第二节 继电保护的基本原理及其组成
- 格式:doc
- 大小:37.00 KB
- 文档页数:3
我们把它统称为电力系统。
一般将电能通过的设备成为电力系统成为电力电力系统的一次设备,如发电机、变压器、断路器、输电电路等,对一次设备的运行状态进行监视、测量、控制和保护的设备,被称为电力系统的二次设备。
继电保护装置就属于电力系统的二次设备。
一、继电保护装置的基本原理为了完成继电保护的任务,继电保护就必须能够区别是正常运行还是非正常运行或故障,要区别这些状态,关键的就是要寻找这些状态下的参量情况,找出其间的差别,从而构成各种不同原理的保护。
1.利用基本电气参数的区别发生短路后,利用电流、电压、线路测量阻抗等的变化,可以构成如下保护:(1)过电流保护。
单侧电源线路如图1-1所示,若在BC段上发生三相短路,则从电源到短路点k之间将流过很大的短路电流I k,可以使保护2反应这个电流增大而动作于跳闸。
(2)低电压保护。
如图1所示,短路点k的电压U k降到零,各变电站母线上的电压都有所下降,可以使保护2反应于这个下降的电压而动作。
图1:单侧电源线路(3)距离保护。
距离保护反应于短路点到保护安装地之间的距离(或测量阻抗)的减小而动作。
如图1所示,设以Z k表示短路点到保护2(即变电站B母线)之间的阻抗,则母线上的残余电压为:U B=I k Z ko Z B就是在线路始端的测量阻抗,它的大小正比于短路点到保护2之间的距离。
2.利用内部故障和外部故障时被保护元件两侧电流相位(或功率方向)的差别两侧电流相位(或功率方向)的分析如下。
图2:双侧电源网络a——正常运行情况;b——线路AB外部短路情况;c——线路AB内部短路情况正常运行时,A、B两侧电流的大小相等,相位相差180°;当线路AB外部故障时,A、B两侧电流仍大小相等,相位相差180°;当线路AB内部短路时,A、B两侧电流一般大小不相等,在理想情况下(两侧电动势同相位且全系统的阻抗角相等),两侧电流同相位。
从而可以利用电气元件在内部故障与外部故障(包括正常运行情况)时,两侧电流相位或功率方向的差别构成各种差动原理的保护(内部故障时保护动作),如纵联差动保护、相差高频保护、方向高频保护等。
第一章绪论第一节电力系统继电保护的作用一、电力系统的故障和不正常运行状态1.电力系统的故障:三相短路f (3)、两相短路f (2)、单相短路接地f (1)、两相短路接地f (1,1)、断线、变压器绕组匝间短路、复合故障等。
2. 不正常运行状态:小接地电流系统的单相接地、过负荷、变压器过热、系统振荡、电压升高、频率降低等。
二、发生故障可能引起的后果是:1、故障点通过很大的短路电流和所燃起的电弧,使故障设备烧坏;2、系统中设备,在通过短路电流时所产生的热和电动力使设备缩短使用寿命;3、因电压降低,破坏用户工作的稳定性或影响产品质量;破坏系统并列运行的稳定性,产生振荡,甚至使整个系统瓦解。
事故:指系统的全部或部分的正常运行遭到破坏,以致造成对用户的停止送电、少送电、电能质量变坏到不能容许的程度,甚至毁坏设备等等。
三、电保护装置及其任务1.继电保护装置:就是指反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。
2.它的基本任务是:(1)发生故障时,自动、迅速、有选择地将故障元件(设备)从电力系统中切除,使非故障部分继续运行。
(2)对不正常运行状态,为保证选择性,一般要求保护经过一定的延时,并根据运行维护条件(如有无经常值班人员),而动作于发出信号(减负荷或跳闸),且能与自动重合闸相配合。
第二节继电保护的基本原理和保护装置的组成一、继电保护的基本原理继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信息量,当突变量达到一定值时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。
1、利用基本电气参数的区别发生短路后,利用电流、电压、线路测量阻抗等的变化,可以构成如下保护。
(1)过电流保护:反映电流的增大而动作,如图1-1所示,(2)低电压保护:反应于电压的降低而动作。
(3)距离保护(或低阻抗保护):反应于短路点到保护安装地之间的距离(或测量阻抗的减小)而动作。
2、利用内部故障和外部故障时被保护元件两侧电流相位(或功率方向)的差别。
继电保护及原理归纳继电保护是电力系统中非常重要的一项技术措施,它能够对电力系统中的故障进行快速、准确的检测和保护。
本文将对继电保护的基本原理以及常见的继电保护设备进行归纳和总结。
一、继电保护的基本原理继电保护是通过监测电力系统中的电流、电压、频率等参数来判断系统是否存在故障,并采取适当的措施消除或减小故障对系统的影响。
继电保护的基本原理可以归纳为以下几点:1. 故障检测:继电保护通过监测电力系统中的参数变化,如电流的突变、电压的异常等来判断系统是否存在故障。
2. 故障定位:一旦继电保护检测到故障,它会通过测量电流、电压等参数的变化来确定故障的位置,以便采取相应的补救措施。
3. 故障切除:当系统发生故障时,继电保护会及时切断故障点与电力系统其他部分的连接,以防止故障扩大,并保护系统的稳定运行。
4. 信息传递:继电保护可以通过传递故障信息给操作人员,使其能够及时了解系统发生的故障情况,以便采取相应的补救措施。
二、常见的继电保护设备1. 过流保护装置:过流保护装置主要用于对电力系统中的过电流故障进行检测和保护。
它通过监测电流的大小和变化来判断系统是否存在过电流故障,并及时采取保护措施。
2. 跳闸保护装置:跳闸保护装置是一种常见的继电保护装置,它可以在系统发生故障时迅速切断电路,以防止故障进一步扩大。
跳闸保护装置能够根据系统的工作状态和故障类型自动进行判别,保证系统的安全运行。
3. 差动保护装置:差动保护装置主要用于对电力系统中的差动故障进行保护。
它通过比较电流的大小和方向来判断系统是否存在差动故障,并及时切除故障点,保护系统的正常运行。
4. 低压保护装置:低压保护装置主要用于对电力系统中的低电压故障进行保护。
它可以监测系统电压的变化,一旦系统电压低于设定值,就会及时采取相应的措施,以保证系统的正常运行。
5. 过频保护装置:过频保护装置用于对电力系统中的过频故障进行保护。
它可以检测电力系统中频率的变化,一旦频率超过设定值,就会自动切断电路,以避免故障的进一步发展。
继电保护的基本原理和保护装置的组成CONTENTS 目录继电保护的基本原理1继电保护装置的组成2电力系统的发电机、变压器、母线、输电线路和用电设备通常处于正常运行状态,但也可能出状态。
一、继电保护的基本原理继电保护基本原理是利用被保护线路或设备故障前后某些变化的物理量为信息量,当信息量达到一定值时,起动逻辑环节,发出相应的命令。
图1 输电线路图2 水轮发电机图3 变压器(1)利用基本电气参数量的区别发生短路故障后,利用电流、电压、线路测量阻抗、电压电流间相位、负序和零序分量的出现等的变化,构成相应的保护。
1)过电流保护反应电流增大而动作的保护称为过电流保护。
如图在BC 线路上发生三相短路故障,则从电源到短路点之间将流过短路电流。
Kk I kZ 保护1和保护2都能反应(测量)到这个电流,保护2首先动作于断路器QF2跳闸。
2)低电压保护低电压保护是反应电压降低而动作的保护。
此时A 、B 母线上的电压将降低,保护1、2都能反应到电压降低,从选择性要求,保护2应首先动作。
K0=kU3)距离保护距离保护也称低阻抗保护,是反应保护安装处到短路点之间的阻抗下降而动作的保护。
Kk I kZ B 母线上电压为:kk res Z I U =保护2测量阻抗为:kk k res m L Z Z I U Z 1/=== 其大小等于保护安装处到短路点间的阻抗,正比于短路点到保护2之间的距离。
(2)利用比较两侧的电流相位L I LI 正常运行时,线路AB 两侧的电流大小相等,相位差为 180外部发生短路故障时:k I kI 显然外部短路时,结论与正常运行相同。
保护区内部短路时:k I ' kI ''从分析可知,若两侧电流相位相同,则判为内部故障;若两侧电流相位相反,则判为外部故障。
利用被保护线路两侧电流相位,可构成纵差保护、相差高频保护、方向保护等。
(3)反应序分量或突变量是否出现不对称短路时,将出现负序分量发生短路时,正序分量将出现突变接地短路时,将出现零序分量(4)反应非电量保护非电量保护过负荷保护反应绕组温度升高而构成过负荷保护;瓦斯保护反应变压器内部故障时所产生的瓦斯气体,构成瓦斯保护;二、继电保护装置的组成执行部分测量部分整定值逻辑部分输出信号输入信号(1)测量部分:测量被保护对象的有关物理量,与给定量进行比较,给出“是”或“非”信号。
继电保护的基本原理构成与分类继电保护是电力系统中起到保护作用的一种装置。
它通过检测电力系统中的异常事件,例如短路、过电流、过载和接地故障等,及时发出信号切断故障部分或改变系统的运行状态,以保护设备和人员的安全。
继电保护的基本原理、构成和分类对于电力系统的正常运行非常重要。
1.基本原理:继电保护的基本原理是利用电流、电压和功率等物理量的变化来检测电力系统中的异常事件。
当电力系统发生故障时,例如短路或过载,系统中的电流、电压或功率会发生异常变化。
继电保护装置会测量和监控系统中的各种物理量,并根据设定的阈值判断是否发生故障。
一旦发生故障,继电保护装置会发出信号切断故障部分或改变系统的运行状态。
2.构成:继电保护一般由以下几个部分组成:(1)传感器:传感器用于测量电力系统中的物理量,如电流和电压等。
传感器一般采用电流互感器和电压互感器。
(2)测量元件:测量元件用于将测量到的物理量转化为与故障相关的电信号。
例如,电压互感器将测量到的电压转化为电压信号,电流互感器将测量到的电流转化为电流信号。
(3)信号处理单元:信号处理单元对测量到的电信号进行放大、滤波、采样和变换等处理,以提取有用的信息。
(4)逻辑单元:逻辑单元根据信号处理单元提供的信息,通过逻辑判断和运算,判断是否发生故障,并输出相应的控制信号。
(5)输出单元:输出单元接收由逻辑单元输出的控制信号,执行切断故障部分或改变系统运行状态的任务。
3.分类:继电保护可以根据其作用对象、工作方式和应用领域等方面进行分类。
(1)按作用对象分类:(a)母线保护:用于保护电力系统中的母线。
主要功能是侦测母线上的故障和异常,如短路和过电流,并迅速切断故障电路。
(b)高压和中压线路保护:用于保护电力系统中的高压和中压线路。
主要功能是侦测线路上的故障和异常,如短路、过电流和过载,并迅速切断故障电路。
(c)变压器保护:用于保护电力系统中的变压器。
主要功能是侦测变压器中的内部故障和异常,如短路、过电流和过热,并迅速切断故障电路。
第二节继电保护的基本原理及其组成
参看图1-1至图1-6及其讲解,了解本章对继电保护装置对正常与故障或不正常状态的区分以及继电保护基本原理,并且通过对继电保护装置基本组成的学习深入了解各部分工作内容。
一、继电保护装置对正常与故障或不正常状态的区分
通过对继电保护装置正常运行状态与故障或不正常状态的学习,初步理解继电保护装置的原理。
1. 为完成继电保护所担负的任务,应该要求它能够正确区分系统正常运行与发生故障或不正常运行状态之间的差别,以实现保护。
图1-1 正常运行情况
在电力系统正常运行时,每条线路上都流过由它供电的负荷电流,越靠近电源端的线路上的负荷电流越大。
同时,各变电站母线上的电压,一般都在额定电压±5%-10%的范围内变化,且靠近于电源端母线上的电压较高。
线路始端电压与电流之间的相位角决定于由它供电的负荷的功率因数角和线路的参数。
由电压与电流之间所代表的“测量阻抗”是在线路始端所感受到的、由负荷所反应出来的一个等效阻抗,其值一般很大。
图1-2 d点三相短路情况
当系统发生故障时(如上图所示),假定在线路B-C上发生了三相短路,则短路点的电压降低到零,从电源到短路点之间均将流过很大的短路电流,各变电站母线上的电压也将在不同程度上有很大的降低,距短路点越近时降低得越多。
设以表示短路点到变电站B母线之间的阻抗,则母线上的残余电压应为
此时与之间的相位角就是的阻抗角,在线路始端的测量阻抗就是,此测量阻抗的大小正比于短路点到变电站B母线之间的距离。
2. 一般情况下,发生短路之后,总是伴随着电流的增大、电压降低、线路始端测量阻抗减小,以及电压与电流之间相位角的变化。
故利用正常运行与故障时这些基本参数的区别,便可以构成各种不同原理的继电保护:
(1)反应于电流增大而动作的过电流保护;
(2)反应于电压降低而动作的低电压保护;
(3)反应于短路点到保护安装地点之间的距离(或测量阻抗的减小)而动作的距离保护(或低阻抗保护)等。
电力系统中的任一电气元件,在正常运行时,在某一瞬间,负荷电流总是从一侧流入而从另一侧流出。
图 1-3 正常运行状态
说明:如果统一规定电流的正方向都是从母线流向线路,则A-B两侧电流的大小相等,相位相差180度(图中为实际方向)。
图1-4点短路时的电流分布
说明:当线路A-B范围以外的点短路时,由电源I所供给的短路电流将流过线路A-B,此时A-B两侧的电流仍然是大小相等相位相反,其特征与正常运行时一样。
图1-5点短路时的电流分布
说明:在线路A-B两侧的电流都是由母线流向线路,此时两个电流的大小一般不相等,在理想情况下(两侧电势同相位且全系统的阻抗角相等),两个电流同相位。
要完成电力系统继电保护的基本任务,必须“区分”电力系统的正常、不正常工作和故障三种运行状态,“甄别”出发生故障和出现异常的元件。
而要“区分和甄别”,必须寻找电力元件在这三种运行状态下的可测参量(继电保护主要测电气量)的“差异”,提取和利用这些可测参量的“差异”,实现对正常、不正常工作和故障元件的快速“区分”。
3. 依据可测电气量的不同差异,可以构成不同原理的继电保护。
不同运行状态下具有明显差异的电气量有:
(1)流过电力元件的相电流、序电流、功率及其方向;
(2)元件的运行相电压幅值、序电压幅值;
(3)元件的电压与电流的比值即“测量阻抗”等。
发现并正确利用能可靠区分三种运行状态的可测参量或参量的新差异,就可以形成新的继电保护原理。
二、继电保护基本原理
1. 利用每个电气元件在内部故障和外部故障(包括正常运行情况)时,两侧电流相位或功率方向的差别,就可以构成各种差动原理的保护,如纵联差动保护、相差高频保护、方向高频保护等。
2. 差动原理的保护只能在被保护元件的内部故障时动作,而不反应外部故障。
所以被认为有绝对的选择性。
在按照上述原理构成各种继电保护装置时,可以使它们的参数反应于每相中的电流和电压,也可以使之仅反应于其中的某一个对称分量(负序、零序或正序)的电流和电压。
正常情况下,负和零序分量不会出现,而在发生不对称接地短路时,它们均具有较大的数值,在发生不接地的不对称短路时,无零序分量但负序分量较大,故利用这些分量构成的保护装置均具有良好的选择性和灵敏性,也是它获得广泛应用的原因。
另外,除反应于各种电气量的保护以外,还有根据电气设备的特点实现反应非电量的保护;当变压器油箱内部的绕组短路时,反应于油被分解所产生的气体而构成的瓦斯保护;反应于电动机绕组的温度升高而构成的过负荷或过热保护等等。
三、继电保护装置的组成
一般情况下,整套继电保护装置是由测量部分、逻辑部分和执行部分组成的。
原理结构图如下所示:
图1-6原理结构图
1. 测量比较元件
测量从被保护对象输入的有关电气量,并与已给定的整定值进行比较,根据比较的结果,给出“是”、“非”、“0”、“1”性质的一组逻辑信号,从而判断保护装置是否应该启动。
常用
测量比较元件:
(1)被测电气量超过给定值动作的过量继电器,如过电流继电器、过电压继电器、高周波继电器等;
(2)被测电气量低于给定值动作的欠量继电器,如低电压继电器、阻抗继电器、低周波继电器等;
(3)被测电压、电流之间相位角满足一定值而动作的功率方向继电器等。
2. 逻辑判断元件
根据测量比较元件输出逻辑信号的性质、先后顺序、持续时间等,使保护装置按一定的逻辑关系判定故障的类型和范围,最后确定是否应该使断路器跳闸、发出信号或不动作,并将对应的指令传给执行输出部分。
3. 执行元件
根据逻辑判断部分传来的指令,发出跳开断路器的跳闸脉冲及相应的动作信息、发出警报或不动作。