂的和易开裂的面,如层面、节理、断层、片理等,又称不连续构造面。
2.1.6 标准冻结深度 Standard frost penetration在地面平坦、裸露、城市之外的空旷场地中不少于10年的实测最大冻结深度的平均值。
2.1.7 地基变形允许值 Allowable subsoil deformation为保证建筑物正常使用而确定的变形控制值。
2.1.8 土岩组合地基 Soil-rock composite subgrade在建筑地基的主要受力层范围内,有下卧基岩表面坡度较大的地基;或石芽密布并有出露的地基;或大块孤石或个别石芽出露的地基。
(一)联合基础的计算⑴双柱联合基础的偏心计算:程序在进行双柱联合基础的设计时,并没有考虑由于两根柱子上部荷载不一致而产生的偏心的情况。
因此算出的基础底面积是对称布置的。
这种计算方法对于两根柱子挨得很近,比如变形缝处观柱基础计算几乎没什么影响,但对于两根柱子挨得稍微远一些的基础,则会有一定误差。
此时需要设计人员人为计算出偏心值,在独基布置中将该值输入过去。
然后再重新点取“自动生成”选项,程序可以根据设计人员输入的偏心值重新计算联合基础。
⑵双梁基础的计算:建议直接在双轴线上布置两根肋梁,然后再在梁下布置局部筏板。
(二)砖混结构构造柱基础的计算砖混结构一般都做墙下条形基础,构造柱下一般不单独做独立基础。
有的时候设计人员会发现JCCAD软件在构造柱下生成了独立基础。
这主要是因为读取了PM恒十活所致。
这种荷载组合方式没有将构造柱上的集中荷载平摊到周边的墙上。
设计人员可以在荷载编辑中删除构造柱上的集中荷载,并在附加荷载中在周边的墙上相应增加线荷载值。
或者设计人员也可以直接读取砖混荷载,因为砖混荷载自动将构造柱上的集中荷载平摊到周边的墙上了。
(三)浅基础的最小配筋率如何计算浅基础如墙下条基等,在对基础底板配筋时是否该考虑最小配筋率,目前在工程界还有争议。
《基础设计规范》中没有规定柱下独基底板的最小配筋率,而《混凝土规范》对于混凝土结构均有最小配筋率的要求。
目前JCCAD软件对于独立柱基没有按最小配筋率计算,对于墙下条基缺省情况下按照0.15%控制,设计人员可以根据需要自行调整。
(四)基础重心校核⑴“筏板重心校核”中的荷载值为什么与“基础人机交互”退出时显示的值不一样?产生此种情况的原因主要有以下两种:①对于梁板式基础,由于有些轴线上没有布置梁或板带,造成荷载导算时没有分配到梁或板带上,从而使两种方式所产生的重心校核值不一致。
②地下水的影响:“筏板重心校核”中的荷载值没有考虑地下水的影响,而“基础人机交互”退出时显示的值考虑了地下水的影响。
基础计算书基础尺寸如图所示J-1作用于基础底面的荷载:N K =1228KN, M YK =46KNmN=1657KN, M Y =62KNm1、修正地基承载力计算公式:按《建筑地基基础设计规范》(GB 50007-2002)下列公式验算: f a = f ak +ηb ·γ·(b -3)+ηd ·γm ·(d -0.5) (式5.2.4)式中:f ak = 300.00 kPaηb = 3.00,ηd =4.4γ = 18.00 kN/m 3 γm = 20.00 kN/m 3b = 2 m , d = 1.800 mf a = f ak +ηb ·γ·(b -3)+ηd ·γm ·(d -0.5)= 300.00+3.00×18.00×(3.00-3.00)+4.4×18.00×(1.8-0.50) = 403 kPa2、地基承载力验算: 2224A m =⨯=22311/622 1.336W bl m ==⨯⨯= 20 1.84144k w G r dA KN ==⨯⨯=,max ,min 122814445.93774 1.33122814445.93094 1.33bk k bk k bk k bk k N G M p KN A W N G M p KN A W =+++=+=++=-=-= ()(),max ,min 11/2478.7343.33774032k k k a p p p Kpa f Kpa =+=⨯+=<=,max 377 1.2483.6k a p Kpa f Kpa =<=3、基础抗冲切验算:max min 1657624614 1.331657623674 1.33N M p KN A W N M p KN A W =+=+==-=-= 2002211[()][()]2211[(20.45)0.46]2[(20.45)0.46]220.7l t t A b b h l l a h m =-----=--⨯---= max 3500.7245l s l l F p A p A KN ===⨯= ()()000.70.7245045024600.7 1.0 1.434602419t b h t m h t la a f a h f h KN F ββ+=++⨯=⨯⨯⨯⨯=> 满足抗冲切要求。
以下是程序生成的计算结果,未作任何改动。
柱下扩展基础:J-11、地基承载力设计值:计算公式:《建筑地基基础设计规范》(GBJ7-89)f=fk + ηb*γ*(b-3) + ηd*γo*(d-0.5) (式5.1.3)式中:fk=100.0(kPa)ηb=0.00,ηd=1.00γ=18.0(kN/m3),γo=18.0(kN/m3)b=3.600(m), d=1.500(m)f=100+0.00*18*(3.600-3)+1.00*18*(1.500-0.5)=118.0(kPa)地基承载力设计值f=118.0(kPa)2、地基承载力验算:(1)、基本资料:竖向力设计值F=1450.0(kN)基础自重设计值和基础上的土重标准值G=100.0(kN)作用于基础底面的力矩设计值Mx=35.00(kN·M)My=56.00(kN·M)基础底面长度a=3650(mm),(X方向)基础底面宽度b=3600(mm),(Y方向)基础根部高度H=600(mm)柱子高度hc=400(mm),(X方向)柱子宽度bc=400(mm),(Y方向)as=35(mm)混凝土强度等级为C20。
fc=10.0(N/mm2);fcm=11.0(N/mm2); ft=1.10(N/mm2)钢筋强度设计值fy=210(N/mm2)(2)、当轴心荷载作用时:p=(F+G)/A (式5.1.5-1)其中:A=a*b=3.650*3.600=13.14(m2)p=(1450.0 + 100.0)/13.14=118.0(kPa)≤118.0(kPa),满足要求。
(3)、当偏心荷载作用时:pmax=(F+G)/A+M/W (式5.1.5-2)pmin=(F+G)/A-M/W (式5.1.5-3)My=56.00(kN·M)偏心矩ex=My/(F+G)=56.00/(1450.0+100.0)=0.036(m)≤a/6=3.650/6=0.608(m)基础底面抵抗矩Wx=b*a*a/6=3.600*3.650*3.650/6=7.9935(m3)pmaxX=(1450.0+100.0)/13.14+56.00/7.9935=125.0(kPa)≤1.2*118.0=141.6(kPa),满足要求。
1.a.承载力计算:Pk=(Fk+Gk)/A≤fa----修正后的地基承载力特征值Pkmax≤1.2fa满足以上两个条件即可。
注意:Pkmax=(Fk+Gk)/A+Mk/WPkmin=(Fk+Gk)/A-Mk/Wb.宽度修正与深度修正:基础宽度大于3m或埋置深度大于0.5m。
从载荷试验或其他原位测试、经验值等方法确定的地基承载力特征值fak,还需修正,计算公式详见《地基基础设计规范》5.2.4;c.基础埋置深度:宜自室外地面标高算起,若有填方平整,则需从填土后标高算起;另外,独立基础和条形基础,应从室内地面标高算起。
除岩石地基外,基础埋深不宜小于0.5m;高层建筑基础的埋深:天然地基上的箱形和筏形基础的不宜小于建筑物高度的1/15,桩箱和桩筏基础埋深(不计桩长)不宜小于建筑物高度的1/15。
d.基地附加压力:上部结构和基础传到基底的地基反力{P=(F+G)/A}与基底处原先存在于土中的自重应力(γd)之差e.软弱下卧层验算:Pz(标准组合软弱层顶附加压力)+Pcz(软弱下卧层顶面处土的自重压力)≤faz(下卧层顶面处经深度修正后的地基承载力特征值);详见《地基》5.2.7a. 砌体结构由局部倾斜值控制;框架和单层排架结构由相邻基础的沉降差控制;多层或高层建筑和高耸结构由倾斜值控制;必要时应控制平均沉降量。
b.建筑物的地基变形允许值详《地基》表5.3.4,表中对各种结构对应不同压缩性土的变形允许值给出了要求。
4.2节a.最危险滑动面上诸力对滑动中心产生的抗滑力矩与滑动力矩应符合:MR/MS≥1.2b.边坡安全距离验算,详《地基》5.4.2。
即建筑物自重及压重之和与浮力作用值之比大于抗浮安全系数(一般可取1.05)。
抗浮计算不满足时,可采用增加压重和设置抗浮构件(抗拔桩、抗浮锚杆)等措施。
a.地基基础设计等级:甲级乙级丙级(详《地基》3.0.1)b. 承载力的计算:所有建筑都应满足承载力的计算要求;c.变形验算:地基基础设计等级为甲乙级的建筑以及丙级中满足《地基》3.0.2.3条要求的建筑应进行变形验算;可不验算变形的丙级建筑详表3.0.3d.稳定性:经常受水平荷载作用的高层建筑,高耸结构和挡土墙结构等,以及建造在斜坡或边坡附近的建筑物和构筑物,尚应验算其稳定性a.按地基承载力确定基础底面积及埋深、按单桩承载力确定桩数时,上部荷载应取正常使用极限状态作用下的标准组合,相应抗力应取地基承载力特征值(需修正)、单桩承载力特征值。
地基承载力问答1、地基承载力计算公式是什么?怎样使用?答1、f=fk+ηbγ(b-3)+ηdγο(d-0.5)式中:fk——垫层底面处软弱土层的承载力标准值(kN/m2)ηb、ηd——分别为基础宽度和埋深的承载力修正系数b--基础宽度(m)d——基础埋置深度(m)γ--基底下底重度(kN/m3)γ0——基底上底平均重度(kN/m3)答2 、你想直接用标贯计算承载力,是可行的,承载力有很多很多的计算方法,标贯是其中的一种,但目前规范都逐渐取消了,老版本的工程地质手册记录了很多的世界各地(包括中国)的标贯锤击数N确定承载力的公式,你可以从中选择一个适合你所在地方条件的公式来计算。
答3、根据土的强度理论公式确定地基承载力特征值公式:fa=Mb*γ*b+Md*γm*d+Mc*Ck其中Ck为粘聚力标准值,由勘察单位实地勘察、实验确定,在勘察报告上按土层列表显示。
2、地基承载力计算公式中的d如何取值?d是地基的埋置深度还是基底到该层土层底的深度?答、d就是基础埋置深度(m),一般自室外地面标高算起。
在填方整平地区,可自填土地面标高算起,但填土在上部结构施工后完成时,应从天然地面标高算起。
对于地下室,如采用箱形基础或筏基时,基础埋置深度自室外地面标高算起;当采用独立基础或条形基础时,应从室内地面标高算起。
3、地基承载力计算公式如何推导答、你可以到百度文库里面下载一个GB50007-2002《建筑地基基础设计规范》,里面有详细的给你介绍的!4、地基承载力计算公式是什么?具体符号代表什么?怎样计算?答、 1、地基承载力特征值可由载荷试验或其它原位测试、公式计算、并结合工程实践经验等方法综合确定。
2、当基础宽度大于3m或埋置深度大于0.5m时,从载荷试验或其它原位测试、经验值等方法确定的地基承载力特征值,尚应按下式修正:fa=fak+ηbγ(b-3)+ηdγm(d-0.5)式中fa--修正后的地基承载力特征值;fak--地基承载力特征值ηb、ηd--基础宽度和埋深的地基承载力修正系数γ--基础底面以下土的重度,地下水位以下取浮重度;b--基础底面宽度(m),当基宽小于3m按3m取值,大于6m按6m取值;γm--基础底面以上土的加权平均重度,地下水位以下取浮重度;d--基础埋置深度(m),一般自室外地面标高算起。
铁塔独立基础配筋及地基承载力验算计算书1、1 地基承载力特征值1、1、1 计算公式: 《建筑地基基础设计规范》(GB 50007-2002)fa =fak + ηb * γ* (b - 3) + ηd * γm * (d - 0、5) (基础规范式5、2、4)地基承载力特征值fak =190kPa; 基础宽度的地基承载力修正系数ηb =0、3;基础埋深的地基承载力修正系数ηd=1、6; 基础底面以下土的重度γ=18kN/m, 基础底面以上土的加权平均重度γm =18、0kN/m;基础底面宽度b =4、3m;基础埋置深度d =4、0m当b <3m 时,取b =3m1、1、2 fa =190+0、3*18*(4、3-3)+1、6*18、0*(4-0、5) =297、8kPa修正后的地基承载力特征值fa =297、8kPa1、2 基本资料1、2、1 基础短柱顶承受的轴向压力设计值F=87、4kN1、2、2 基础底板承受的对角线方向弯矩设计值M=1685、6kN·m1、2、3 基础底面宽度(长度) b =l=4300mm基础根部高度H =600mm1、2、4 柱截面高度(宽度) hc =bc =800mm1、2、5 基础宽高比柱与基础交接处宽高比: (b - hc) / 2H =2、91、2、6 混凝土强度等级为C25, fc =11、9N/mm, ft =1、27N/mm1、2、7 钢筋抗拉强度设计值fy=300N/mm; 纵筋合力点至截面近边边缘的距离as=35mm1、2、8 纵筋的最小配筋率ρmin =0、15%1、2、9 荷载效应的综合分项系数γz =1、31、2、10 基础自重及基础上的土重基础混凝土的容重γc =25kN/m;基础顶面以上土的重度γs =18、0kN/m, Gk =Vc * γc + (A - bc * hc) * ds * γs =1427、4kN基础自重及其上的土重的基本组合值G =γG * Gk =1926、9 kN1、3 基础底面控制内力Fk --------- 相应于荷载效应标准组合时,柱底轴向力值(kN);Mxk、Myk --- 相应于荷载效应标准组合时,作用于基础底面的弯矩值(kN·m);F、Mx、My -- 相应于荷载效应基本组合时,竖向力、弯矩设计值(kN、kN·m);F =γz * Fk、Mx =γz * Mxk、My =γz * Myk1、3、1 Fk =67、2kN; Mxk'=Myk'=916、8kN·m;1、4 相应于荷载效应标准组合时,轴心荷载作用下基础底面处的平均压力值pk =(Fk + Gk) / A (基础规范式5、2、2-1)pk =(67、2+1427、4)/18、5 =80、8kPa <fa =297、8kPa,满足要求!1、5 相应于荷载效应标准组合时,偏心荷载作用下基础底面边缘处的最大、最小压力值pkmax =(Fk + Gk) / A + Mk / W (基础规范式5、2、2-2)pkmin =(Fk + Gk) / A - Mk / W (基础规范式5、2、2-3)双向偏心荷载作用下pkmax =(Fk + Gk) / A + Mxk / Wx + Myk / Wy (高耸规范式7、2、2-4)pkmin =(Fk + Gk) / A - Mxk / Wx - Myk / Wy (高耸规范式7、2、2-5)基础底面抵抗矩Wx =Wy =b * l * l / 6 =4、3*4、3*4、3/6 =13、251mpkmax =(67、2+1427、4)/18、49+ 2*916、8/13、3 =219、2kPapkmin =(67、2+1427、4)/18、49- 2*916、8/13、3 =-57、5kPa1、5、1 由于pkmin< 0,基础底面已经部分脱开地基土。
2-6 木结构计算12-6-1 木结构计算用表1.承重结构构件材质等级(表2-97)承重结构构件材质等级表2-97注:1.屋面板、挂瓦条等次要构件可根据各地习惯选材,不统一规定其材质等级。
2.本表中的材质等级系按承重结构的受力要求分级,其选材应符合《木结构设计规范》GBJ 5-88材质标准的规定,不得用一般商品材等级标准代替。
2.常用树种木材的强度设计值和弹性模量(表2-98)常用树种木材的强度设计值和弹性模量(N/mm2)表2-98注:1.对位于木构件端部(如接头处)的拉力螺栓垫板,其计算中所取用的木材横纹承压强度设计值,应按“局部表面及齿面”一栏的数值采用。
木材树种归类说明见《木结构设计规范》附录五。
2.当采用原木时,若验算部位未经切削,其顺纹抗压和抗弯强度设计值和弹性模量可提高15%。
1因新的木结构设计规范尚未出版,此处仍按“木结构设计规范”(GBJ 5-88)编写。
3.当构件矩形截面短边尺寸不小于150mm时,其抗弯强度设计值可提高10%。
4.当采用湿材时,各种木材横纹承压强度设计值和弹性模量,以及落叶松木材的抗弯强度设计值宜降低10%。
5.在表2-99所列的使用条件下,木材的强度设计值及弹性模量应乘以该表中给出的调整系数。
木材强度设计值和弹性模量的调整系数表2-99验算。
2.当若干条件同时出现,表列各系数应连乘。
木材强度检验标准见表2-100。
木材强度检验标准表2-100注:1.检验时,应从每批木材的总根数中随机抽取3根为试材,在每根试材髓心以外部分切取3个试件为一组,根据各组平均值中最低的一个值确定该批木材的强度等级。
2.试验应按现行国家标准《木材物理力学性能试验方法》进行。
并应将试验结果换算到含水率为12%的数值。
3.按检验结果确定的木材强度等级,不得高于表2-98中同树种木材的强度等级。
对于树名不详的木材,应按检验结果确定的等级,采用表2-98中该等级B的设计指标。
3.新利用树种木材的强度设计值和弹性模量(表2-101)新利用树种木材的强度设计值和弹性模量(N/mm2)表2-101注:杨木和拟赤杨的顺纹强度设计值和弹性模量可按TB11级数值乘以0.9采用;横纹强度设计值可按TB11级数值乘以0.6采用。
基础工程地基长度计算公式在建筑工程中,地基是建筑物的基础,它承受着建筑物的重量并将其传递到地面。
因此,地基的设计和施工对于建筑物的安全和稳定性至关重要。
在设计地基时,地基长度的计算是一个非常重要的步骤,它决定了地基的承载能力和稳定性。
本文将介绍基础工程地基长度计算的公式及其相关知识。
地基长度的计算是根据地基承载能力和建筑物的重量来确定的。
地基承载能力是指地基能够承受的最大荷载,它取决于地基的类型、土壤的性质和地下水位等因素。
建筑物的重量则是指建筑物本身的重量以及其所承载的荷载。
在进行地基长度计算时,需要考虑这两个因素,并根据相关的公式进行计算。
地基长度的计算公式通常采用以下公式:L = (W + P) / q。
其中,L表示地基长度,W表示建筑物的重量,P表示建筑物所承载的荷载,q 表示地基的承载能力。
在实际应用中,地基长度的计算还需要考虑地基的类型、土壤的性质、地下水位等因素。
不同类型的地基(如浅基础、深基础、桩基础等)具有不同的承载能力和稳定性,因此在进行地基长度计算时需要根据实际情况选择合适的地基类型,并进行相应的修正。
此外,土壤的性质也对地基长度的计算产生影响。
不同类型的土壤具有不同的承载能力和变形特性,因此在进行地基长度计算时需要对土壤的性质进行合理的评估,并进行相应的修正。
地下水位也是影响地基长度计算的重要因素之一。
地下水位的变化会影响土壤的承载能力和稳定性,因此在进行地基长度计算时需要对地下水位进行合理的考虑,并进行相应的修正。
在进行地基长度计算时,还需要考虑建筑物的结构形式、荷载的分布情况等因素。
不同的建筑物结构形式和荷载分布情况会对地基长度产生影响,因此在进行地基长度计算时需要对这些因素进行合理的考虑,并进行相应的修正。
综上所述,地基长度的计算是一个复杂的过程,需要考虑多种因素并进行合理的修正。
在实际应用中,需要根据具体的情况选择合适的地基长度计算公式,并进行相应的修正。
通过合理的地基长度计算,可以确保地基的承载能力和稳定性,从而保障建筑物的安全和稳定。
2-2 建筑地基基础计算2-2-1 地基基础计算用表1.地基基础设计等级(表2-27)地基基础设计等级表2-27根据建筑物地基基础设计等级及长期荷载作用下地基变形对上部结构的影响程度,地基基础设计应符合下列规定:(1)所有建筑物的地基计算均应满足承载力计算的有关规定。
(2)设计等级为甲级、乙级的建筑物,均应按地基变形设计。
(3)表2-28所列范围内设计等级为丙级的建筑物可不作变形验算,如有下列情况之一时,仍应作变形验算:1)地基承载力特征值小于130kPa,且体型复杂的建筑;2)在基础上及其附近有地面堆载或相邻基础荷载差异较大,可能引起地基产生过大的不均匀沉降时;3)软弱地基上的建筑物存在偏心荷载时;4)相邻建筑距离过近,可能发生倾斜时;5)地基内有厚度较大或厚薄不均的填土,其自重固结未完成时。
(4)对经常受水平荷载作用的高层建筑、高耸结构和挡土墙等,以及建造在斜坡上或边坡附近的建筑物和构筑物,尚应验算其稳定性。
(5)基坑工程应进行稳定性验算。
(6)当地下水埋藏较浅,建筑地下室或地下构筑物存在上浮间题时,尚应进行抗浮验算。
可不作地基变形计算设计等级为丙级的建筑物范围表2-28注:1.地基主要受力层系指条形基础底面下深度为3b(b为基础底面宽度),独立基础下为1.5b,且厚度均不小于5m的范围(二层以下一般的民用建筑除外);2.地基主要受力层中如有承载力特征值小于130kPa的土层时,表中砌体承重结构的设计,应符合《建筑地基基础设计规范》(GB 50007-2002)中第7章的有关要求;3.表中砌体承重结构和框架结构均指民用建筑,对于工业建筑可按厂房高度、荷载情况折合成与其相当的民用建筑层数;4.表中吊车额定起重量、烟囱高度和水塔容积的数值系指最大值。
2.基础宽度和埋深的地基承载力修正系数(表2-29)承载力修正系数表2-29注:1.强风化和全风化的岩石,可参照所风化成的相应土类取值,其他状态下的岩石不修正;2.地基承载力特征值按地基基础设计规范附录D深层平板载荷试验确定时ηd取0。
地基承载力特征值f a =0.33*9.945=3.28MPa单桩竖向承载力设计值 :N ≤A·f c ·ψc地基承载力特征值f ak =0.33*9.945=3.28MPa(4.2.3条)f a =(1+0.052·n)f ak(8.1.11条)ZJ1条基1800mm axb= 1.4x7.3N max =37125KN N kmax =30937.5KNM=2838kN·m M k =2365KN V=123KN V k =102.5KN10.22m23.50MPaγ0·p k =3127.15kpa 满足γ0·p kmax =3350.33kpa 满足N=24177KN N k =20147.5KN M max =11858kN·m M kmax =9881.6667KN V max =1384KN V kmax =1153.3333KN10.22m 23.49MPaγ0·p k =2071.38kpa 满足γ0·p kmax =3237.10kpa满足二) 桩身承载力计算A---桩身截面面积1. 本工程桩身承载力计算,《建筑地基基础设计规范》(DBJ50-047-2006)的8.3.4条。
2. 工作条件系数ψc =0.9 。
3. 桩混凝土等级:C30,f c =14.3 N/mm 2。
4.桩顶竖向力N 采用荷载效应的基本组合,采用 satwe 的底层墙柱最大内力组合值 。
R=β·f a ·A pγ0·N k ≤R ;6栋基础计算4.中风化泥岩的天然抗压强度标准值为11.70MPa ,地基极限承载力标准值f uk 为0.85*11.7=9.945MPa 桩基计算一) 桩基承载力计算1. 本工程桩基嵌岩段承载力计算,采用《建筑地基基础设计规范》(DBJ50-047-2006)的8.3.10条。
浅基础习题及参考答案2-4 某承重墙厚240mm,作用于地面标高处的荷载F k=180kN/m,拟采用砖基础,埋深为1.2 m。
地基土为粉质粘土,g=18kN/m3,e0=0.9,f ak=170kPa。
试确定砖基础的底面宽度,并按二皮一收砌法画出基础剖面示意图。
〔解〕查表2-5,得ηd=1.0,代入式(2-14),得f a= f ak+ηdγm(d-0.5)=170+1.0×18×(1.2-0.5)=182.6kPa按式(2-20)计算基础底面宽度:为符合砖的模数,取b=1.2m,砖基础所需的台阶数为:2-5 某柱基承受的轴心荷载F k=1.05MN,基础埋深为1m,地基土为中砂,γ=18 kN/m3,f ak=280kPa。
试确定该基础的底面边长。
〔解〕查表2-5,得ηd=4.4。
f a= f ak+ηdγ m(d-0.5) =280+4.4×18×(1-0.5)=319.6kPa取b=1.9m。
2-6 某承重砖墙厚240mm,传至条形基础顶面处的轴心荷载F k=150kN/m。
该处土层自地表起依次分布如下:第一层为粉质粘土,厚度2.2m,γ=17kN/m3,e =0.91,f ak=130kPa,E s1=8.1MPa;第二层为淤泥质土,厚度1.6m,f ak=65kPa, E s2=2.6MPa;第三层为中密中砂。
地下水位在淤泥质土顶面处。
建筑物对基础埋深没有特殊要求,且不必考虑土的冻胀问题。
(1)试确定基础的底面宽度(须进行软弱下卧层验算);(2)设计基础截面并配筋(可近似取荷载效应基本组合的设计值为标准组合值的1.35倍)。
解 (1)确定地基持力层和基础埋置深度第二层淤泥质土强度低、压缩性大,不宜作持力层;第三层中密中砂强度高,但埋深过大,暂不考虑;由于荷载不大,第一层粉质粘土的承载力可以满足用做持力层的要求,但由于本层厚度不大,其下又是软弱下卧层,故宜采用“宽基浅埋”方案,即基础尽量浅埋,现按最小埋深规定取d=0.5m。
214页地基基础设计手算实例手册全文共四篇示例,供读者参考第一篇示例:地基基础设计是建筑工程中非常重要的一环,直接关系到整个建筑的安全和稳定性。
在进行地基基础设计时,要考虑地基的承载能力、地基的变形、地基与结构连接等因素,以确保建筑的安全可靠。
本手册将详细介绍地基基础设计的手算实例,帮助读者更好地了解地基基础设计的原理和方法。
第一章:地基基础设计概述地基基础设计的基本原理包括地基承载能力、地基土压力分布、地基沉降、地基基础与建筑物的连接等方面。
地基承载能力是指地基土体承受建筑物荷载的能力,主要根据地基土体的抗剪强度和变形特性来确定。
地基土压力分布是指建筑物荷载作用下地基土体的应力分布情况,通常由地基基础形式来确定。
地基沉降是指地基土体由于建筑物荷载作用而产生的变形,通过地基基础的形式和尺寸来控制。
地基基础与建筑物的连接是指地基基础与建筑物之间的连接方式,包括浇筑接口的设计、支撑方式等。
在进行地基基础设计时,通常需要进行一系列的手算实例来确定地基基础的尺寸和形式。
本章将以具体的实例为例,介绍地基基础设计的计算方法和步骤。
通过以上手算实例,读者可以更好地了解地基基础设计的计算方法和步骤,掌握地基基础设计的基本原理和技术要点,从而提高地基基础设计的准确性和可靠性。
在进行地基基础设计时,还需要注意一些细节问题,以确保地基基础设计的准确性和可靠性。
首先是要充分了解建筑物的荷载特性和地下水位等因素,选定适合的地基基础形式和尺寸。
其次是要合理选择地基土体的基本参数,包括抗剪强度、变形模量等参数,以准确计算地基基础的承载能力和变形。
还需要注意地基基础的施工过程和质量控制,确保地基基础的施工质量和安全性。
第二篇示例:地基基础设计是土木工程中重要的一环,其质量直接关系着建筑物的安全和稳定性。
在地基基础设计中,手算实例是非常重要的一部分,通过手算可以更深入地理解地基基础设计的原理和计算方法。
《214页地基基础设计手算实例手册》是一本很好的参考书籍,本文将就该手册内容进行介绍和分析。
实测(不少于十年)最大冻深的平均值。
由于建设场地通常不具备上述标准条件,所以标准冻结深度一般不直接用于设计中,而是要考虑场地实际条件将标准冻结深度乘以冻深影响系数,使得到的场地冻深更接近实际情况。
公式5.1.7中主要考虑了土质系数、湿度系数、环境系数。
土质对冻深的影响是众所周知的,因岩性不同其热物理参数也不同,粗颗粒土的导热系数比细颗粒土的大。
因此,当其他条件一致时,粗颗粒土比细颗粒土的冻深大,砂类土的冻深比粘性土的大。
我国对这方面问题的实测数据不多,不系统,前苏联74年和83年《房屋及建筑物地基》设计规范中有明确规定,本规范采纳了他们的数据。
土的含水量和地下水位对冻深也有明显的影响,因土中水在相变时要放出大量的潜热,所以含水量越多,地下水位越高(冻结时向上迁移水量越多),参与相变的水量就越多,放出的潜热也就越多,由于冻胀土冻结的过程也是放热的过程,放热在某种程度上减缓了冻深的发展速度,因此冻深相对变浅。
城市的气温高于郊外,这种现象在气象学中称谓城市的“热岛效应”。
城市里的辐射受热状况改变了(深色的沥青屋顶及路面吸收大量阳光),高耸的建筑物吸收更多的阳光,各种建筑材料的热容量和传热量大于松土。
据计算,城市接受的太阳辐射量比郊外高出10%~30%,城市建筑物和路面传送热量的速度比郊外湿润的砂质土壤快3倍,工业排放、交通车辆排放尾气,人为活动等都放出很多热量,加之建筑群集中,风小对流差等,使周围气温升高。
这些都导致了市区冻结深度小于标准冻深,为使设计时采用的冻深数据更接近实际,原规范根据国家气象局气象科学研究院气候所、中国科学院、北京地理研究所气候室提供的数据,给出了环境对冻深的影响系数,经多年使用没有问题,因此本次修订对此不做修改,但使用时应注意,此处所说的城市(市区)是指城市集中区,不包括郊区和市属县、镇。
冻结深度与冻土层厚度两个概念容易混淆,对不冻胀土二者相同,但对冻胀性土,尤其强冻胀以上的土,二者相差颇大。
建筑地基与基础钢筋量计算建筑地基是建筑物的基础,承受建筑物重量并将其传递到地下的土壤中。
地基的设计和施工是建筑工程中非常重要的一部分,其中包括计算地基的尺寸和基础钢筋量。
下面将介绍一些常用的方法来计算建筑地基和基础钢筋的量。
1.确定地基的类型和尺寸:地基的类型和尺寸取决于建筑物的类型和重量。
常见的地基类型包括浅基础和深基础。
浅基础用于轻型建筑物,深基础用于重型建筑物。
确定地基尺寸的方法通常是根据建筑物的重量和土壤的承载力来计算。
2.计算地基的尺寸:地基尺寸的计算通常遵循以下几个步骤:a.确定土壤的承载力:土壤的承载力是指在不发生陷落或沉降的情况下能够承受的最大重量。
要确定土壤的承载力,可以进行现场勘测或参考地质资料。
b.确定建筑物的重量:建筑物的重量包括自身重量和受荷载引起的重量。
要确定建筑物的重量,可以参考建筑设计文件或进行结构分析。
c.计算地基面积:根据土壤的承载力和建筑物的重量,可以计算出所需的地基面积。
这通常通过将建筑物的重量除以土壤的承载力来计算得出。
d.确定地基的深度:地基的深度取决于土壤类型和所需的承载能力。
一般来说,地基的深度应该超过冻土层或松土层。
3.计算基础钢筋量:基础钢筋是为了增强地基的承载能力而加入的钢筋。
基础钢筋的计算通常遵循以下几个步骤:a.确定地基底面积:地基底面积是指地基的投影面积。
要计算地基底面积,可以将地基尺寸投影在水平面上。
b.确定基础钢筋的配筋率:基础钢筋的配筋率是指钢筋的面积与地基底面积之比。
一般来说,基础钢筋的配筋率应在0.5%到1.5%之间,具体取决于设计要求和土壤性质。
c.计算基础钢筋的总量:基础钢筋的总量等于基础钢筋的配筋率乘以地基底面积。
例如,如果地基底面积为100平方米,基础钢筋的配筋率为1%,则基础钢筋的总量为100平方米乘以1%等于1平方米。
需要注意的是,以上所述的方法只是一种简化的计算方法,实际的计算方法可能更加复杂和细致。
在进行真实的建筑地基和基础钢筋计算时,应该参考相关的建筑设计规范和标准,并且最好由经验丰富的工程师进行计算和设计。
独立基础计算书计算依据:1、《建筑地基基础设计规范》GB50007-20112、《混凝土结构设计规范》GB50010-20103、《建筑结构荷载规范》GB50009-2012一、基本参数1、上部荷载参数(kN/m3)fa(kPa)2 地基压力扩散角θ(°)23 基础底面至软弱下卧层顶部的距离z(m)160软弱下卧层顶处修正后的地基承载力设计值faz(kPa)平面图剖面图1-1剖面图2-2三、承台验算1、基础受力设计值计算:F=200KNM x′=M x+H1×V x=50+2.4×10=74kN·m M y′=M y+H1×V y=50+2.4×10=74kN·m 标准值计算:(标准组合)F k=K s×F=1.3×200=260kNM xk=K s×M x′=1.3×74=96.2kN·mM yk=K s×M y′=1.3×74=96.2kN·m2、基础及其上土的自重荷载标准值:G k=L×B×(γc×h1+ (h′+h2+h3) ×γ′)+L1×B1×h2×(γc-γ′)+(d x×2+a )×(d y×2+b)×h3×(γc-γ′)=3.6×2.8×(24×0.4+ (1.2+0.4+0.4)×17)+2.8×2×0.4×(24-17)+(0.6×2+0.8 ) ×(0.3×2+0.6)×0.4×(24-17)=461.888kN 3、基础底面压应力计算p k = (F k + G k)/A=(260+461.888)/(2.8×3.6)=71.616kPa基础底面抵抗矩:W X= BL2/6=2.8×3.62/6=6.048m3基础底面抵抗矩:W Y= LB2/6=3.6×2.82/6=4.704m3e x=M xk /(F k+G k)=96.2/(260+461.888)=0.133p xkmax= (F k + G k)/A + |M xk|/W x=71.616+96.2/6.048=87.522kPap xkmin= (F k + G k)/A - |M xk|/W x=71.616-96.2/6.048=55.71kPap x增= p xkmax-p k=15.906kPap x减= p k-p xkmin=15.906kPae y=M yk/(F k+G k)=96.2/(260+461.888)=0.133p ykmax= (F k + G k)/A + |M yk|/W y=71.616+96.2/4.704=92.067kPap ykmin= (F k + G k)/A - |M yk|/W y=71.616-96.2/4.704=51.165kPap y增= p ykmax-p k=20.451kPap y减= p k-p ykmin=20.451kPap kmax = p k+ p x增+ p y增=71.616+15.906+20.451=107.973kPap kmin = p k- p x减- p y减=71.616-15.906-20.451=35.259kPa基座反力图1)轴心作用时地基承载力验算P k=71.616kPa≤f a=224.72kPa满足要求!2)偏心作用时地基承载力验算P kmax=107.973kPa≤1.2f a=1.2×224.72=269.664kPa满足要求!4、软弱下卧层验算基础底面处土的自重压力值:p c= H1×γm=2.4×18=43.2kPa下卧层顶面处附加压力值:p z=l b×(p kmax-p c)/((b+2ztanθ)(l+2ztanθ))=3.6×2.8×(107.973-43.2)/((2.8+2×2×tan23)×(3.6+ 2×2×tan23))=27.399kPa软弱下卧层顶面处土的自重压力值:p cz=z×γ=2×20=40kPa作用在软弱下卧层顶面处总压力:p z+p cz=27.399+40=67.399kPa≤f az=160kPa 满足要求!5、基础抗剪切验算P jmax= K c×(p kmax-G k/A) =1.35×(107.973-461.888/(3.6×2.8))=83.904kPaP jmin=0kPa1)第一阶验算抗剪切计算简图一阶X向抗剪切计算简图一阶y向h0x=h1-(δ+φx/2) = 400-(50+10/2)=345mmβhx=(800/ h0x)0.25=1A cx1= Lh0x=3600×345=1242000 mm2V x=0.7×βhx×f t×A cx1=0.7×1×1.43×1242000=1243242N=1243.242kN≥p jmax ×L×(B-B1)/2=83.904×3.6×(2.8-2)/2=120.822kNh0y=h1-(δ+φy /2)= 400-(50+10/2)=345mmβhy=(800/h0y)0.25=1A cy1=Bh0y= 600×345=207000 mm2V y=0.7×βhy×f t×A cy1=0.7×1×1.43×207000=207207N=207.207kN≥p jmax×B×(L-L1)/2=83.904×2.8×(3.6-2.8)/2=93.972 kN满足要求!2)第二阶验算抗剪切计算简图二阶X向抗剪切计算简图二阶y向h0x=h1-(δ+φx/2)+ h2 =400-(50+10/2)+400=745mmβhx=(800/h0x)0.25=1A cx2=L×(h0x-h2) + L1×h2=3600×(745-400)+2800×400=2362000 mm2V x=0.7×βhx×f t×A cx2=0.7×1×1.43×2362000=2364362N=2364.362kN≥p jmax×L×(B-( b+2d y))/2=83.904×3.6×(2.8-0.6-2×0.3)/2=241.644 kNh0y=h1-(δ+φy/2)+ h2 =400-(50+10/2)+400=745mmβhy=(800/h0y)0.25=1A cy2=B×(h0y-h2) + B1×h2=2800×(745-400)+2000×400=1766000 mm2V y=0.7×βhy×f t×A cy2=0.7×1×1.43×1766000=1767766N=1767.766kN≥p jmax×B×(L-( a+2d x))/2=83.904×2.8×(3.6-0.8-2×0.6)/2=187.945 kN满足要求!3)第三阶验算抗剪切计算简图三阶X向抗剪切计算简图三阶y向h0x=h1-(δ+φx/2) + h2+ h3=400-(50+10/2)+400+400=1145mmβhx=(800/h0x)0.25=0.914A cx3=L×(h0x-h2-h3)+L1×h2+(a+2d x)×h3=3600×(1145-400-400)+2800×400+(800+2×600)×400=3162000 mm2V x=0.7×βhx×f t×A cx3=0.7×0.914×1.43×3162000=2892958.068N=2892.958kN≥p jmax ×L×(B-b)/2=83.904×3.6×(2.8-0.6)/2=332.26kNh0y=h1-(δ+φy/2) + h2+ h3= 400-(50+10/2)+400+400=1145mmβhy=(800/h0y)0.25=0.914A cy3=B×(h0y-h2-h3)+B1×h2+(b+2d y)×h3=2800×(1145-400-400)+2000×400+(600+2×300)×400=2246000 mm2V y=0.7×βhy×f t×A cy3=0.7×0.914×1.43×2246000=2054896.844N=2054.897kN≥p jmax ×B×(L-a)/2=83.904×2.8×(3.6-0.8)/2=328.904kN满足要求!6、基础抗冲切验算1)第一阶验算k=(L1 -B1 )/2=(2800-2000)/2=400mmX方向验算:抗冲切验算一阶X向a bx=2h0x +L1=2×345+2800=3490 mm≤L=3600mm,取a bx=2h0x+L1=3490 mm y1= L/2-k=3600/2-400 =1400 mm≥B/2=1400 mmx1=2×(B/2+k) =2×(2800/2+400) =3600 mmy2=h0x +B1/2=345+2000/2 =1345 mmA lx=(B/2-y2)(a bx+x1)/2 = (2800/2-1345)( 3490+3600)/2=194975 mm2Y方向验算:抗冲切验算一阶y向a by=2h0y+B1=2×345+2000=2690mm≤B=2800mm,取a by=2h0y+B1=2690mm x1= B/2+k= 2800/2+400=1800 mm≥3600/2=1800 mmy1=2×(L/2-k) =2×(3600/2-400)=2800 mmx2= h0y +L1/2=345+2800/2=1745mmA ly= (L/2-x2)(a by+y1)/2 = (3600/2-1745)(2690+2800)/2=150975mm2a mx=(a t +a bx)/2=(2800+3490)/2=3145mma my=(a t +a by)/2 =(2000+2690)/2=2345mmA q1x=a mx×h0x=3145×345=1085025 mm2A q1y=a my×h0y=2345×345=809025 mm2F lx=0.7×βhp×f t×A q1x=0.7×1×1.43×1085025=1086110.025N=1086.11kN≥p jmax ×A lx=83.904×0.001×194975=16359.182N=16.359kNF1y=0.7×βhp×f t×A q1y=0.7×1×1.43×809025=809834.025N=809.834kN≥p jmax ×A ly=83.904×0.001×150975=12667.406N=12.667kN满足要求!2)第二阶验算k=((a+2d x) -(b+2d y) )/2=((800+2×600)-(600+2×300))/2=400mmX方向验算:抗冲切验算二阶X向a bx=2h0x +(a+2d x)=2×745+(800+2×600)=3490 mm≤L=3600mm,取a bx=2h0x+(a+2d x)=3490 mmy1= L/2-k=3600/2-400 =1400 mm≥B/2=1400 mmx1=2×(B/2+k) =2×(2800/2+400) =3600 mmy2=h0x +(b+2d y)/2=745+(600+2×300)/2 =1345 mmA lx=(B/2-y2)(a bx+x1)/2 = (2800/2-1345)( 3490+3600)/2=194975 mm2Y方向验算:抗冲切验算二阶y向a by=2h0y+(b+2d y)=2×745+(600+2×300)=2690mm≤B=2800mm,取a by=2h0y+(b+2d y)=2690mmx1= B/2+k= 2800/2+400=1800 mm≥3600/2=1800 mmy1=2×(L/2-k) =2×(3600/2-400)=2800 mmx2= h0y +(a+2d x)/2=745+(800+2×600)/2=1745mmA ly= (L/2-x2)(a by+y1)/2 = (3600/2-1745)(2690+2800)/2=150975mm2a mx=(a t +a bx)/2=(2000+3490)/2=2745mma my=(a t +a by)/2 =(1200+2690)/2=1945mmA q1x=a mx×h0x=2745×745=2045025 mm2A q1y=a my×h0y=1945×745=1449025 mm2F lx=0.7×βhp×f t×A q1x=0.7×1×1.43×2045025=2047070.025N=2047.07kN≥p jmax×A lx=83.904×0.001×194975=16359.182N=16.359kNF1y=0.7×βhp×f t×A q1y=0.7×1×1.43×1449025=1450474.025N=1450.474kN≥p jmax ×A ly=83.904×0.001×150975=12667.406N=12.667kN满足要求!3)第三阶验算k=(a -b )/2=(800-600)/2=100mmX方向验算:抗冲切验算三阶X向a bx=2h0x+a=2×1145+800=3090 mm≤L=3600mm,取a bx=2h0x+a=3090 mmy1= L/2-k=3600/2-100 =1700 mm≥B/2=1400 mmx1=2×(B/2+k) =2×(2800/2+100) =3000 mmy2=h0x +b/2=1145+600/2 =1445 mmA lx=(B/2-y2)(a bx+x1)/2 = (2800/2-1445)( 3090+3000)/2=-137025 mm2因为A lx<0,即A lx不存在,故取A lx=0Y方向验算:抗冲切验算三阶y向a by=2h0y+b=2×1145+600=2890mm> B=2800mm,取a by=B=2800mm x2= h0y +a/2= 1145 +800/2=1545mmA ly= (L /2- x2) ×a by= (3600 /2- 1545) ×2800=714000mm2a mx=(a t +a bx)/2=(800+3090)/2=1945mma my=(a t +a by)/2 =(600+2800)/2=1700mmA q1x=a mx×h0x=1945×1145=2227025 mm2A q1y=a my×h0y=1700×1145=1946500 mm2F lx=0.7×βhp×f t×A q1x=0.7×0.914×1.43×2227025=2037536.351N=2037.536kN≥p jmax×A lx=83.904×0.001×0=0N=0kNF1y=0.7×βhp×f t×A q1y=0.7×0.914×1.43×1946500=1780880.101N=1780.88kN≥p jmax×A ly=83.904×0.001×714000=59907.456N=59.907kN满足要求!四、承台配筋计算承台底部X轴向配筋HRB335Ф10@120承台底部Y轴向配筋HRB335Ф10@110基础底板受力配筋图P j= K c×(p k-G k/A) =1.35×(71.616-461.888/(3.6×2.8))=34.822kPa1)第一阶验算M1x=1/48[(p jmax+ p j) ×(2L+ L1)+ (p jmak-p j) ×L] ×(B -B1)2=1/48×[(83.904+ 34.822) × (2×3600+ 2800)+ (83.904-34.822 ) ×3600] ×(2800- 2000)2=18.186 kN·m M1y=1/48[(p jmax+ p j) ×(2B+ B1)+ (p jmak-p j) ×B] ×(L -L1)2=1/48×[(83.904+ 34.822) × (2×2800+ 2000)+ (83.904-34.822 ) ×2800] ×(3600- 2800)2=13.863 kN·mA sx1=M1x/(0.9×f yx×h0x) =18.186×106/(0.9×300×345)=195.233mm2A sy1=M1y/(0.9×f yy×h0y) =13.863×106/(0.9×300×345)=148.824mm22)第二阶验算M2x=1/48[(p jmax+ p j) ×(2L+ (a+2d x))+ (p jmak-p j) ×L] ×(B -(b+2d y))2=1/48×[(83.904+ 34.822) × (2×3600+ (800+2×600))+ (83.904-34.822 ) ×3600]×(2800- (600+2×300))2=67.679 kN·mM2y=1/48[(p jmax+ p j) ×(2B+ (b+2d y))+ (p jmak-p j) ×B] ×(L -(a+2d x))2=1/48×[(83.904+ 34.822) × (2×2800+ (600+2×300))+ (83.904-34.822 ) ×2800]×(3600- (800+2×600))2=50.388 kN·mA sx2=M2x/(0.9×f yx×h0x) =67.679×106/(0.9×300×745)=336.46mm2A sy2=M2y/(0.9×f yy×h0y) =50.388×106/(0.9×300×745)=250.5mm23)第三阶验算M3x=1/48[(p jmax+ p j) ×(2L+ a)+ (p jmak-p j) ×L] ×(B -b)2=1/48×[(83.904+ 34.822) × (2×3600+ 800)+ (83.904-34.822 ) ×3600] ×(2800- 600)2=113.589 kN·m M3y=1/48[(p jmax+ p j) ×(2B+ b)+ (p jmak-p j) ×B] ×(L -a)2=1/48×[(83.904+ 34.822) × (2×2800+ 600)+ (83.904-34.822 ) ×2800] ×(3600- 800)2=142.677 kN·mA sx3=M3x/(0.9×f yx×h0x ) =113.589×106/(0.9×300×1145)=367.424mm2A sy3=M3y/(0.9×f yy×h0y) =142.677×106/(0.9×300×1145)=461.514mm2A sx=max(A sx1,A sx2,A sx3)=max(195.233,336.46,367.424)=367.424mm2≤A SX=[(2800/120)+1]×3.14×102/4=1910.167 mm2A sy=max(A sy1,A sy2,A sy3)=max(148.824,250.5,461.514)=461.514mm2≤A SY=[(3600/110)+1]×3.14×102/4=2647.591 mm2满足要求!(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持)。
8.4 高层建筑筏形基础8.4.1 筏形基础分为梁板式和平板式两种类型,其选型应根据地基土质、上部结构体系、柱距、荷载大小、使用要求以及施工条件等因素确定。
框架-核心筒结构和筒中筒结构宜采用平板式筏形基础。
【条文说明】 筏形基础分为平板式和梁板式两种类型,其选型应根据工程具体条件确定。
与梁板式筏基相比,平板式筏基具有抗冲切及抗剪切能力强的特点,且构造简单,施工便捷,经大量工程实践和部分工程事故分析,平板式筏基具有更好的适应性。
8.4.2筏形基础的平面尺寸,应根据工程地质条件、上部结构的布置、地下结构底层平面以及荷载分布等因素按本规范第五章有关规定确定。
对单幢建筑物,在地基土比较均匀的条件下,基底平面形心宜与结构竖向永久荷载重心重合。
当不能重合时,在作用的准永久组合下,偏心距e 宜符合下式规定:e ≤0.1W /A (8.4.2)式中:W ——与偏心距方向一致的基础底面边缘抵抗矩(m 3); A ——基础底面积(m 2)。
【条文说明】 对单幢建筑物,在均匀地基的条件下,基础底面的压力和基础的整体倾斜主要取决于作用的准永久组合下产生的偏心距大小。
对基底平面为矩形的筏基,在偏心荷载作用下,基础抗倾覆稳定系数KF 可用下式表示:式中:B ——与组合荷载竖向合力偏心方向平行的基础边长;e ——作用在基底平面的组合荷载全部竖向合力对基底面积形心的偏心距;y ——基底平面形心至最大受压边缘的距离,γ为y 与B 的比值。
从式中可以看出e/B 直接影响着抗倾覆稳定系数K F ,K F 随着e/B 的增大而降低,因此容易引起较大的倾斜。
表16三个典型工程的实测证实了在地基条件相同时,e/B 越大,则倾斜越大。
表16 e/B 值与整体倾斜的关系高层建筑由于楼身质心高,荷载重,当筏形基础开始产生倾斜后,建筑物总重对基础底面形心将产生新的倾复力矩增量,而倾复力矩的增量又产生新的倾斜增量,倾斜可能随时间而增长,直至地基变形稳定F y B K e e e B γγ===为止。
2-2 建筑地基基础计算2-2-1地基基础计算用表1 .地基基础设计等级(表2-27)响程度,地基基础设计应符合下列规定:(1)所有建筑物的地基计算均应满足承载力计算的有关规定。
(2)设计等级为甲级、乙级的建筑物,均应按地基变形设计。
(3)表2-28所列范围内设计等级为丙级的建筑物可不作变形验算,如有下列情况之一时,仍应作变形验算:1)地基承载力特征值小于130k Pa,且体型复杂的建筑;2)在基础上及其附近有地面堆载或相邻基础荷载差异较大,可能引起地基 产生过大的不均匀沉降时;地基内有厚度较大或厚薄不均的填土,其自重固结未完成时。
(4)对经常受水平荷载作用的高层建筑、高耸结构和挡土墙等,以及建造在斜坡上或边坡附近的建筑物和构筑物,尚应验算其稳定性。
(5)基坑工程应进行稳定性验算。
3) 软弱地基上的建筑物存在偏心荷载时; 4) 相邻建筑距离过近,可能发生倾斜时; 5)(6)当地下水埋藏较浅,建筑地下室或地下构筑物存在上浮间题时,尚应进行抗浮验算。
可不作地基变形计算设计等级为丙级的建筑物范围表2-28注:1.地基主要受力层系指条形基础底面下深度为3b (b为基础底面宽度),独立基础下为1.5b,且厚度均不小于5m的范围(二层以下一般的民用建筑除外)2•地基主要受力层中如有承载力特征值小于130kPa的土层时,表中砌体承重结构的设计,应符合《建筑地基基础设计规范》(GB 50007-2002 )中第7章的有关要求;3.表中砌体承重结构和框架结构均指民用建筑,对于工业建筑可按厂房高度、荷载情况折合成与其相当的民用建筑层数;4•表中吊车额定起重量、烟囱高度和水塔容积的数值系指最大值。
2.基础宽度和埋深的地基承载力修正系数(表2-29)注:1•强风化和全风化的岩石,可参照所风化成的相应土类取值,其他状态下的岩石不修2 •地基承载力特征值按地基基础设计规范附录 D 深层平板载荷试验确定时 n d 取0。
3. 建筑物的地基变形允许值(表 2-30)建筑物的地基变形允许值表2-30200 体型简单的高层建筑基础的平均沉降量(—mm 高耸结构基础的倾斜H g W 20 0.008 20< H g W 50 0.00650< H g W 100 0.005100< H g W 150 0.004150< H g W 200 0.003200 < H g W 2500.002 高耸结构基础的沉降量(mm )H g W 100 400 100< H g W 200 300200 < H g W 250200本表数值为建筑物地基实际最终变形允许值;注:1.I 为相邻柱基的中心距离(mm ); H g 为自室外地面起算的建筑物高度( m );局部倾斜指砌体承重结构沿纵向 6~10m 内基础两点的沉降差与其距离的比值。
4.压实填土的质量控制(表2-31)压实填土的质量控制表2-31正;H g W 24 24< H g W 60 60v H g W 100H g > 1000.004 0.003 0.0025 0.002 2. 有括号者仅适用于中压缩性土; 3. 4. 倾斜指基础倾斜方向两端点的沉降差与其距离的比值;5. 多层和高层建筑的整体倾斜注:1.压实系数入C 为压实填土的控制干密度P d 与最大干密度P dmax 的比值,W op 为最优含2.地坪垫层以下及基础底面标高以上的压实填土,压实系数不应小于5. 房屋沉降缝宽度(表2-32)和相邻建筑物基础间的净距(表 2-33)筑物高度(m );2.当被影响建筑的长高比为1.5 < L/H f V2.0时,其间净距可适当缩小。
6. 无筋扩展基础台阶宽高比的允许值(表 2-34)相邻建筑物基础间的净距(m )注:1.表中L 为建筑物长度或沉降缝分隔的单元长度(m ) ; H f 为自基础底面标高算起的建0.94。
房屋沉降缝的宽度表2-32注:1. P k 为荷载效应标准组合时基础底面处的平均压力值(kPa );2.阶梯形毛石基础的每阶伸出宽度,不宜大于 200mm ;3.当基础由不同材料叠合组成时,应对接触部分作抗压验算;4.基础底面处的平均压力值超过300kPa 的混凝土基础,尚应进行抗剪验算。
2-2-2地基及基础计算2-2-2-1基础埋置深度基础埋置深度,应按下列条件确定:1. 建筑物的用途,有无地下室、设备基础和地下设施,基础的型式和构造;2. 作用在地基上的荷载大小和性质;3. 工程地质和水文地质条件;4. 相邻建筑物和基础埋深;5. 地基土冻胀和融陷的影响。
在满足地基稳定和变形要求的前提下,基础宜试埋。
除岩石地基处,基础埋 深不宜小于0.5m 。
筏形和箱形基础的埋置深度,应满足地基承载力、变形和稳定性要求。
天然 地基上的箱形和筏形基础的埋置深度不宜小于建筑物高度的 1/15;桩箱或桩筏基当存在相邻建筑物时,新建建筑物的基础埋深不宜大于原有建筑基础。
深大于原有建筑基础时,两基础间应保持一定净距。
否则应采取分段施工,设支 护结构,或加固原有建筑物基础。
确定基础埋深尚应考虑地基的冻胀性。
2-2-2-2地基计算地基计算见表2-35 0地基计算表2-35础的埋置深度(不计桩长)不宜小于建筑物高度的1/18-1/20。
当埋(石灰:砂:骨料),每层 约虚铺220mm ,夯至150mm承载力计算变形计算稳定性计算(1)(3)轴心荷载作用时4 Fk+G—Pk" A W/a偏心荷载作用时Fj^ G k Mi 一…Pkm«= —+ #£1・2几Fk+Gk M& 八/>knun= 丄A ■冷勺■当偏心距e>6/6时当受力层范围内有较弱下卧层时,尚应验算仇+ PQCW几条形基础:冲念務矩形基础:2 C+空瓷倂畀任而(1)最终变形量" ^1-1a“i)(2)地基变形计算深度△/mM0・025 2 △门i-1(3)开挖基坑地基土的回弹变形量用0弧滑动面法验算M R/M S》1・2(1)当基础宽度大于3m或埋置深度大于0・501时・几值应按下式修正:几=几+ 7by(&- 3)+ 帀挣01(<^~0.5)(2)当偏心距e小于或等于0.033倍基础底宽时, 几按F式计算人-Mb/b + MdAmd +计算内容计算公式 备 注注:表中符号如——相应于荷載效应标准组合时,基础底面处的平均压力值; A ——修正后的地基承载力特征值; 九相应于荷载效应标准组合时.基础底面边缘的最大压力值;Pk 圖——相应于荷载效应标准组合时, Fk ——相应于荷载效应标准组台时* Gk ——基础自重和基础上的土重; A ——基础底面面积;Mi ——相应于荷载效应标准组合时,评——基础底更的抵抗矩;Z ——垂直于力矩作用方向的基础底面边长:a —合力作用点至基础底面兹大压力边绿的距离i 仏——地基承载力特征值, 耳b 、tjd —基础宽度和埋棵的地基承载力修正系数?Z —基础底面以下土的重度.地下水位以下耽浮重度;b 基础底面宽度.小于3m 时按3m 取值,大于6111时按6111取值;L ——基础底面以上土的加权平均重度、地下水位W 下取浮重度t d ——基础埋置深度.一般自室外地面标高算起;Mts Md 、Me —承载力垂数;m —基底T 一倍短边宽探度内土的粘聚力标准值*地基堆第变席S;沉降计e 经验系数.根据地区沉降观测资料及经验确定;按分层总和祛计算岀的地基变形量;n ——地基变形计算深度范围内所划分的土垦数; 如——对应于荷载效应椎水矢组合时的基础底面处的附加压力i E ・i ——基础底面下第:层土的压缩模量,取土的自重压力至土的自重压力与附加压力之和的压力段计 算; 蠶「1—基础底面至第i 层土、第,・1层土底面的距离*£7—基础底面计算点至第:层土.第1-1层土底H 范围内平均附加应力系数i山;一在计算深度ffi 围内,第:层土的计算变形值; ——在计算深度向上®厚度为2的土层计算变形值; 矶一地基的回弹变形量J 虹—考虑回陣影响的沉降计算经验系数.矢取1•山 P.——基境底面以上土的自童压力,地下水e 以下扣除浮力, E”——土的回弾棋量¥--- 滑动力矩卡M R —抗滑力矩.2-2-2-3基础计算基础计算见表2-36。
基础计算表2-36基础底面边绿的最小压力值; 上部结构传至基础顶面的竖向力值;件用于基础底面的力矩值辛无筋扩展基础(砖、毛石、混凝土、三合土尊材料组成的墙下条形基础和柱下独立基础)基础高度心导ztana (2)扩展基础(钢筋混凝土柱独立基础和墙下条形基础)MlMg矩形«面柱的矩形基础,验算柱与基础交接处及基础变阶处的受冲切承载力F/ M O.7Php/ja (i)基础底板抗弯计算矩形基础:(2Z + a')( fimex + P -誉)+ (Pmw - pH=~(Z - 4)2(26 + 6')(+ H -誉)墙下条形基础:取Z = a' = lm按上述M I式计算。
当扩展基础的混凝土强度等级小于柱的混凝土强度等级时,尚应验算扩展基础顶面的局部受压承载力5 =(S + ab)/2Fl - pjAt(1)柱下条形基础(2)⑶⑷(5)⑹上部结构刚度较好,荷载分布较均匀,且条形基础梁高度不小于1/6柱距时,地基反力按直线分布,条形基础梁的内力按连续梁计算,边跨跨中弯矩及第一内支座弯矩乘以1.2系数;不满足上述条件时,按弹性地基梁计算;交义条形基础,交点上的柱荷载,按交义梁的刚度或变形协调的要求进行分配,内力按上述规定计算J 验算柱边缘处基础梁的受剪承《力J存在扭矩时,作抗扭计算i条形基础的混凝土强度等级小于柱混凝土强度等级时, 应验算柱下条形基础梁顶面的局部受压承載力基底平面形心与结构竖向永久荷载S心的偏心距梁板式筏基底板受冲切承载力F/ <0.7Php/tMm^0底板区格为矩形双向板时,底板受冲切所需厚度4/>2nUn2(3)筏形基础(梁板式、平板式)(心 + M -仏+ 3 - P + 0.7— Ao = -----梁板式筏基底板斜«面受剪承载力匕£0.70』心也一2届Mo梁板式筏基的基础梁要验算正截面受弯、斜截面受剪承载力及底层柱下基础梁顶面的局部受压承载力平板式筏基板,距柱边妇/2处冲切临界K面的最大剪应力Ph.= (800/ho)也(6)(8)rnux ~ F// M tah Q + Afl/1(r昨€0・7((L4+ 1・2/禹)阳£ 平板式筏基内筒下板受冲切承载力FMugho < 0.7j9hp/y 7平板式筏基距内筒边缘或柱边缘h,处筏板受剪承载力尚应验算筏板正截面受弯承«力=1 _ -■ —• 1 +专ED注:表中符号Ho —基础高度ih —基础底面宽度:6o —基础顶面的墙体宽度或柱脚宽度; tana ——基础台阶宽高比;兀——受冲切承载力截面高度影响系数,当/iW800mm 时,php=l.O ;人鼻2000mm 时,弘产0.9,其间按 线性内插法取用・混凝土轴心抗拉强度设计值J 基础冲切破坏锥休的有效高度;——冲切破坏锥体最不利…値计算长度:fihoP ——相应于荷载效应基本组合时在任意截面处基础底面地基反力设计值;G ——考虑荷载分配系数的基础自重及其上的土自重iW ——与偏心距方向一致的基础底面边缘抵抗矩;A ——基础底面积;«顶——距基础梁边加/2处冲切临界截面的周长5/n2——计算板格的短边、长边的净长度>V,——距梁边缘仏处,作用在梯形面积上的地基土平均净反力设计值;%——受剪切承载力截面高度影响系数,板的有效高度Ao < 800mm 时,A 。