继电保护基础知识和微机保护原理
- 格式:docx
- 大小:37.41 KB
- 文档页数:3
继电保护最全面的知识一、基本原理继电保护装置必须具有正确区分被保护元件是处于正常运行状态还是发生了故障,是保护区内故障还是区外故障的功能。
保护装置要实现这一功能,需要根据电力系统发生故障前后电气物理量变化的特征为基础来构成。
电力系统发生故障后,工频电气量变化的主要特征是:1)电流增大短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负荷电流。
2)电压降低当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低。
3)电流与电压之间的相位角改变正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20°,三相短路时,电流与电压之间的相位角是由线路的阻抗角决定的,一般为60°~85°,而在保护反方向三相短路时,电流与电压之间的相位角则是180°+(60°~85。
)。
4)测量阻抗发生变化测量阻抗即测量点(保护安装处)电压与电流之比值。
正常运行时,测量阻抗为负荷阻抗;金属性短路时,测量阻抗转变为线路阻抗,故障后测量阻抗显著减小,而阻抗角增大。
不对称短路时,出现相序分量,如两相及单相接地短路时,出现负序电流和负序电压分量;单相接地时,出现负序和零序电流和电压分量。
这些分量在正常运行时是不出现的。
利用短路故障时电气量的变化,便可构成各种原理的继电保护。
此外,除了上述反应工频电气量的保护外,还有反应非工频电气量的保护,如瓦斯保护。
二、基本要求继电保护装置为了完成它的任务,必须在技术上满足选择性、速动性、灵敏性和可靠性四个基本要求。
对于作用于继电器跳闸的继电保护,应同时满足四个基本要求,而对于作用于信号以及只反映不正常的运行情况的继电保护装置,这四个基本要求中有些要求可以降低。
1、选择性选择性就是指当电力系统中的设备或线路发生短路时,其继电保护仅将故障的设备或线路从电力系统中切除,当故障设备或线路的保护或断路器拒动时,应由相邻设备或线路的保护将故障切除。
微机继电保护原理1.数据采集:微机继电保护通过连接电流互感器和电压互感器对电力系统的电流和电压进行采集,将采集到的数据转换为电压或电流信号输入到微处理器中进行分析。
2.信号处理:微机继电保护通过模拟电路将采集到的电压和电流信号进行放大、滤波和线性化处理,保证信号的精度和稳定性,并将处理后的信号送入A/D转换器中进行数字化处理。
3.数字化处理:微机继电保护中的微处理器通过A/D转换器将采集到的模拟信号转换为数字信号,以便进行后续的数字处理和判断。
4.过电流保护:微机继电保护根据电流信号的大小判断系统是否存在过电流现象。
当电流超过设定的保护值时,微机继电保护会发出指令关闭相应的断路器,以保护电力系统的安全运行。
5.过压保护:微机继电保护通过分析电压信号的大小判断系统是否存在过压现象。
当电压超过设定的保护值时,微机继电保护会通过控制指令断开电力系统的电源,以避免设备损坏或火灾等安全隐患。
6.欠压保护:微机继电保护根据电压信号的大小判断系统是否存在欠压现象。
当电压低于设定的保护值时,微机继电保护会发出指令关闭相应的电力设备,以防止设备受损或引起电路故障。
7.过负荷保护:微机继电保护通过分析电流信号的大小和持续时间来判断系统是否存在过负荷现象。
当电流超过设定的保护值并持续一定时间时,微机继电保护会发出指令关闭相应的设备,以防止设备受损或引起火灾等安全事故。
8.故障记录:微机继电保护具有故障记录功能,可以记录系统出现的故障信息,如过流记录、过压记录、欠压记录等,以便维护人员进行故障分析和故障排查。
总之,微机继电保护利用微处理器技术进行数据采集、处理和判断,通过对电流和电压信号的分析,判断系统是否存在过电流、过压、欠压、过负荷等异常情况,并通过发出控制指令来保护电力系统的安全运行。
同时,微机继电保护具有故障记录功能,方便维护人员进行故障分析和处理。
继电保护(Relay Protection )绪论本部分主要介绍电力系统故障类型,不正常运行状态及电力系统发生故障产生的危害后果。
重点介绍继电保护部分的任务,工作原理及对继电保护的要求。
一.电力系统的故障与不正常运行1.电力系统:电能的生产,输送,分配和应用组成的系统。
2.一次设备:电能通过的设备。
如发电机,变压器,断路器,隔离开关,PT,CT ,电力电容器,电抗器,母线及线路为一次设备。
3.二次设备:对一次设备运行状态进行监视,测量,保护及控制的设备为二次设备。
(弱电)电力系统在运行中可能会发生各种故障及不正常运行状态,会严重影响系统的正常运行,甚至会使系统瓦解。
4.电力系统中的故障和不正常运行状态及后果。
a . 故障:最常见也是最危险的故障是发生各种形式的短路,其次是系统断路及复合故障。
危害:○1 通过故障点很大的短路电流(为负载电流的几倍或几十倍)备。
○2 短路电流通过电源到短路点的非故障元件。
由于发热和电动力的作用(如线路间力的作用)使它们损坏或缩短使用寿命,功能降低。
○3 使电压大大下降,供电质量下降,影响用户工作的稳定性(大面积停电)○4 破坏电力系统并列运行的稳定性,引起系统振荡。
b. 不正常运行状态:电力系统中电气设备不能正常工作,但没发生故障。
○1 过负荷:负荷超过电气设备额定值,即负载上升,R 下降,负荷电流上升大于额定电流即fhI>N I (载流部分和绝缘材料温度上升,加速绝缘的老化损坏,可能会发展为故障)○2 过电压:发电机突然甩负荷或急剧下降。
R 上升。
I 下降 aaaU EI R=-↑○3 系统频率下降(低用状态) ○4 发生轻微振荡。
5.短路的类型: ○1 三相短路 (3)D 2% ○2 两相短路 (2)D1.6%○3单相接地短路 (1)D 87% ○4两相接地短路 (1.1D6.1%6.系统发生事故的原因:○1 自然条件因素 (如雷击等) ○2 设备设计不合理,使正常的电流偏离。
微型机继电保护原理微型机继电保护原理是指通过微型计算机控制和调度继电器,以实现对电力系统的保护和控制。
微型机继电保护原理主要包括三个方面:信号采集与处理、保护判断与动作、故障信息传输与显示。
信号采集与处理:微型机继电保护系统通过各种传感器和测量装置对电力系统中的电压、电流、频率、功率等参数进行实时采集。
这些信号经过滤波、放大和AD转换,然后进入微型计算机,进行数字信号处理。
该处理过程中,计算机对信号进行滤波、平滑、补偿等处理,得到稳定、精确的系统运行参数数据。
保护判断与动作:微型计算机通过运行保护算法,根据电力系统的运行参数数据,进行故障检测与判断。
传统的继电保护设备需要多个继电器组合实现不同保护功能,而微型机继电保护系统中,所有的保护功能都由微型计算机软件完成,无需额外的硬件设备。
根据预设的保护条件和动作逻辑,微型机继电保护系统实现对不同类型的故障进行准确判断,并完成相应的保护动作。
保护动作主要包括断开故障电路、切除故障设备、调整互感器、电动机等。
故障信息传输与显示:当发生故障时,微型机继电保护系统会将故障信息存储在内部存储器中,并通过通信接口与上位计算机或监控系统进行数据传输和共享。
同时,系统会进行故障信息的显示,如LED显示屏、数码管等。
这样可以实现对故障信息的实时监测和分析,以及对系统状态的远程控制。
微型机继电保护系统的实现离不开先进的硬件技术和高效的软件算法。
硬件方面,需要设计高精度采样电路、稳定的信号放大器、高速的AD转换器等;软件方面,需要编写完善的保护算法,进行逻辑控制和状态判断,确保系统能够准确、可靠地进行保护和控制操作。
微型机继电保护系统具有多种优点。
首先,相比传统的继电保护设备,微型机继电保护系统结构简单,占用空间小,安装方便。
其次,使用微型计算机进行信号处理和保护判断,可以实现对多个保护功能的集成和自动切换,提高了系统的智能化程度和可靠性。
再次,微型机继电保护系统通过与上位计算机和监控系统的通信,实现了故障信息的共享和远程控制,提高了系统的可管理性和维护性。
继电保护基础知识和微机保护原理
继电保护是电力系统中重要的安全措施之一,它的作用是在电力系统
发生故障时,迅速切除或隔离故障点,保护电力设备和人身安全。
而微机
保护利用先进的微机技术,结合各种传感器和控制装置,实现电力系统的
准确、灵敏和可靠的保护,提高系统的稳定性和可靠性。
本文将介绍继电
保护基础知识和微机保护原理。
一、继电保护基础知识
1.继电保护原理
继电保护根据电力系统的运行状态和故障特征,通过各种传感器和设备,对电力系统的电压、电流、功率等进行监测和测量,从而判断系统是
否发生故障以及故障的位置和类型。
根据保护原理的不同,可以将继电保
护分为差动保护、过流保护、间隙保护、距离保护等。
2.继电保护的类型
继电保护按照保护范围的不同,可以分为发电机保护、变压器保护、
线路保护、母线保护、馈线保护等。
不同的保护对象有着不同的保护特点
和保护要求。
3.继电保护的组成
继电保护由监测传感器、比较装置、判据装置和动作执行装置等组成。
监测传感器负责将电能转化为可测量的电信号,如电压互感器、电流互感
器等;比较装置根据测量信号和设定值进行比较,判断系统的状态;判据
装置根据比较装置的输出结果,生成动作指令,控制动作执行装置对保护
范围内的设备进行保护动作。
1.微机保护系统结构
微机保护系统由数据采集模块、微机主控装置、数据处理模块、监测
和操作界面等组成。
数据采集模块负责采集保护对象的电压、电流等信号,并将其转化为数字信号;微机主控装置进行数据的处理和分析,并根据设
定条件生成保护动作指令;数据处理模块进行数据的存储和管理,提供故
障记录和统计报表等。
2.微机保护的特点
微机保护具有以下特点:
(1)准确性高:微机保护采用先进的数字信号处理技术,可以实时
监测和测量电力系统的各种参数,提高保护的准确性和可靠性。
(2)速度快:微机保护系统的处理速度很快,可以在几十毫秒内完
成对电力系统的故障判断和动作指令的生成。
(3)功能强大:微机保护具有丰富的功能,可以实现过流保护、差
动保护、距离保护、频率保护等多种保护方式。
(4)通信能力强:微机保护系统具有良好的通信能力,可以与远程
监控系统、自动化装置等进行数据交互,实现对电力系统的远程监控和控制。
(5)维护方便:微机保护系统的软件可以进行远程升级和故障诊断,方便维护人员进行维护和管理。
继电保护和微机保护是现代电力系统中重要的安全技术手段,它们通
过监测、测量和判断电力系统的故障和状态,保护了电力设备和人身安全。
随着技术的发展,微机保护作为一种先进的保护手段,具有更加高效、准确和可靠的特点,将在电力系统的保护中得到更广泛的应用。