: ,a
:
0:a,
qinition of a Turing machine
TM‘s Notation
Basic TMs
Symbol-Writing & Head-Moving Ma=({s,h}, , , s, {h}) (s,b)=(h,a) where a {, } -{}; b-{} Abbreviation: Ma : a M: L M: R
:
q1
q q0 q0 q0 q1 q1 q1
(q, )
a
a
(q1, ) (h, ) (q0, ) (q0, a) (q0, ) (q1, )
4.1 Definition of a Turing machine
TM‘s state graph
0,a : M1=(K, , 0, , s, {h}) K={q1, q2, q3, q4, q5, qr, h} q5 ={0, a, } , a: : : 0={0} 0:a, 0: , q1 q2 q3 a: s=q1, 0: :
Part IV. Turing Machines
4.1 The definition of a Turing machine 4.2 Computing with Turing machines 4.3 Extension of Turing Machines 4.4 Nondeterministic Turing Machines 4.5 Nondeterministic TMs 4.6 General Grammars 4.7 Numerical Functions
4.1 Definition of a Turing machine